A27系列优化I2C/RTC处理,新增版本A270Y
This commit is contained in:
650
A27-STEPLDR/Src/i2c-gpio.c
Normal file
650
A27-STEPLDR/Src/i2c-gpio.c
Normal file
@ -0,0 +1,650 @@
|
||||
#include <string.h>
|
||||
#include "cp15.h"
|
||||
#include "board.h"
|
||||
#include "amt630h.h"
|
||||
#include "errno.h"
|
||||
#include "timer.h"
|
||||
#include "os_adapt.h"
|
||||
#include "gpio.h"
|
||||
#include "trace.h"
|
||||
#include "i2c.h"
|
||||
#include "i2c-gpio.h"
|
||||
|
||||
|
||||
#ifdef ANALOG_I2C_SUPPORT
|
||||
|
||||
struct i2c_gpio_private_data {
|
||||
struct i2c_adapter adap;
|
||||
struct i2c_algo_bit_data bit_data;
|
||||
struct i2c_gpio_platform_data pdata;
|
||||
};
|
||||
|
||||
/* Toggle SDA by changing the direction of the pin */
|
||||
static void i2c_gpio_setsda_dir(void *data, int state)
|
||||
{
|
||||
struct i2c_gpio_platform_data *pdata = data;
|
||||
|
||||
if (state)
|
||||
gpio_direction_input(pdata->sda_pin);
|
||||
else
|
||||
gpio_direction_output(pdata->sda_pin, 0);
|
||||
}
|
||||
|
||||
/*
|
||||
* Toggle SDA by changing the output value of the pin. This is only
|
||||
* valid for pins configured as open drain (i.e. setting the value
|
||||
* high effectively turns off the output driver.)
|
||||
*/
|
||||
static void i2c_gpio_setsda_val(void *data, int state)
|
||||
{
|
||||
struct i2c_gpio_platform_data *pdata = data;
|
||||
|
||||
gpio_direction_output(pdata->sda_pin, state);
|
||||
|
||||
gpio_set_value(pdata->sda_pin, state);
|
||||
}
|
||||
|
||||
/* Toggle SCL by changing the direction of the pin. */
|
||||
static void i2c_gpio_setscl_dir(void *data, int state)
|
||||
{
|
||||
struct i2c_gpio_platform_data *pdata = data;
|
||||
|
||||
if (state)
|
||||
gpio_direction_input(pdata->scl_pin);
|
||||
else
|
||||
gpio_direction_output(pdata->scl_pin, 0);
|
||||
}
|
||||
|
||||
/*
|
||||
* Toggle SCL by changing the output value of the pin. This is used
|
||||
* for pins that are configured as open drain and for output-only
|
||||
* pins. The latter case will break the i2c protocol, but it will
|
||||
* often work in practice.
|
||||
*/
|
||||
static void i2c_gpio_setscl_val(void *data, int state)
|
||||
{
|
||||
struct i2c_gpio_platform_data *pdata = data;
|
||||
|
||||
gpio_direction_output(pdata->scl_pin, state);
|
||||
|
||||
gpio_set_value(pdata->scl_pin, state);
|
||||
}
|
||||
|
||||
static int i2c_gpio_getsda(void *data)
|
||||
{
|
||||
struct i2c_gpio_platform_data *pdata = data;
|
||||
|
||||
gpio_direction_input(pdata->sda_pin);
|
||||
|
||||
return gpio_get_value(pdata->sda_pin);
|
||||
}
|
||||
|
||||
static int i2c_gpio_getscl(void *data)
|
||||
{
|
||||
struct i2c_gpio_platform_data *pdata = data;
|
||||
|
||||
gpio_direction_input(pdata->scl_pin);
|
||||
|
||||
return gpio_get_value(pdata->scl_pin);
|
||||
}
|
||||
|
||||
/* --- setting states on the bus with the right timing: --------------- */
|
||||
|
||||
#define setsda(adap, val) adap->setsda(adap->data, val)
|
||||
#define setscl(adap, val) adap->setscl(adap->data, val)
|
||||
#define getsda(adap) adap->getsda(adap->data)
|
||||
#define getscl(adap) adap->getscl(adap->data)
|
||||
|
||||
static __INLINE void sdalo(struct i2c_algo_bit_data *adap)
|
||||
{
|
||||
setsda(adap, 0);
|
||||
udelay((adap->udelay + 1) / 2);
|
||||
}
|
||||
|
||||
static __INLINE void sdahi(struct i2c_algo_bit_data *adap)
|
||||
{
|
||||
setsda(adap, 1);
|
||||
udelay((adap->udelay + 1) / 2);
|
||||
}
|
||||
|
||||
static __INLINE void scllo(struct i2c_algo_bit_data *adap)
|
||||
{
|
||||
setscl(adap, 0);
|
||||
udelay(adap->udelay / 2);
|
||||
}
|
||||
|
||||
/*
|
||||
* Raise scl line, and do checking for delays. This is necessary for slower
|
||||
* devices.
|
||||
*/
|
||||
static int sclhi(struct i2c_algo_bit_data *adap)
|
||||
{
|
||||
unsigned long start = 0;
|
||||
|
||||
setscl(adap, 1);
|
||||
|
||||
/* Not all adapters have scl sense line... */
|
||||
if (!adap->getscl)
|
||||
goto done;
|
||||
#if 0
|
||||
start = xTaskGetTickCount();
|
||||
while (!getscl(adap)) {
|
||||
/* This hw knows how to read the clock line, so we wait
|
||||
* until it actually gets high. This is safer as some
|
||||
* chips may hold it low ("clock stretching") while they
|
||||
* are processing data internally.
|
||||
*/
|
||||
if (xTaskGetTickCount() > start + adap->timeout) {
|
||||
/* Test one last time, as we may have been preempted
|
||||
* between last check and timeout test.
|
||||
*/
|
||||
if (getscl(adap))
|
||||
break;
|
||||
return -ETIMEDOUT;
|
||||
}
|
||||
taskYIELD();
|
||||
}
|
||||
#else
|
||||
while (!getscl(adap)) {
|
||||
udelay(1);
|
||||
if (++start > adap->timeout) {
|
||||
/* Test one last time, as we may have been preempted
|
||||
* between last check and timeout test.
|
||||
*/
|
||||
if (getscl(adap))
|
||||
break;
|
||||
return -ETIMEDOUT;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
done:
|
||||
udelay(adap->udelay);
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
/* --- other auxiliary functions -------------------------------------- */
|
||||
static void i2c_start(struct i2c_algo_bit_data *adap)
|
||||
{
|
||||
/* assert: scl, sda are high */
|
||||
setsda(adap, 0);
|
||||
udelay(adap->udelay);
|
||||
scllo(adap);
|
||||
}
|
||||
|
||||
static void i2c_repstart(struct i2c_algo_bit_data *adap)
|
||||
{
|
||||
/* assert: scl is low */
|
||||
sdahi(adap);
|
||||
sclhi(adap);
|
||||
setsda(adap, 0);
|
||||
udelay(adap->udelay);
|
||||
scllo(adap);
|
||||
}
|
||||
|
||||
|
||||
static void i2c_stop(struct i2c_algo_bit_data *adap)
|
||||
{
|
||||
/* assert: scl is low */
|
||||
sdalo(adap);
|
||||
sclhi(adap);
|
||||
setsda(adap, 1);
|
||||
udelay(adap->udelay);
|
||||
}
|
||||
|
||||
|
||||
|
||||
/* send a byte without start cond., look for arbitration,
|
||||
check ackn. from slave */
|
||||
/* returns:
|
||||
* 1 if the device acknowledged
|
||||
* 0 if the device did not ack
|
||||
* -ETIMEDOUT if an error occurred (while raising the scl line)
|
||||
*/
|
||||
static int i2c_outb(struct i2c_adapter *i2c_adap, unsigned char c)
|
||||
{
|
||||
int i;
|
||||
int sb;
|
||||
int ack;
|
||||
struct i2c_algo_bit_data *adap = i2c_adap->algo_data;
|
||||
|
||||
/* assert: scl is low */
|
||||
for (i = 7; i >= 0; i--) {
|
||||
sb = (c >> i) & 1;
|
||||
setsda(adap, sb);
|
||||
udelay((adap->udelay + 1) / 2);
|
||||
if (sclhi(adap) < 0) { /* timed out */
|
||||
TRACE_DEBUG("i2c_outb: 0x%02x, timeout at bit #%d\n", (int)c, i);
|
||||
return -ETIMEDOUT;
|
||||
}
|
||||
/* FIXME do arbitration here:
|
||||
* if (sb && !getsda(adap)) -> ouch! Get out of here.
|
||||
*
|
||||
* Report a unique code, so higher level code can retry
|
||||
* the whole (combined) message and *NOT* issue STOP.
|
||||
*/
|
||||
scllo(adap);
|
||||
}
|
||||
sdahi(adap); //---
|
||||
//sdalo(adap); //+++
|
||||
if (sclhi(adap) < 0) { /* timeout */
|
||||
TRACE_DEBUG("i2c_outb: 0x%02x, timeout at ack\n", (int)c);
|
||||
return -ETIMEDOUT;
|
||||
}
|
||||
|
||||
/* read ack: SDA should be pulled down by slave, or it may
|
||||
* NAK (usually to report problems with the data we wrote).
|
||||
*/
|
||||
ack = !getsda(adap); /* ack: sda is pulled low -> success */
|
||||
TRACE_DEBUG("i2c_outb: 0x%02x %s\n", (int)c, ack ? "A" : "NA");
|
||||
|
||||
scllo(adap);
|
||||
//sdalo(adap); //+++
|
||||
|
||||
return ack;
|
||||
/* assert: scl is low (sda undef) */
|
||||
}
|
||||
|
||||
|
||||
static int i2c_inb(struct i2c_adapter *i2c_adap)
|
||||
{
|
||||
/* read byte via i2c port, without start/stop sequence */
|
||||
/* acknowledge is sent in i2c_read. */
|
||||
int i;
|
||||
unsigned char indata = 0;
|
||||
struct i2c_algo_bit_data *adap = i2c_adap->algo_data;
|
||||
|
||||
/* assert: scl is low */
|
||||
sdahi(adap); //---
|
||||
for (i = 0; i < 8; i++) {
|
||||
if (sclhi(adap) < 0) { /* timeout */
|
||||
TRACE_DEBUG("i2c_inb: timeout at bit #%d\n", 7 - i);
|
||||
return -ETIMEDOUT;
|
||||
}
|
||||
indata *= 2;
|
||||
if (getsda(adap))
|
||||
indata |= 0x01;
|
||||
setscl(adap, 0);
|
||||
udelay(i == 7 ? adap->udelay / 2 : adap->udelay);
|
||||
}
|
||||
/* assert: scl is low */
|
||||
return indata;
|
||||
}
|
||||
|
||||
/* try_address tries to contact a chip for a number of
|
||||
* times before it gives up.
|
||||
* return values:
|
||||
* 1 chip answered
|
||||
* 0 chip did not answer
|
||||
* -x transmission error
|
||||
*/
|
||||
static int try_address(struct i2c_adapter *i2c_adap,
|
||||
unsigned char addr, int retries)
|
||||
{
|
||||
struct i2c_algo_bit_data *adap = i2c_adap->algo_data;
|
||||
int i, ret = 0;
|
||||
|
||||
for (i = 0; i <= retries; i++) {
|
||||
ret = i2c_outb(i2c_adap, addr);
|
||||
if (ret == 1 || i == retries)
|
||||
break;
|
||||
TRACE_DEBUG("emitting stop condition\n");
|
||||
i2c_stop(adap);
|
||||
udelay(adap->udelay);
|
||||
// taskYIELD();
|
||||
TRACE_DEBUG("emitting start condition\n");
|
||||
i2c_start(adap);
|
||||
}
|
||||
if (i && ret)
|
||||
TRACE_DEBUG("Used %d tries to %s client at "
|
||||
"0x%02x: %s\n", i + 1,
|
||||
addr & 1 ? "read from" : "write to", addr >> 1,
|
||||
ret == 1 ? "success" : "failed, timeout?");
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int sendbytes(struct i2c_adapter *i2c_adap, struct i2c_msg *msg)
|
||||
{
|
||||
const unsigned char *temp = msg->buf;
|
||||
int count = msg->len;
|
||||
unsigned short nak_ok = msg->flags & I2C_M_IGNORE_NAK;
|
||||
int retval;
|
||||
int wrcount = 0;
|
||||
|
||||
while (count > 0) {
|
||||
retval = i2c_outb(i2c_adap, *temp);
|
||||
|
||||
/* OK/ACK; or ignored NAK */
|
||||
if ((retval > 0) || (nak_ok && (retval == 0))) {
|
||||
count--;
|
||||
temp++;
|
||||
wrcount++;
|
||||
|
||||
/* A slave NAKing the master means the slave didn't like
|
||||
* something about the data it saw. For example, maybe
|
||||
* the SMBus PEC was wrong.
|
||||
*/
|
||||
} else if (retval == 0) {
|
||||
TRACE_ERROR("sendbytes: NAK bailout.\n");
|
||||
return -EIO;
|
||||
|
||||
/* Timeout; or (someday) lost arbitration
|
||||
*
|
||||
* FIXME Lost ARB implies retrying the transaction from
|
||||
* the first message, after the "winning" master issues
|
||||
* its STOP. As a rule, upper layer code has no reason
|
||||
* to know or care about this ... it is *NOT* an error.
|
||||
*/
|
||||
} else {
|
||||
TRACE_ERROR("sendbytes: error %d\n", retval);
|
||||
return retval;
|
||||
}
|
||||
}
|
||||
return wrcount;
|
||||
}
|
||||
|
||||
static int acknak(struct i2c_adapter *i2c_adap, int is_ack)
|
||||
{
|
||||
struct i2c_algo_bit_data *adap = i2c_adap->algo_data;
|
||||
|
||||
/* assert: sda is high */
|
||||
if (is_ack) /* send ack */
|
||||
setsda(adap, 0);
|
||||
udelay((adap->udelay + 1) / 2);
|
||||
if (sclhi(adap) < 0) { /* timeout */
|
||||
TRACE_ERROR("readbytes: ack/nak timeout\n");
|
||||
return -ETIMEDOUT;
|
||||
}
|
||||
scllo(adap);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int readbytes(struct i2c_adapter *i2c_adap, struct i2c_msg *msg)
|
||||
{
|
||||
int inval;
|
||||
int rdcount = 0; /* counts bytes read */
|
||||
unsigned char *temp = msg->buf;
|
||||
int count = msg->len;
|
||||
const unsigned flags = msg->flags;
|
||||
|
||||
while (count > 0) {
|
||||
inval = i2c_inb(i2c_adap);
|
||||
if (inval >= 0) {
|
||||
*temp = inval;
|
||||
rdcount++;
|
||||
} else { /* read timed out */
|
||||
break;
|
||||
}
|
||||
|
||||
temp++;
|
||||
count--;
|
||||
|
||||
/* Some SMBus transactions require that we receive the
|
||||
transaction length as the first read byte. */
|
||||
if (rdcount == 1 && (flags & I2C_M_RECV_LEN)) {
|
||||
if (inval <= 0 || inval > I2C_SMBUS_BLOCK_MAX) {
|
||||
if (!(flags & I2C_M_NO_RD_ACK))
|
||||
acknak(i2c_adap, 0);
|
||||
TRACE_ERROR("readbytes: invalid block length (%d)\n", inval);
|
||||
return -EPROTO;
|
||||
}
|
||||
/* The original count value accounts for the extra
|
||||
bytes, that is, either 1 for a regular transaction,
|
||||
or 2 for a PEC transaction. */
|
||||
count += inval;
|
||||
msg->len += inval;
|
||||
}
|
||||
|
||||
TRACE_DEBUG( "readbytes: 0x%02x %s\n",
|
||||
inval,
|
||||
(flags & I2C_M_NO_RD_ACK)
|
||||
? "(no ack/nak)"
|
||||
: (count ? "A" : "NA"));
|
||||
|
||||
if (!(flags & I2C_M_NO_RD_ACK)) {
|
||||
inval = acknak(i2c_adap, count);
|
||||
if (inval < 0)
|
||||
return inval;
|
||||
}
|
||||
}
|
||||
return rdcount;
|
||||
}
|
||||
|
||||
/* doAddress initiates the transfer by generating the start condition (in
|
||||
* try_address) and transmits the address in the necessary format to handle
|
||||
* reads, writes as well as 10bit-addresses.
|
||||
* returns:
|
||||
* 0 everything went okay, the chip ack'ed, or IGNORE_NAK flag was set
|
||||
* -x an error occurred (like: -ENXIO if the device did not answer, or
|
||||
* -ETIMEDOUT, for example if the lines are stuck...)
|
||||
*/
|
||||
static int bit_doAddress(struct i2c_adapter *i2c_adap, struct i2c_msg *msg)
|
||||
{
|
||||
unsigned short flags = msg->flags;
|
||||
unsigned short nak_ok = msg->flags & I2C_M_IGNORE_NAK;
|
||||
struct i2c_algo_bit_data *adap = i2c_adap->algo_data;
|
||||
|
||||
unsigned char addr;
|
||||
int ret, retries;
|
||||
|
||||
retries = nak_ok ? 0 : i2c_adap->retries;
|
||||
|
||||
if (flags & I2C_M_TEN) {
|
||||
/* a ten bit address */
|
||||
addr = 0xf0 | ((msg->addr >> 7) & 0x06);
|
||||
TRACE_DEBUG("addr0: %d\n", addr);
|
||||
/* try extended address code...*/
|
||||
ret = try_address(i2c_adap, addr, retries);
|
||||
if ((ret != 1) && !nak_ok) {
|
||||
TRACE_ERROR("died at extended address code\n");
|
||||
return -ENXIO;
|
||||
}
|
||||
/* the remaining 8 bit address */
|
||||
ret = i2c_outb(i2c_adap, msg->addr & 0xff);
|
||||
if ((ret != 1) && !nak_ok) {
|
||||
/* the chip did not ack / xmission error occurred */
|
||||
TRACE_ERROR("died at 2nd address code\n");
|
||||
return -ENXIO;
|
||||
}
|
||||
if (flags & I2C_M_RD) {
|
||||
TRACE_DEBUG("emitting repeated start condition\n");
|
||||
i2c_repstart(adap);
|
||||
/* okay, now switch into reading mode */
|
||||
addr |= 0x01;
|
||||
ret = try_address(i2c_adap, addr, retries);
|
||||
if ((ret != 1) && !nak_ok) {
|
||||
TRACE_ERROR("died at repeated address code\n");
|
||||
return -EIO;
|
||||
}
|
||||
}
|
||||
} else { /* normal 7bit address */
|
||||
addr = msg->addr << 1;
|
||||
if (flags & I2C_M_RD)
|
||||
addr |= 1;
|
||||
if (flags & I2C_M_REV_DIR_ADDR)
|
||||
addr ^= 1;
|
||||
ret = try_address(i2c_adap, addr, retries);
|
||||
if ((ret != 1) && !nak_ok)
|
||||
return -ENXIO;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int bit_xfer(struct i2c_adapter *i2c_adap,
|
||||
struct i2c_msg msgs[], int num)
|
||||
{
|
||||
struct i2c_msg *pmsg;
|
||||
struct i2c_algo_bit_data *adap = i2c_adap->algo_data;
|
||||
int i, ret;
|
||||
unsigned short nak_ok;
|
||||
|
||||
TRACE_DEBUG("emitting start condition\n");
|
||||
i2c_start(adap);
|
||||
for (i = 0; i < num; i++) {
|
||||
pmsg = &msgs[i];
|
||||
nak_ok = pmsg->flags & I2C_M_IGNORE_NAK;
|
||||
if (!(pmsg->flags & I2C_M_NOSTART)) {
|
||||
if (i) {
|
||||
if (msgs[i - 1].flags & I2C_M_STOP) {
|
||||
TRACE_DEBUG("emitting enforced stop/start condition\n");
|
||||
i2c_stop(adap);
|
||||
i2c_start(adap);
|
||||
} else {
|
||||
TRACE_DEBUG("emitting repeated start condition\n");
|
||||
i2c_repstart(adap);
|
||||
}
|
||||
}
|
||||
ret = bit_doAddress(i2c_adap, pmsg);
|
||||
if ((ret != 0) && !nak_ok) {
|
||||
TRACE_DEBUG("NAK from device addr 0x%02x msg #%d\n", msgs[i].addr, i);
|
||||
goto bailout;
|
||||
}
|
||||
}
|
||||
if (pmsg->flags & I2C_M_RD) {
|
||||
/* read bytes into buffer*/
|
||||
ret = readbytes(i2c_adap, pmsg);
|
||||
if (ret >= 1)
|
||||
TRACE_DEBUG("read %d byte%s\n", ret, ret == 1 ? "" : "s");
|
||||
if (ret < pmsg->len) {
|
||||
if (ret >= 0)
|
||||
ret = -EIO;
|
||||
goto bailout;
|
||||
}
|
||||
} else {
|
||||
/* write bytes from buffer */
|
||||
ret = sendbytes(i2c_adap, pmsg);
|
||||
if (ret >= 1)
|
||||
TRACE_DEBUG("wrote %d byte%s\n", ret, ret == 1 ? "" : "s");
|
||||
if (ret < pmsg->len) {
|
||||
if (ret >= 0)
|
||||
ret = -EIO;
|
||||
goto bailout;
|
||||
}
|
||||
}
|
||||
}
|
||||
ret = i;
|
||||
|
||||
bailout:
|
||||
TRACE_DEBUG("emitting stop condition\n");
|
||||
i2c_stop(adap);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
struct i2c_gpio_platform_data i2c_gpio[] = {
|
||||
{
|
||||
.devid = 0,
|
||||
.sda_pin = I2C_GPIO0_SDA_PIN,
|
||||
.scl_pin = I2C_GPIO0_SCL_PIN,
|
||||
.udelay = 5, /* clk freq 500/udelay kHz */
|
||||
.timeout = configTICK_RATE_HZ / 10, /* 100ms */
|
||||
.sda_is_open_drain = 0,
|
||||
.scl_is_open_drain = 0,
|
||||
.scl_is_output_only = 1,
|
||||
}
|
||||
};
|
||||
|
||||
const struct i2c_algorithm i2c_bit_algo = {
|
||||
.master_xfer = bit_xfer,
|
||||
};
|
||||
|
||||
int i2c_bit_add_bus(struct i2c_adapter *adap)
|
||||
{
|
||||
int ret;
|
||||
|
||||
/* register new adapter to i2c module... */
|
||||
adap->algo = &i2c_bit_algo;
|
||||
adap->retries = 3;
|
||||
|
||||
ret = i2c_add_adapter(adap);
|
||||
if (ret < 0)
|
||||
return ret;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int i2c_gpio_add_device(struct i2c_gpio_platform_data *pdevdata)
|
||||
{
|
||||
struct i2c_gpio_private_data *priv;
|
||||
struct i2c_gpio_platform_data *pdata;
|
||||
struct i2c_algo_bit_data *bit_data;
|
||||
struct i2c_adapter *adap;
|
||||
int ret;
|
||||
|
||||
priv = pvPortMalloc(sizeof(*priv));
|
||||
if (!priv) {
|
||||
TRACE_ERROR("[%s] pvPortMalloc failed, devid:%d\n", __func__, pdevdata->devid);
|
||||
return -ENOMEM;
|
||||
}
|
||||
memset(priv, 0, sizeof(*priv));
|
||||
|
||||
adap = &priv->adap;
|
||||
bit_data = &priv->bit_data;
|
||||
pdata = &priv->pdata;
|
||||
|
||||
memcpy(pdata, pdevdata, sizeof(*pdata));
|
||||
gpio_request(pdata->sda_pin);
|
||||
gpio_request(pdata->scl_pin);
|
||||
|
||||
if (pdata->sda_is_open_drain) {
|
||||
gpio_direction_output(pdata->sda_pin, 1);
|
||||
bit_data->setsda = i2c_gpio_setsda_val;
|
||||
} else {
|
||||
gpio_direction_input(pdata->sda_pin);
|
||||
bit_data->setsda = i2c_gpio_setsda_dir;
|
||||
}
|
||||
|
||||
if (pdata->scl_is_open_drain || pdata->scl_is_output_only) {
|
||||
gpio_direction_output(pdata->scl_pin, 1);
|
||||
bit_data->setscl = i2c_gpio_setscl_val;
|
||||
} else {
|
||||
gpio_direction_input(pdata->scl_pin);
|
||||
bit_data->setscl = i2c_gpio_setscl_dir;
|
||||
}
|
||||
|
||||
if (!pdata->scl_is_output_only)
|
||||
bit_data->getscl = i2c_gpio_getscl;
|
||||
bit_data->getsda = i2c_gpio_getsda;
|
||||
|
||||
if (pdata->udelay)
|
||||
bit_data->udelay = pdata->udelay;
|
||||
else if (pdata->scl_is_output_only)
|
||||
bit_data->udelay = 50; /* 10 kHz */
|
||||
else
|
||||
bit_data->udelay = 5; /* 100 kHz */
|
||||
|
||||
if (pdata->timeout)
|
||||
bit_data->timeout = pdata->timeout;
|
||||
else
|
||||
bit_data->timeout = configTICK_RATE_HZ / 10; /* 100 ms */
|
||||
|
||||
bit_data->data = pdata;
|
||||
|
||||
snprintf(adap->name, sizeof(adap->name), "i2c-gpio%d", pdata->devid);
|
||||
|
||||
adap->algo_data = bit_data;
|
||||
|
||||
ret = i2c_bit_add_bus(adap);
|
||||
if (ret) {
|
||||
TRACE_ERROR("[%s] i2c_bit_add_bus failed, devid:%d\n", __func__, pdata->devid);
|
||||
return ret;
|
||||
}
|
||||
|
||||
TRACE_INFO("using pins %u (SDA) and %u (SCL%s)\n",
|
||||
pdata->sda_pin, pdata->scl_pin,
|
||||
pdata->scl_is_output_only
|
||||
? ", no clock stretching" : "");
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
void i2c_gpio_init(void)
|
||||
{
|
||||
int i;
|
||||
|
||||
for(i=0; i<sizeof(i2c_gpio)/sizeof(i2c_gpio[0]); i++) {
|
||||
i2c_gpio_add_device(&i2c_gpio[i]);
|
||||
}
|
||||
}
|
||||
#endif
|
Reference in New Issue
Block a user