CARPLAY版本整理
This commit is contained in:
287
MXC_A27-PCB4.5-270T/lib/faad2/libfaad/fixed.h
Normal file
287
MXC_A27-PCB4.5-270T/lib/faad2/libfaad/fixed.h
Normal file
@ -0,0 +1,287 @@
|
||||
/*
|
||||
** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding
|
||||
** Copyright (C) 2003-2005 M. Bakker, Nero AG, http://www.nero.com
|
||||
**
|
||||
** This program is free software; you can redistribute it and/or modify
|
||||
** it under the terms of the GNU General Public License as published by
|
||||
** the Free Software Foundation; either version 2 of the License, or
|
||||
** (at your option) any later version.
|
||||
**
|
||||
** This program is distributed in the hope that it will be useful,
|
||||
** but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
** GNU General Public License for more details.
|
||||
**
|
||||
** You should have received a copy of the GNU General Public License
|
||||
** along with this program; if not, write to the Free Software
|
||||
** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
||||
**
|
||||
** Any non-GPL usage of this software or parts of this software is strictly
|
||||
** forbidden.
|
||||
**
|
||||
** The "appropriate copyright message" mentioned in section 2c of the GPLv2
|
||||
** must read: "Code from FAAD2 is copyright (c) Nero AG, www.nero.com"
|
||||
**
|
||||
** Commercial non-GPL licensing of this software is possible.
|
||||
** For more info contact Nero AG through Mpeg4AAClicense@nero.com.
|
||||
**
|
||||
** $Id: fixed.h,v 1.32 2007/11/01 12:33:30 menno Exp $
|
||||
**/
|
||||
|
||||
#ifndef __FIXED_H__
|
||||
#define __FIXED_H__
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#if defined(_WIN32_WCE) && defined(_ARM_)
|
||||
#include <cmnintrin.h>
|
||||
#endif
|
||||
|
||||
|
||||
#define COEF_BITS 28
|
||||
#define COEF_PRECISION (1 << COEF_BITS)
|
||||
#define REAL_BITS 14 // MAXIMUM OF 14 FOR FIXED POINT SBR
|
||||
#define REAL_PRECISION (1 << REAL_BITS)
|
||||
|
||||
/* FRAC is the fractional only part of the fixed point number [0.0..1.0) */
|
||||
#define FRAC_SIZE 32 /* frac is a 32 bit integer */
|
||||
#define FRAC_BITS 31
|
||||
#define FRAC_PRECISION ((uint32_t)(1 << FRAC_BITS))
|
||||
#define FRAC_MAX 0x7FFFFFFF
|
||||
|
||||
typedef int32_t real_t;
|
||||
|
||||
|
||||
#define REAL_CONST(A) (((A) >= 0) ? ((real_t)((A)*(REAL_PRECISION)+0.5)) : ((real_t)((A)*(REAL_PRECISION)-0.5)))
|
||||
#define COEF_CONST(A) (((A) >= 0) ? ((real_t)((A)*(COEF_PRECISION)+0.5)) : ((real_t)((A)*(COEF_PRECISION)-0.5)))
|
||||
#define FRAC_CONST(A) (((A) == 1.00) ? ((real_t)FRAC_MAX) : (((A) >= 0) ? ((real_t)((A)*(FRAC_PRECISION)+0.5)) : ((real_t)((A)*(FRAC_PRECISION)-0.5))))
|
||||
//#define FRAC_CONST(A) (((A) >= 0) ? ((real_t)((A)*(FRAC_PRECISION)+0.5)) : ((real_t)((A)*(FRAC_PRECISION)-0.5)))
|
||||
|
||||
#define Q2_BITS 22
|
||||
#define Q2_PRECISION (1 << Q2_BITS)
|
||||
#define Q2_CONST(A) (((A) >= 0) ? ((real_t)((A)*(Q2_PRECISION)+0.5)) : ((real_t)((A)*(Q2_PRECISION)-0.5)))
|
||||
|
||||
#if defined(_WIN32) && !defined(_WIN32_WCE)
|
||||
|
||||
/* multiply with real shift */
|
||||
static INLINE real_t MUL_R(real_t A, real_t B)
|
||||
{
|
||||
_asm {
|
||||
mov eax,A
|
||||
imul B
|
||||
shrd eax,edx,REAL_BITS
|
||||
}
|
||||
}
|
||||
|
||||
/* multiply with coef shift */
|
||||
static INLINE real_t MUL_C(real_t A, real_t B)
|
||||
{
|
||||
_asm {
|
||||
mov eax,A
|
||||
imul B
|
||||
shrd eax,edx,COEF_BITS
|
||||
}
|
||||
}
|
||||
|
||||
static INLINE real_t MUL_Q2(real_t A, real_t B)
|
||||
{
|
||||
_asm {
|
||||
mov eax,A
|
||||
imul B
|
||||
shrd eax,edx,Q2_BITS
|
||||
}
|
||||
}
|
||||
|
||||
static INLINE real_t MUL_SHIFT6(real_t A, real_t B)
|
||||
{
|
||||
_asm {
|
||||
mov eax,A
|
||||
imul B
|
||||
shrd eax,edx,6
|
||||
}
|
||||
}
|
||||
|
||||
static INLINE real_t MUL_SHIFT23(real_t A, real_t B)
|
||||
{
|
||||
_asm {
|
||||
mov eax,A
|
||||
imul B
|
||||
shrd eax,edx,23
|
||||
}
|
||||
}
|
||||
|
||||
#if 1
|
||||
static INLINE real_t _MulHigh(real_t A, real_t B)
|
||||
{
|
||||
_asm {
|
||||
mov eax,A
|
||||
imul B
|
||||
mov eax,edx
|
||||
}
|
||||
}
|
||||
|
||||
/* multiply with fractional shift */
|
||||
static INLINE real_t MUL_F(real_t A, real_t B)
|
||||
{
|
||||
return _MulHigh(A,B) << (FRAC_SIZE-FRAC_BITS);
|
||||
}
|
||||
|
||||
/* Complex multiplication */
|
||||
static INLINE void ComplexMult(real_t *y1, real_t *y2,
|
||||
real_t x1, real_t x2, real_t c1, real_t c2)
|
||||
{
|
||||
*y1 = (_MulHigh(x1, c1) + _MulHigh(x2, c2))<<(FRAC_SIZE-FRAC_BITS);
|
||||
*y2 = (_MulHigh(x2, c1) - _MulHigh(x1, c2))<<(FRAC_SIZE-FRAC_BITS);
|
||||
}
|
||||
#else
|
||||
static INLINE real_t MUL_F(real_t A, real_t B)
|
||||
{
|
||||
_asm {
|
||||
mov eax,A
|
||||
imul B
|
||||
shrd eax,edx,FRAC_BITS
|
||||
}
|
||||
}
|
||||
|
||||
/* Complex multiplication */
|
||||
static INLINE void ComplexMult(real_t *y1, real_t *y2,
|
||||
real_t x1, real_t x2, real_t c1, real_t c2)
|
||||
{
|
||||
*y1 = MUL_F(x1, c1) + MUL_F(x2, c2);
|
||||
*y2 = MUL_F(x2, c1) - MUL_F(x1, c2);
|
||||
}
|
||||
#endif
|
||||
|
||||
#elif defined(__GNUC__) && defined (__arm__)
|
||||
|
||||
/* taken from MAD */
|
||||
#define arm_mul(x, y, SCALEBITS) \
|
||||
({ \
|
||||
uint32_t __hi; \
|
||||
uint32_t __lo; \
|
||||
uint32_t __result; \
|
||||
asm("smull %0, %1, %3, %4\n\t" \
|
||||
"movs %0, %0, lsr %5\n\t" \
|
||||
"adc %2, %0, %1, lsl %6" \
|
||||
: "=&r" (__lo), "=&r" (__hi), "=r" (__result) \
|
||||
: "%r" (x), "r" (y), \
|
||||
"M" (SCALEBITS), "M" (32 - (SCALEBITS)) \
|
||||
: "cc"); \
|
||||
__result; \
|
||||
})
|
||||
|
||||
static INLINE real_t MUL_R(real_t A, real_t B)
|
||||
{
|
||||
return arm_mul(A, B, REAL_BITS);
|
||||
}
|
||||
|
||||
static INLINE real_t MUL_C(real_t A, real_t B)
|
||||
{
|
||||
return arm_mul(A, B, COEF_BITS);
|
||||
}
|
||||
|
||||
static INLINE real_t MUL_Q2(real_t A, real_t B)
|
||||
{
|
||||
return arm_mul(A, B, Q2_BITS);
|
||||
}
|
||||
|
||||
static INLINE real_t MUL_SHIFT6(real_t A, real_t B)
|
||||
{
|
||||
return arm_mul(A, B, 6);
|
||||
}
|
||||
|
||||
static INLINE real_t MUL_SHIFT23(real_t A, real_t B)
|
||||
{
|
||||
return arm_mul(A, B, 23);
|
||||
}
|
||||
|
||||
static INLINE real_t _MulHigh(real_t x, real_t y)
|
||||
{
|
||||
uint32_t __lo;
|
||||
uint32_t __hi;
|
||||
asm("smull\t%0, %1, %2, %3"
|
||||
: "=&r"(__lo),"=&r"(__hi)
|
||||
: "%r"(x),"r"(y)
|
||||
: "cc");
|
||||
return __hi;
|
||||
}
|
||||
|
||||
static INLINE real_t MUL_F(real_t A, real_t B)
|
||||
{
|
||||
return _MulHigh(A, B) << (FRAC_SIZE-FRAC_BITS);
|
||||
}
|
||||
|
||||
/* Complex multiplication */
|
||||
static INLINE void ComplexMult(real_t *y1, real_t *y2,
|
||||
real_t x1, real_t x2, real_t c1, real_t c2)
|
||||
{
|
||||
int32_t tmp, yt1, yt2;
|
||||
asm("smull %0, %1, %4, %6\n\t"
|
||||
"smlal %0, %1, %5, %7\n\t"
|
||||
"rsb %3, %4, #0\n\t"
|
||||
"smull %0, %2, %5, %6\n\t"
|
||||
"smlal %0, %2, %3, %7"
|
||||
: "=&r" (tmp), "=&r" (yt1), "=&r" (yt2), "=r" (x1)
|
||||
: "3" (x1), "r" (x2), "r" (c1), "r" (c2)
|
||||
: "cc" );
|
||||
*y1 = yt1 << (FRAC_SIZE-FRAC_BITS);
|
||||
*y2 = yt2 << (FRAC_SIZE-FRAC_BITS);
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
/* multiply with real shift */
|
||||
#define MUL_R(A,B) (real_t)(((int64_t)(A)*(int64_t)(B)+(1 << (REAL_BITS-1))) >> REAL_BITS)
|
||||
/* multiply with coef shift */
|
||||
#define MUL_C(A,B) (real_t)(((int64_t)(A)*(int64_t)(B)+(1 << (COEF_BITS-1))) >> COEF_BITS)
|
||||
/* multiply with fractional shift */
|
||||
#if defined(_WIN32_WCE) && defined(_ARM_)
|
||||
/* eVC for PocketPC has an intrinsic function that returns only the high 32 bits of a 32x32 bit multiply */
|
||||
static INLINE real_t MUL_F(real_t A, real_t B)
|
||||
{
|
||||
return _MulHigh(A,B) << (32-FRAC_BITS);
|
||||
}
|
||||
#else
|
||||
#ifdef __BFIN__
|
||||
#define _MulHigh(X,Y) ({ int __xxo; \
|
||||
asm ( \
|
||||
"a1 = %2.H * %1.L (IS,M);\n\t" \
|
||||
"a0 = %1.H * %2.H, a1+= %1.H * %2.L (IS,M);\n\t"\
|
||||
"a1 = a1 >>> 16;\n\t" \
|
||||
"%0 = (a0 += a1);\n\t" \
|
||||
: "=d" (__xxo) : "d" (X), "d" (Y) : "A0","A1"); __xxo; })
|
||||
|
||||
#define MUL_F(X,Y) ({ int __xxo; \
|
||||
asm ( \
|
||||
"a1 = %2.H * %1.L (M);\n\t" \
|
||||
"a0 = %1.H * %2.H, a1+= %1.H * %2.L (M);\n\t" \
|
||||
"a1 = a1 >>> 16;\n\t" \
|
||||
"%0 = (a0 += a1);\n\t" \
|
||||
: "=d" (__xxo) : "d" (X), "d" (Y) : "A0","A1"); __xxo; })
|
||||
#else
|
||||
#define _MulHigh(A,B) (real_t)(((int64_t)(A)*(int64_t)(B)+(1 << (FRAC_SIZE-1))) >> FRAC_SIZE)
|
||||
#define MUL_F(A,B) (real_t)(((int64_t)(A)*(int64_t)(B)+(1 << (FRAC_BITS-1))) >> FRAC_BITS)
|
||||
#endif
|
||||
#endif
|
||||
#define MUL_Q2(A,B) (real_t)(((int64_t)(A)*(int64_t)(B)+(1 << (Q2_BITS-1))) >> Q2_BITS)
|
||||
#define MUL_SHIFT6(A,B) (real_t)(((int64_t)(A)*(int64_t)(B)+(1 << (6-1))) >> 6)
|
||||
#define MUL_SHIFT23(A,B) (real_t)(((int64_t)(A)*(int64_t)(B)+(1 << (23-1))) >> 23)
|
||||
|
||||
/* Complex multiplication */
|
||||
static INLINE void ComplexMult(real_t *y1, real_t *y2,
|
||||
real_t x1, real_t x2, real_t c1, real_t c2)
|
||||
{
|
||||
*y1 = (_MulHigh(x1, c1) + _MulHigh(x2, c2))<<(FRAC_SIZE-FRAC_BITS);
|
||||
*y2 = (_MulHigh(x2, c1) - _MulHigh(x1, c2))<<(FRAC_SIZE-FRAC_BITS);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
#endif
|
Reference in New Issue
Block a user