CARPLAY版本整理
This commit is contained in:
141
MXC_A27-PCB4.5-270S/lib/opus/src/mlp.c
Normal file
141
MXC_A27-PCB4.5-270S/lib/opus/src/mlp.c
Normal file
@ -0,0 +1,141 @@
|
||||
/* Copyright (c) 2008-2011 Octasic Inc.
|
||||
2012-2017 Jean-Marc Valin */
|
||||
/*
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions
|
||||
are met:
|
||||
|
||||
- Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
|
||||
- Redistributions in binary form must reproduce the above copyright
|
||||
notice, this list of conditions and the following disclaimer in the
|
||||
documentation and/or other materials provided with the distribution.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
|
||||
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||||
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||||
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||||
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
||||
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
||||
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||||
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#ifdef HAVE_CONFIG_H
|
||||
#include "config.h"
|
||||
#endif
|
||||
|
||||
#include <math.h>
|
||||
#include "opus_types.h"
|
||||
#include "opus_defines.h"
|
||||
#include "arch.h"
|
||||
#include "tansig_table.h"
|
||||
#include "mlp.h"
|
||||
|
||||
static OPUS_INLINE float tansig_approx(float x)
|
||||
{
|
||||
int i;
|
||||
float y, dy;
|
||||
float sign=1;
|
||||
/* Tests are reversed to catch NaNs */
|
||||
if (!(x<8))
|
||||
return 1;
|
||||
if (!(x>-8))
|
||||
return -1;
|
||||
#ifndef FIXED_POINT
|
||||
/* Another check in case of -ffast-math */
|
||||
if (celt_isnan(x))
|
||||
return 0;
|
||||
#endif
|
||||
if (x<0)
|
||||
{
|
||||
x=-x;
|
||||
sign=-1;
|
||||
}
|
||||
i = (int)floor(.5f+25*x);
|
||||
x -= .04f*i;
|
||||
y = tansig_table[i];
|
||||
dy = 1-y*y;
|
||||
y = y + x*dy*(1 - y*x);
|
||||
return sign*y;
|
||||
}
|
||||
|
||||
static OPUS_INLINE float sigmoid_approx(float x)
|
||||
{
|
||||
return .5f + .5f*tansig_approx(.5f*x);
|
||||
}
|
||||
|
||||
void compute_dense(const DenseLayer *layer, float *output, const float *input)
|
||||
{
|
||||
int i, j;
|
||||
int N, M;
|
||||
int stride;
|
||||
M = layer->nb_inputs;
|
||||
N = layer->nb_neurons;
|
||||
stride = N;
|
||||
for (i=0;i<N;i++)
|
||||
{
|
||||
/* Compute update gate. */
|
||||
float sum = layer->bias[i];
|
||||
for (j=0;j<M;j++)
|
||||
sum += layer->input_weights[j*stride + i]*input[j];
|
||||
output[i] = WEIGHTS_SCALE*sum;
|
||||
}
|
||||
if (layer->sigmoid) {
|
||||
for (i=0;i<N;i++)
|
||||
output[i] = sigmoid_approx(output[i]);
|
||||
} else {
|
||||
for (i=0;i<N;i++)
|
||||
output[i] = tansig_approx(output[i]);
|
||||
}
|
||||
}
|
||||
|
||||
void compute_gru(const GRULayer *gru, float *state, const float *input)
|
||||
{
|
||||
int i, j;
|
||||
int N, M;
|
||||
int stride;
|
||||
float z[MAX_NEURONS];
|
||||
float r[MAX_NEURONS];
|
||||
float h[MAX_NEURONS];
|
||||
M = gru->nb_inputs;
|
||||
N = gru->nb_neurons;
|
||||
stride = 3*N;
|
||||
for (i=0;i<N;i++)
|
||||
{
|
||||
/* Compute update gate. */
|
||||
float sum = gru->bias[i];
|
||||
for (j=0;j<M;j++)
|
||||
sum += gru->input_weights[j*stride + i]*input[j];
|
||||
for (j=0;j<N;j++)
|
||||
sum += gru->recurrent_weights[j*stride + i]*state[j];
|
||||
z[i] = sigmoid_approx(WEIGHTS_SCALE*sum);
|
||||
}
|
||||
for (i=0;i<N;i++)
|
||||
{
|
||||
/* Compute reset gate. */
|
||||
float sum = gru->bias[N + i];
|
||||
for (j=0;j<M;j++)
|
||||
sum += gru->input_weights[N + j*stride + i]*input[j];
|
||||
for (j=0;j<N;j++)
|
||||
sum += gru->recurrent_weights[N + j*stride + i]*state[j];
|
||||
r[i] = sigmoid_approx(WEIGHTS_SCALE*sum);
|
||||
}
|
||||
for (i=0;i<N;i++)
|
||||
{
|
||||
/* Compute output. */
|
||||
float sum = gru->bias[2*N + i];
|
||||
for (j=0;j<M;j++)
|
||||
sum += gru->input_weights[2*N + j*stride + i]*input[j];
|
||||
for (j=0;j<N;j++)
|
||||
sum += gru->recurrent_weights[2*N + j*stride + i]*state[j]*r[j];
|
||||
h[i] = z[i]*state[i] + (1-z[i])*tansig_approx(WEIGHTS_SCALE*sum);
|
||||
}
|
||||
for (i=0;i<N;i++)
|
||||
state[i] = h[i];
|
||||
}
|
||||
|
Reference in New Issue
Block a user