#include #include #include "FreeRTOS.h" #include "chip.h" #include "board.h" #include "errno.h" #if defined(HW_I2C0_SUPPORT) || defined(HW_I2C1_SUPPORT) static char *abort_sources[] = { [ABRT_7B_ADDR_NOACK] = "slave address not acknowledged (7bit mode)", [ABRT_10ADDR1_NOACK] = "first address byte not acknowledged (10bit mode)", [ABRT_10ADDR2_NOACK] = "second address byte not acknowledged (10bit mode)", [ABRT_TXDATA_NOACK] = "data not acknowledged", [ABRT_GCALL_NOACK] = "no acknowledgement for a general call", [ABRT_GCALL_READ] = "read after general call", [ABRT_SBYTE_ACKDET] = "start byte acknowledged", [ABRT_SBYTE_NORSTRT] = "trying to send start byte when restart is disabled", [ABRT_10B_RD_NORSTRT] = "trying to read when restart is disabled (10bit mode)", [ABRT_MASTER_DIS] = "trying to use disabled adapter", [ARB_LOST] = "lost arbitration", [ABRT_SLAVE_FLUSH_TXFIFO] = "read command so flush old data in the TX FIFO", [ABRT_SLAVE_ARBLOST] = "slave lost the bus while transmitting data to a remote master", [ABRT_SLAVE_RD_INTX] = "incorrect slave-transmitter mode configuration", }; u32 dw_readl(struct dw_i2c_dev *dev, int offset) { return readl(dev->base + offset); } void dw_writel(struct dw_i2c_dev *dev, u32 b, int offset) { writel(b, dev->base + offset); } int i2c_dw_acquire_lock(struct dw_i2c_dev *dev) { int ret; if (!dev->acquire_lock) return 0; ret = dev->acquire_lock(dev); if (!ret) return 0; TRACE_ERROR("couldn't acquire bus ownership\n"); return ret; } void i2c_dw_release_lock(struct dw_i2c_dev *dev) { if (dev->release_lock) dev->release_lock(dev); } /** * i2c_dw_set_reg_access() - Set register access flags * @dev: device private data * * Autodetects needed register access mode and sets access flags accordingly. * This must be called before doing any other register access. */ int i2c_dw_set_reg_access(struct dw_i2c_dev *dev) { u32 reg; int ret; ret = i2c_dw_acquire_lock(dev); if (ret) return ret; reg = dw_readl(dev, DW_IC_COMP_TYPE); i2c_dw_release_lock(dev); if (reg == ___constant_swab32(DW_IC_COMP_TYPE_VALUE)) { /* Configure register endianess access */ dev->flags |= ACCESS_SWAP; } else if (reg == (DW_IC_COMP_TYPE_VALUE & 0x0000ffff)) { /* Configure register access mode 16bit */ dev->flags |= ACCESS_16BIT; } else if (reg != DW_IC_COMP_TYPE_VALUE) { TRACE_ERROR("Unknown Synopsys component type: 0x%08x\n", reg); return -ENODEV; } return 0; } u32 i2c_dw_scl_hcnt(u32 ic_clk, u32 tSYMBOL, u32 tf, int cond, int offset) { /* * DesignWare I2C core doesn't seem to have solid strategy to meet * the tHD;STA timing spec. Configuring _HCNT based on tHIGH spec * will result in violation of the tHD;STA spec. */ if (cond) /* * Conditional expression: * * IC_[FS]S_SCL_HCNT + (1+4+3) >= IC_CLK * tHIGH * * This is based on the DW manuals, and represents an ideal * configuration. The resulting I2C bus speed will be * faster than any of the others. * * If your hardware is free from tHD;STA issue, try this one. */ return (ic_clk * tSYMBOL + 500000) / 1000000 - 8 + offset; else /* * Conditional expression: * * IC_[FS]S_SCL_HCNT + 3 >= IC_CLK * (tHD;STA + tf) * * This is just experimental rule; the tHD;STA period turned * out to be proportinal to (_HCNT + 3). With this setting, * we could meet both tHIGH and tHD;STA timing specs. * * If unsure, you'd better to take this alternative. * * The reason why we need to take into account "tf" here, * is the same as described in i2c_dw_scl_lcnt(). */ return (ic_clk * (tSYMBOL + tf) + 500000) / 1000000 - 3 + offset; } u32 i2c_dw_scl_lcnt(u32 ic_clk, u32 tLOW, u32 tf, int offset) { /* * Conditional expression: * * IC_[FS]S_SCL_LCNT + 1 >= IC_CLK * (tLOW + tf) * * DW I2C core starts counting the SCL CNTs for the LOW period * of the SCL clock (tLOW) as soon as it pulls the SCL line. * In order to meet the tLOW timing spec, we need to take into * account the fall time of SCL signal (tf). Default tf value * should be 0.3 us, for safety. */ return ((ic_clk * (tLOW + tf) + 500000) / 1000000) - 1 + offset; } int i2c_dw_set_sda_hold(struct dw_i2c_dev *dev) { u32 reg; int ret; ret = i2c_dw_acquire_lock(dev); if (ret) return ret; /* Configure SDA Hold Time if required */ reg = dw_readl(dev, DW_IC_COMP_VERSION); if (reg >= DW_IC_SDA_HOLD_MIN_VERS) { if (!dev->sda_hold_time) { /* Keep previous hold time setting if no one set it */ dev->sda_hold_time = dw_readl(dev, DW_IC_SDA_HOLD); } /* * Workaround for avoiding TX arbitration lost in case I2C * slave pulls SDA down "too quickly" after falling egde of * SCL by enabling non-zero SDA RX hold. Specification says it * extends incoming SDA low to high transition while SCL is * high but it apprears to help also above issue. */ if (!(dev->sda_hold_time & DW_IC_SDA_HOLD_RX_MASK)) dev->sda_hold_time |= 1 << DW_IC_SDA_HOLD_RX_SHIFT; TRACE_DEBUG("SDA Hold Time TX:RX = %d:%d\n", dev->sda_hold_time & ~(u32)DW_IC_SDA_HOLD_RX_MASK, dev->sda_hold_time >> DW_IC_SDA_HOLD_RX_SHIFT); } else if (dev->sda_hold_time) { TRACE_WARNING("Hardware too old to adjust SDA hold time.\n"); dev->sda_hold_time = 0; } i2c_dw_release_lock(dev); return 0; } static inline void __i2c_dw_enable(struct dw_i2c_dev *dev) { dw_writel(dev, 1, DW_IC_ENABLE); } static inline void __i2c_dw_disable_nowait(struct dw_i2c_dev *dev) { dw_writel(dev, 0, DW_IC_ENABLE); } void __i2c_dw_disable(struct dw_i2c_dev *dev) { int timeout = 100; do { __i2c_dw_disable_nowait(dev); /* * The enable status register may be unimplemented, but * in that case this test reads zero and exits the loop. */ if ((dw_readl(dev, DW_IC_ENABLE_STATUS) & 1) == 0) return; /* * Wait 10 times the signaling period of the highest I2C * transfer supported by the driver (for 400KHz this is * 25us) as described in the DesignWare I2C databook. */ vTaskDelay(pdMS_TO_TICKS(1)); } while (timeout--); TRACE_WARNING("timeout in disabling adapter\n"); } unsigned long i2c_dw_clk_rate(struct dw_i2c_dev *dev) { /* * Clock is not necessary if we got LCNT/HCNT values directly from * the platform code. */ if (!dev->get_clk_rate_khz) return 0; return dev->get_clk_rate_khz(dev); } /* * Waiting for bus not busy */ int i2c_dw_wait_bus_not_busy(struct dw_i2c_dev *dev) { int timeout = TIMEOUT; while (dw_readl(dev, DW_IC_STATUS) & DW_IC_STATUS_ACTIVITY) { if (timeout <= 0) { TRACE_WARNING("timeout waiting for bus ready\n"); return -ETIMEDOUT; } timeout--; vTaskDelay(pdMS_TO_TICKS(1)); } return 0; } int i2c_dw_handle_tx_abort(struct dw_i2c_dev *dev) { unsigned long abort_source = dev->abort_source; int i; if (abort_source & DW_IC_TX_ABRT_NOACK) { for (i = 0; i < ARRAY_SIZE(abort_sources); i++) { if (abort_source & (1 << i)) TRACE_DEBUG("%s: %s\n", __func__, abort_sources[i]); } return -EREMOTEIO; } for (i = 0; i < ARRAY_SIZE(abort_sources); i++) { if (abort_source & (1 << i)) TRACE_ERROR("%s: %s\n", __func__, abort_sources[i]); } if (abort_source & DW_IC_TX_ARB_LOST) return -EAGAIN; else if (abort_source & DW_IC_TX_ABRT_GCALL_READ) return -EINVAL; /* wrong msgs[] data */ else return -EIO; } void i2c_dw_disable(struct dw_i2c_dev *dev) { /* Disable controller */ __i2c_dw_disable(dev); /* Disable all interupts */ dw_writel(dev, 0, DW_IC_INTR_MASK); dw_readl(dev, DW_IC_CLR_INTR); } void i2c_dw_disable_int(struct dw_i2c_dev *dev) { dw_writel(dev, 0, DW_IC_INTR_MASK); } u32 i2c_dw_read_comp_param(struct dw_i2c_dev *dev) { return dw_readl(dev, DW_IC_COMP_PARAM_1); } static void i2c_dw_configure_fifo_master(struct dw_i2c_dev *dev) { /* Configure Tx/Rx FIFO threshold levels */ dw_writel(dev, dev->tx_fifo_depth / 2, DW_IC_TX_TL); dw_writel(dev, 0, DW_IC_RX_TL); /* Configure the I2C master */ dw_writel(dev, dev->master_cfg, DW_IC_CON); } static int i2c_dw_set_timings_master(struct dw_i2c_dev *dev) { #if (TRACE_LEVEL >= TRACE_LEVEL_DEBUG) const char *mode_str, *fp_str = ""; #endif u32 comp_param1; u32 sda_falling_time, scl_falling_time; u32 ic_clk; int ret; ret = i2c_dw_acquire_lock(dev); if (ret) return ret; comp_param1 = dw_readl(dev, DW_IC_COMP_PARAM_1); i2c_dw_release_lock(dev); /* Set standard and fast speed dividers for high/low periods */ sda_falling_time = dev->sda_falling_time ? dev->sda_falling_time : 300; /* ns */ scl_falling_time = dev->scl_falling_time ? dev->scl_falling_time : 300; /* ns */ /* Calculate SCL timing parameters for standard mode if not set */ if (!dev->ss_hcnt || !dev->ss_lcnt) { ic_clk = i2c_dw_clk_rate(dev); dev->ss_hcnt = i2c_dw_scl_hcnt(ic_clk, 4000, /* tHD;STA = tHIGH = 4.0 us */ sda_falling_time, 0, /* 0: DW default, 1: Ideal */ 0); /* No offset */ dev->ss_lcnt = i2c_dw_scl_lcnt(ic_clk, 4700, /* tLOW = 4.7 us */ scl_falling_time, 0); /* No offset */ } TRACE_DEBUG("Standard Mode HCNT:LCNT = %d:%d\n", dev->ss_hcnt, dev->ss_lcnt); /* * Set SCL timing parameters for fast mode or fast mode plus. Only * difference is the timing parameter values since the registers are * the same. */ if (dev->clk_freq == 1000000) { /* * Check are fast mode plus parameters available and use * fast mode if not. */ if (dev->fp_hcnt && dev->fp_lcnt) { dev->fs_hcnt = dev->fp_hcnt; dev->fs_lcnt = dev->fp_lcnt; #if (TRACE_LEVEL >= TRACE_LEVEL_DEBUG) fp_str = " Plus"; #endif } } /* * Calculate SCL timing parameters for fast mode if not set. They are * needed also in high speed mode. */ if (!dev->fs_hcnt || !dev->fs_lcnt) { ic_clk = i2c_dw_clk_rate(dev); dev->fs_hcnt = i2c_dw_scl_hcnt(ic_clk, 600, /* tHD;STA = tHIGH = 0.6 us */ sda_falling_time, 0, /* 0: DW default, 1: Ideal */ 0); /* No offset */ dev->fs_lcnt = i2c_dw_scl_lcnt(ic_clk, 1300, /* tLOW = 1.3 us */ scl_falling_time, 0); /* No offset */ } TRACE_DEBUG("Fast Mode%s HCNT:LCNT = %d:%d\n", fp_str, dev->fs_hcnt, dev->fs_lcnt); /* Check is high speed possible and fall back to fast mode if not */ if ((dev->master_cfg & DW_IC_CON_SPEED_MASK) == DW_IC_CON_SPEED_HIGH) { if ((comp_param1 & DW_IC_COMP_PARAM_1_SPEED_MODE_MASK) != DW_IC_COMP_PARAM_1_SPEED_MODE_HIGH) { TRACE_ERROR("High Speed not supported!\n"); dev->master_cfg &= ~DW_IC_CON_SPEED_MASK; dev->master_cfg |= DW_IC_CON_SPEED_FAST; dev->hs_hcnt = 0; dev->hs_lcnt = 0; } else if (dev->hs_hcnt && dev->hs_lcnt) { TRACE_DEBUG("High Speed Mode HCNT:LCNT = %d:%d\n", dev->hs_hcnt, dev->hs_lcnt); } } ret = i2c_dw_set_sda_hold(dev); if (ret) goto out; #if (TRACE_LEVEL >= TRACE_LEVEL_DEBUG) switch (dev->master_cfg & DW_IC_CON_SPEED_MASK) { case DW_IC_CON_SPEED_STD: mode_str = "Standard Mode"; break; case DW_IC_CON_SPEED_HIGH: mode_str = "High Speed Mode"; break; default: mode_str = "Fast Mode"; } #endif TRACE_DEBUG("Bus speed: %s%s\n", mode_str, fp_str); out: return ret; } /** * i2c_dw_init() - Initialize the designware I2C master hardware * @dev: device private data * * This functions configures and enables the I2C master. * This function is called during I2C init function, and in case of timeout at * run time. */ static int i2c_dw_init_master(struct dw_i2c_dev *dev) { int ret; ret = i2c_dw_acquire_lock(dev); if (ret) return ret; /* Disable the adapter */ __i2c_dw_disable(dev); /* Write standard speed timing parameters */ dw_writel(dev, dev->ss_hcnt, DW_IC_SS_SCL_HCNT); dw_writel(dev, dev->ss_lcnt, DW_IC_SS_SCL_LCNT); /* Write fast mode/fast mode plus timing parameters */ dw_writel(dev, dev->fs_hcnt, DW_IC_FS_SCL_HCNT); dw_writel(dev, dev->fs_lcnt, DW_IC_FS_SCL_LCNT); /* Write high speed timing parameters if supported */ if (dev->hs_hcnt && dev->hs_lcnt) { dw_writel(dev, dev->hs_hcnt, DW_IC_HS_SCL_HCNT); dw_writel(dev, dev->hs_lcnt, DW_IC_HS_SCL_LCNT); } /* Write SDA hold time if supported */ if (dev->sda_hold_time) dw_writel(dev, dev->sda_hold_time, DW_IC_SDA_HOLD); i2c_dw_configure_fifo_master(dev); i2c_dw_release_lock(dev); return 0; } static void i2c_dw_xfer_init(struct dw_i2c_dev *dev) { struct i2c_msg *msgs = dev->msgs; u32 ic_con, ic_tar = 0; /* Disable the adapter */ __i2c_dw_disable(dev); /* If the slave address is ten bit address, enable 10BITADDR */ ic_con = dw_readl(dev, DW_IC_CON); if (msgs[dev->msg_write_idx].flags & I2C_M_TEN) { ic_con |= DW_IC_CON_10BITADDR_MASTER; /* * If I2C_DYNAMIC_TAR_UPDATE is set, the 10-bit addressing * mode has to be enabled via bit 12 of IC_TAR register. * We set it always as I2C_DYNAMIC_TAR_UPDATE can't be * detected from registers. */ ic_tar = DW_IC_TAR_10BITADDR_MASTER; } else { ic_con &= ~DW_IC_CON_10BITADDR_MASTER; } dw_writel(dev, ic_con, DW_IC_CON); /* * Set the slave (target) address and enable 10-bit addressing mode * if applicable. */ dw_writel(dev, msgs[dev->msg_write_idx].addr | ic_tar, DW_IC_TAR); /* Enforce disabled interrupts (due to HW issues) */ i2c_dw_disable_int(dev); /* Enable the adapter */ __i2c_dw_enable(dev); /* Dummy read to avoid the register getting stuck on Bay Trail */ dw_readl(dev, DW_IC_ENABLE_STATUS); /* Clear and enable interrupts */ dw_readl(dev, DW_IC_CLR_INTR); dw_writel(dev, DW_IC_INTR_MASTER_MASK, DW_IC_INTR_MASK); } /* * Initiate (and continue) low level master read/write transaction. * This function is only called from i2c_dw_isr, and pumping i2c_msg * messages into the tx buffer. Even if the size of i2c_msg data is * longer than the size of the tx buffer, it handles everything. */ static void i2c_dw_xfer_msg(struct dw_i2c_dev *dev) { struct i2c_msg *msgs = dev->msgs; u32 intr_mask; int tx_limit, rx_limit; u32 addr = msgs[dev->msg_write_idx].addr; u32 buf_len = dev->tx_buf_len; u8 *buf = dev->tx_buf; int need_restart = 0; intr_mask = DW_IC_INTR_MASTER_MASK; for (; dev->msg_write_idx < dev->msgs_num; dev->msg_write_idx++) { u32 flags = msgs[dev->msg_write_idx].flags; /* * If target address has changed, we need to * reprogram the target address in the I2C * adapter when we are done with this transfer. */ if (msgs[dev->msg_write_idx].addr != addr) { TRACE_ERROR("%s: invalid target address\n", __func__); dev->msg_err = -EINVAL; break; } if (msgs[dev->msg_write_idx].len == 0) { TRACE_ERROR("%s: invalid message length\n", __func__); dev->msg_err = -EINVAL; break; } if (!(dev->status & STATUS_WRITE_IN_PROGRESS)) { /* new i2c_msg */ buf = msgs[dev->msg_write_idx].buf; buf_len = msgs[dev->msg_write_idx].len; /* If both IC_EMPTYFIFO_HOLD_MASTER_EN and * IC_RESTART_EN are set, we must manually * set restart bit between messages. */ if ((dev->master_cfg & DW_IC_CON_RESTART_EN) && (dev->msg_write_idx > 0)) need_restart = 1; } tx_limit = dev->tx_fifo_depth - dw_readl(dev, DW_IC_TXFLR); rx_limit = dev->rx_fifo_depth - dw_readl(dev, DW_IC_RXFLR); while (buf_len > 0 && tx_limit > 0 && rx_limit > 0) { u32 cmd = 0; /* * If IC_EMPTYFIFO_HOLD_MASTER_EN is set we must * manually set the stop bit. However, it cannot be * detected from the registers so we set it always * when writing/reading the last byte. */ /* * i2c-core always sets the buffer length of * I2C_FUNC_SMBUS_BLOCK_DATA to 1. The length will * be adjusted when receiving the first byte. * Thus we can't stop the transaction here. */ if (dev->msg_write_idx == dev->msgs_num - 1 && buf_len == 1 && !(flags & I2C_M_RECV_LEN)) cmd |= BIT(9); if (need_restart) { cmd |= BIT(10); need_restart = 0; } if (msgs[dev->msg_write_idx].flags & I2C_M_RD) { /* Avoid rx buffer overrun */ if (dev->rx_outstanding >= dev->rx_fifo_depth) break; dw_writel(dev, cmd | 0x100, DW_IC_DATA_CMD); rx_limit--; dev->rx_outstanding++; } else dw_writel(dev, cmd | *buf++, DW_IC_DATA_CMD); tx_limit--; buf_len--; } dev->tx_buf = buf; dev->tx_buf_len = buf_len; /* * Because we don't know the buffer length in the * I2C_FUNC_SMBUS_BLOCK_DATA case, we can't stop * the transaction here. */ if (buf_len > 0 || flags & I2C_M_RECV_LEN) { /* more bytes to be written */ dev->status |= STATUS_WRITE_IN_PROGRESS; break; } else dev->status &= ~STATUS_WRITE_IN_PROGRESS; } /* * If i2c_msg index search is completed, we don't need TX_EMPTY * interrupt any more. */ if (dev->msg_write_idx == dev->msgs_num) intr_mask &= ~DW_IC_INTR_TX_EMPTY; if (dev->msg_err) intr_mask = 0; dw_writel(dev, intr_mask, DW_IC_INTR_MASK); } static u8 i2c_dw_recv_len(struct dw_i2c_dev *dev, u8 len) { struct i2c_msg *msgs = dev->msgs; u32 flags = msgs[dev->msg_read_idx].flags; /* * Adjust the buffer length and mask the flag * after receiving the first byte. */ len += (flags & I2C_CLIENT_PEC) ? 2 : 1; dev->tx_buf_len = len - min(len, dev->rx_outstanding); msgs[dev->msg_read_idx].len = len; msgs[dev->msg_read_idx].flags &= ~I2C_M_RECV_LEN; return len; } static void i2c_dw_read(struct dw_i2c_dev *dev) { struct i2c_msg *msgs = dev->msgs; int rx_valid; for (; dev->msg_read_idx < dev->msgs_num; dev->msg_read_idx++) { u32 len; u8 *buf; if (!(msgs[dev->msg_read_idx].flags & I2C_M_RD)) continue; if (!(dev->status & STATUS_READ_IN_PROGRESS)) { len = msgs[dev->msg_read_idx].len; buf = msgs[dev->msg_read_idx].buf; } else { len = dev->rx_buf_len; buf = dev->rx_buf; } rx_valid = dw_readl(dev, DW_IC_RXFLR); for (; len > 0 && rx_valid > 0; len--, rx_valid--) { u32 flags = msgs[dev->msg_read_idx].flags; *buf = dw_readl(dev, DW_IC_DATA_CMD); /* Ensure length byte is a valid value */ if (flags & I2C_M_RECV_LEN && *buf <= I2C_SMBUS_BLOCK_MAX && *buf > 0) { len = i2c_dw_recv_len(dev, *buf); } buf++; dev->rx_outstanding--; } if (len > 0) { dev->status |= STATUS_READ_IN_PROGRESS; dev->rx_buf_len = len; dev->rx_buf = buf; return; } else dev->status &= ~STATUS_READ_IN_PROGRESS; } } /* * Prepare controller for a transaction and call i2c_dw_xfer_msg. */ static int i2c_dw_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[], int num) { struct dw_i2c_dev *dev = adap->dw_dev; int ret; xQueueReset(dev->cmd_complete); dev->msgs = msgs; dev->msgs_num = num; dev->cmd_err = 0; dev->msg_write_idx = 0; dev->msg_read_idx = 0; dev->msg_err = 0; dev->status = STATUS_IDLE; dev->abort_source = 0; dev->rx_outstanding = 0; ret = i2c_dw_acquire_lock(dev); if (ret) goto done_nolock; ret = i2c_dw_wait_bus_not_busy(dev); if (ret < 0) goto done; /* Start the transfers */ i2c_dw_xfer_init(dev); /* Wait for tx to complete */ if (!xQueueReceive(dev->cmd_complete, NULL, adap->timeout)) { TRACE_ERROR("controller timed out\n"); /* i2c_dw_init implicitly disables the adapter */ i2c_dw_init_master(dev); ret = -ETIMEDOUT; goto done; } /* * We must disable the adapter before returning and signaling the end * of the current transfer. Otherwise the hardware might continue * generating interrupts which in turn causes a race condition with * the following transfer. Needs some more investigation if the * additional interrupts are a hardware bug or this driver doesn't * handle them correctly yet. */ __i2c_dw_disable_nowait(dev); if (dev->msg_err) { ret = dev->msg_err; goto done; } /* No error */ if (!dev->cmd_err && !dev->status) { ret = num; goto done; } /* We have an error */ if (dev->cmd_err == DW_IC_ERR_TX_ABRT) { ret = i2c_dw_handle_tx_abort(dev); goto done; } if (dev->status) TRACE_ERROR("transfer terminated early - interrupt latency too high?\n"); ret = -EIO; done: i2c_dw_release_lock(dev); done_nolock: return ret; } static u32 i2c_dw_get_clk_rate_khz(struct dw_i2c_dev *dev) { return ulClkGetRate(CLK_XTAL24M) / 1000; } static void i2c_dw_configure_master(struct dw_i2c_dev *dev) { dev->functionality = I2C_FUNC_10BIT_ADDR | DW_IC_DEFAULT_FUNCTIONALITY; dev->master_cfg = DW_IC_CON_MASTER | DW_IC_CON_SLAVE_DISABLE | DW_IC_CON_RESTART_EN; dev->mode = DW_IC_MASTER; switch (dev->clk_freq) { case 100000: dev->master_cfg |= DW_IC_CON_SPEED_STD; break; case 3400000: dev->master_cfg |= DW_IC_CON_SPEED_HIGH; break; default: dev->master_cfg |= DW_IC_CON_SPEED_FAST; } } #if defined(I2C0_SLAVE_MODE) || defined(I2C1_SLAVE_MODE) static void i2c_dw_configure_slave(struct dw_i2c_dev *dev) { dev->functionality = I2C_FUNC_SLAVE | DW_IC_DEFAULT_FUNCTIONALITY; dev->slave_cfg = DW_IC_CON_RX_FIFO_FULL_HLD_CTRL | DW_IC_CON_RESTART_EN | DW_IC_CON_STOP_DET_IFADDRESSED; dev->mode = DW_IC_SLAVE; } #endif static void dw_i2c_set_fifo_size(struct dw_i2c_dev *dev) { u32 param, tx_fifo_depth, rx_fifo_depth; /* * Try to detect the FIFO depth if not set by interface driver, * the depth could be from 2 to 256 from HW spec. */ param = i2c_dw_read_comp_param(dev); tx_fifo_depth = ((param >> 16) & 0xff) + 1; rx_fifo_depth = ((param >> 8) & 0xff) + 1; if (!dev->tx_fifo_depth) { dev->tx_fifo_depth = tx_fifo_depth; dev->rx_fifo_depth = rx_fifo_depth; } else if (tx_fifo_depth >= 2) { dev->tx_fifo_depth = min(dev->tx_fifo_depth, tx_fifo_depth); dev->rx_fifo_depth = min(dev->rx_fifo_depth, rx_fifo_depth); } } static u32 i2c_dw_read_clear_intrbits(struct dw_i2c_dev *dev) { u32 stat; /* * The IC_INTR_STAT register just indicates "enabled" interrupts. * Ths unmasked raw version of interrupt status bits are available * in the IC_RAW_INTR_STAT register. * * That is, * stat = dw_readl(IC_INTR_STAT); * equals to, * stat = dw_readl(IC_RAW_INTR_STAT) & dw_readl(IC_INTR_MASK); * * The raw version might be useful for debugging purposes. */ stat = dw_readl(dev, DW_IC_INTR_STAT); /* * Do not use the IC_CLR_INTR register to clear interrupts, or * you'll miss some interrupts, triggered during the period from * dw_readl(IC_INTR_STAT) to dw_readl(IC_CLR_INTR). * * Instead, use the separately-prepared IC_CLR_* registers. */ if (stat & DW_IC_INTR_RX_UNDER) dw_readl(dev, DW_IC_CLR_RX_UNDER); if (stat & DW_IC_INTR_RX_OVER) dw_readl(dev, DW_IC_CLR_RX_OVER); if (stat & DW_IC_INTR_TX_OVER) dw_readl(dev, DW_IC_CLR_TX_OVER); if (stat & DW_IC_INTR_RD_REQ) dw_readl(dev, DW_IC_CLR_RD_REQ); if (stat & DW_IC_INTR_TX_ABRT) { /* * The IC_TX_ABRT_SOURCE register is cleared whenever * the IC_CLR_TX_ABRT is read. Preserve it beforehand. */ dev->abort_source = dw_readl(dev, DW_IC_TX_ABRT_SOURCE); dw_readl(dev, DW_IC_CLR_TX_ABRT); } if (stat & DW_IC_INTR_RX_DONE) dw_readl(dev, DW_IC_CLR_RX_DONE); if (stat & DW_IC_INTR_ACTIVITY) dw_readl(dev, DW_IC_CLR_ACTIVITY); if (stat & DW_IC_INTR_STOP_DET) dw_readl(dev, DW_IC_CLR_STOP_DET); if (stat & DW_IC_INTR_START_DET) dw_readl(dev, DW_IC_CLR_START_DET); if (stat & DW_IC_INTR_GEN_CALL) dw_readl(dev, DW_IC_CLR_GEN_CALL); return stat; } /* * Interrupt service routine. This gets called whenever an I2C master interrupt * occurs. */ static int i2c_dw_irq_handler_master(struct dw_i2c_dev *dev) { u32 stat; stat = i2c_dw_read_clear_intrbits(dev); if (stat & DW_IC_INTR_TX_ABRT) { dev->cmd_err |= DW_IC_ERR_TX_ABRT; dev->status = STATUS_IDLE; /* * Anytime TX_ABRT is set, the contents of the tx/rx * buffers are flushed. Make sure to skip them. */ dw_writel(dev, 0, DW_IC_INTR_MASK); goto tx_aborted; } if (stat & DW_IC_INTR_RX_FULL) i2c_dw_read(dev); if (stat & DW_IC_INTR_TX_EMPTY) i2c_dw_xfer_msg(dev); /* * No need to modify or disable the interrupt mask here. * i2c_dw_xfer_msg() will take care of it according to * the current transmit status. */ tx_aborted: if ((stat & (DW_IC_INTR_TX_ABRT | DW_IC_INTR_STOP_DET)) || dev->msg_err) xQueueSendFromISR(dev->cmd_complete, NULL, 0); else if (dev->flags & ACCESS_INTR_MASK) { /* Workaround to trigger pending interrupt */ stat = dw_readl(dev, DW_IC_INTR_MASK); i2c_dw_disable_int(dev); dw_writel(dev, stat, DW_IC_INTR_MASK); } return 0; } static void i2c_dw_isr(void *dev_id) { struct dw_i2c_dev *dev = dev_id; u32 stat, enabled; enabled = dw_readl(dev, DW_IC_ENABLE); stat = dw_readl(dev, DW_IC_RAW_INTR_STAT); TRACE_DEBUG("enabled=%#x stat=%#x\n", enabled, stat); if (!enabled || !(stat & ~DW_IC_INTR_ACTIVITY)) return; i2c_dw_irq_handler_master(dev); } static const struct i2c_algorithm i2c_dw_algo = { .master_xfer = i2c_dw_xfer, }; static void i2c_dw_configure_fifo_slave(struct dw_i2c_dev *dev) { /* Configure Tx/Rx FIFO threshold levels. */ dw_writel(dev, 0, DW_IC_TX_TL); dw_writel(dev, 0, DW_IC_RX_TL); /* Configure the I2C slave. */ dw_writel(dev, dev->slave_cfg, DW_IC_CON); dw_writel(dev, DW_IC_INTR_SLAVE_MASK, DW_IC_INTR_MASK); } /** * i2c_dw_init_slave() - Initialize the designware i2c slave hardware * @dev: device private data * * This function configures and enables the I2C in slave mode. * This function is called during I2C init function, and in case of timeout at * run time. */ static int i2c_dw_init_slave(struct dw_i2c_dev *dev) { int ret; ret = i2c_dw_acquire_lock(dev); if (ret) return ret; /* Disable the adapter. */ __i2c_dw_disable(dev); /* Write SDA hold time if supported */ if (dev->sda_hold_time) dw_writel(dev, dev->sda_hold_time, DW_IC_SDA_HOLD); i2c_dw_configure_fifo_slave(dev); i2c_dw_release_lock(dev); return 0; } static int i2c_dw_reg_slave(struct i2c_adapter *slave) { struct dw_i2c_dev *dev = slave->dw_dev; if (dev->slave) return -EBUSY; if (slave->flags & I2C_CLIENT_TEN) return -ENOTSUP; /* * Set slave address in the IC_SAR register, * the address to which the DW_apb_i2c responds. */ __i2c_dw_disable_nowait(dev); dw_writel(dev, slave->addr, DW_IC_SAR); dev->slave = slave; __i2c_dw_enable(dev); dev->cmd_err = 0; dev->msg_write_idx = 0; dev->msg_read_idx = 0; dev->msg_err = 0; dev->status = STATUS_IDLE; dev->abort_source = 0; dev->rx_outstanding = 0; return 0; } static int i2c_dw_unreg_slave(struct i2c_adapter *slave) { struct dw_i2c_dev *dev = slave->dw_dev; dev->disable_int(dev); dev->disable(dev); dev->slave = NULL; return 0; } static u32 i2c_dw_read_clear_intrbits_slave(struct dw_i2c_dev *dev) { u32 stat; /* * The IC_INTR_STAT register just indicates "enabled" interrupts. * Ths unmasked raw version of interrupt status bits are available * in the IC_RAW_INTR_STAT register. * * That is, * stat = dw_readl(IC_INTR_STAT); * equals to, * stat = dw_readl(IC_RAW_INTR_STAT) & dw_readl(IC_INTR_MASK); * * The raw version might be useful for debugging purposes. */ stat = dw_readl(dev, DW_IC_INTR_STAT); /* * Do not use the IC_CLR_INTR register to clear interrupts, or * you'll miss some interrupts, triggered during the period from * dw_readl(IC_INTR_STAT) to dw_readl(IC_CLR_INTR). * * Instead, use the separately-prepared IC_CLR_* registers. */ if (stat & DW_IC_INTR_TX_ABRT) dw_readl(dev, DW_IC_CLR_TX_ABRT); if (stat & DW_IC_INTR_RX_UNDER) dw_readl(dev, DW_IC_CLR_RX_UNDER); if (stat & DW_IC_INTR_RX_OVER) dw_readl(dev, DW_IC_CLR_RX_OVER); if (stat & DW_IC_INTR_TX_OVER) dw_readl(dev, DW_IC_CLR_TX_OVER); if (stat & DW_IC_INTR_RX_DONE) dw_readl(dev, DW_IC_CLR_RX_DONE); if (stat & DW_IC_INTR_ACTIVITY) dw_readl(dev, DW_IC_CLR_ACTIVITY); if (stat & DW_IC_INTR_STOP_DET) dw_readl(dev, DW_IC_CLR_STOP_DET); if (stat & DW_IC_INTR_START_DET) dw_readl(dev, DW_IC_CLR_START_DET); if (stat & DW_IC_INTR_GEN_CALL) dw_readl(dev, DW_IC_CLR_GEN_CALL); return stat; } /* * Interrupt service routine. This gets called whenever an I2C slave interrupt * occurs. */ static int i2c_dw_irq_handler_slave(struct dw_i2c_dev *dev) { u32 raw_stat, stat, enabled; u8 val, slave_activity; stat = dw_readl(dev, DW_IC_INTR_STAT); enabled = dw_readl(dev, DW_IC_ENABLE); raw_stat = dw_readl(dev, DW_IC_RAW_INTR_STAT); slave_activity = ((dw_readl(dev, DW_IC_STATUS) & DW_IC_STATUS_SLAVE_ACTIVITY) >> 6); if (!enabled || !(raw_stat & ~DW_IC_INTR_ACTIVITY) || !dev->slave) return 0; TRACE_DEBUG("%#x STATUS SLAVE_ACTIVITY=%#x : RAW_INTR_STAT=%#x : INTR_STAT=%#x\n", enabled, slave_activity, raw_stat, stat); if ((stat & DW_IC_INTR_RX_FULL) && (stat & DW_IC_INTR_STOP_DET)) i2c_slave_event(dev->slave, I2C_SLAVE_WRITE_REQUESTED, &val); if (stat & DW_IC_INTR_RD_REQ) { if (slave_activity) { if (stat & DW_IC_INTR_RX_FULL) { val = dw_readl(dev, DW_IC_DATA_CMD); if (!i2c_slave_event(dev->slave, I2C_SLAVE_WRITE_RECEIVED, &val)) { TRACE_DEBUG("Byte %X acked!", val); } dw_readl(dev, DW_IC_CLR_RD_REQ); stat = i2c_dw_read_clear_intrbits_slave(dev); } else { dw_readl(dev, DW_IC_CLR_RD_REQ); dw_readl(dev, DW_IC_CLR_RX_UNDER); stat = i2c_dw_read_clear_intrbits_slave(dev); } if (!i2c_slave_event(dev->slave, I2C_SLAVE_READ_REQUESTED, &val)) dw_writel(dev, val, DW_IC_DATA_CMD); } } if (stat & DW_IC_INTR_RX_DONE) { if (!i2c_slave_event(dev->slave, I2C_SLAVE_READ_PROCESSED, &val)) dw_readl(dev, DW_IC_CLR_RX_DONE); i2c_slave_event(dev->slave, I2C_SLAVE_STOP, &val); stat = i2c_dw_read_clear_intrbits_slave(dev); return 1; } if (stat & DW_IC_INTR_RX_FULL) { val = dw_readl(dev, DW_IC_DATA_CMD); if (!i2c_slave_event(dev->slave, I2C_SLAVE_WRITE_RECEIVED, &val)) TRACE_DEBUG("Byte %X acked!", val); } else { i2c_slave_event(dev->slave, I2C_SLAVE_STOP, &val); stat = i2c_dw_read_clear_intrbits_slave(dev); } return 1; } static void i2c_dw_isr_slave(void *dev_id) { struct dw_i2c_dev *dev = dev_id; int ret; i2c_dw_read_clear_intrbits_slave(dev); ret = i2c_dw_irq_handler_slave(dev); if (ret > 0) xQueueSendFromISR(dev->cmd_complete, NULL, 0); } static const struct i2c_algorithm i2c_dw_slave_algo = { .reg_slave = i2c_dw_reg_slave, .unreg_slave = i2c_dw_unreg_slave, }; int i2c_dw_init(int id) { struct i2c_adapter *adap; struct dw_i2c_dev *dev; int ret; dev = pvPortMalloc(sizeof(struct dw_i2c_dev)); if (!dev) { TRACE_ERROR("[%s] pvPortMalloc failed\n", __func__); return -1; } memset(dev, 0, sizeof(struct dw_i2c_dev)); dev->cmd_complete = xQueueCreate(1, 0); if(id == 0) { dev->base = REGS_IIC0_BASE; dev->irq = I2C0_IRQn; dev->clk_freq = 100000; sys_soft_reset(softreset_i2c); #ifdef I2C0_SLAVE_MODE i2c_dw_configure_slave(dev); #else i2c_dw_configure_master(dev); #endif } else if(id == 1) { dev->base = REGS_IIC1_BASE; dev->irq = I2C1_IRQn; dev->clk_freq = 100000; sys_soft_reset(softreset_i2c1); #ifdef I2C1_SLAVE_MODE i2c_dw_configure_slave(dev); #else i2c_dw_configure_master(dev); #endif } else { TRACE_ERROR("[%s] Invalid id:%d\n", __func__, id); ret = -1; goto exit; } dev->get_clk_rate_khz = i2c_dw_get_clk_rate_khz; dw_i2c_set_fifo_size(dev); adap = &dev->adapter; if (dev->mode == DW_IC_MASTER) { dev->init = i2c_dw_init_master; dev->disable = i2c_dw_disable; dev->disable_int = i2c_dw_disable_int; ret = i2c_dw_set_reg_access(dev); if (ret) { TRACE_ERROR("[%s] i2c_dw_set_reg_access failed, id:%d\n", __func__, id); goto exit; } ret = i2c_dw_set_timings_master(dev); if (ret) { TRACE_ERROR("[%s] i2c_dw_set_timings_master failed, id:%d\n", __func__, id); goto exit; } ret = dev->init(dev); if (ret) { TRACE_ERROR("[%s] dev->init failed, id:%d\n", __func__, id); goto exit; } adap->retries = 3; adap->algo = &i2c_dw_algo; i2c_dw_disable_int(dev); request_irq(dev->irq, 0, i2c_dw_isr, dev); } else { dev->init = i2c_dw_init_slave; dev->disable = i2c_dw_disable; dev->disable_int = i2c_dw_disable_int; ret = i2c_dw_set_reg_access(dev); if (ret) { TRACE_ERROR("[%s] i2c_dw_set_reg_access failed, id:%d\n", __func__, id); goto exit; } ret = i2c_dw_set_sda_hold(dev); if (ret) { TRACE_ERROR("[%s] i2c_dw_set_sda_hold failed, id:%d\n", __func__, id); goto exit; } ret = dev->init(dev); if (ret) { TRACE_ERROR("[%s] dev->init failed, id:%d\n", __func__, id); goto exit; } adap->retries = 3; adap->algo = &i2c_dw_slave_algo; adap->flags |= I2C_CLIENT_SLAVE; request_irq(dev->irq, 0, i2c_dw_isr_slave, dev); } adap->dw_dev = dev; snprintf(adap->name, sizeof(adap->name), "i2c%d", id); ret = i2c_add_adapter(adap); if(ret) { TRACE_ERROR("[%s] i2c_add_adapter failed, id:%d\n", __func__, id); free_irq(dev->irq); goto exit; } return 0; exit: if(dev) vPortFree(dev); return ret; } #endif