#include #include "FreeRTOS.h" #include "os_adapt.h" #include "trace.h" #include "errno.h" #include "mmcsd_core.h" #include "sdio.h" #include "sd.h" #define SDIO_STACK_SIZE 4096 //#define SDIO_THREAD_PRIORITY 15 #define SDIO_THREAD_PRIORITY 31 static List_t sdio_cards; static List_t sdio_drivers; struct sdio_card { struct mmcsd_card *card; ListItem_t list; }; struct sdio_driver { struct sdio_driver_t *drv; ListItem_t list; }; #define MIN(a, b) (a < b ? a : b) static const uint8_t speed_value[16] = { 0, 10, 12, 13, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 70, 80 }; static const uint32_t speed_unit[8] = { 10000, 100000, 1000000, 10000000, 0, 0, 0, 0 }; struct sdio_func *wifi_sdio_func; static inline int32_t sdio_match_card(struct mmcsd_card *card, const struct sdio_device_id *id); int32_t sdio_io_send_op_cond(struct mmcsd_host *host, uint32_t ocr, uint32_t *cmd5_resp) { struct mmcsd_cmd cmd; int32_t i, err = 0; configASSERT(host != NULL); memset(&cmd, 0, sizeof(struct mmcsd_cmd)); cmd.cmd_code = SD_IO_SEND_OP_COND; cmd.arg = ocr; cmd.flags = RESP_SPI_R4 | RESP_R4 | CMD_BCR; for (i = 100; i; i--) { err = mmcsd_send_cmd(host, &cmd, 0); if (err) break; /* if we're just probing, do a single pass */ if (ocr == 0) break; /* otherwise wait until reset completes */ if (controller_is_spi(host)) { /* * Both R1_SPI_IDLE and MMC_CARD_BUSY indicate * an initialized card under SPI, but some cards * (Marvell's) only behave when looking at this * one. */ if (cmd.resp[1] & CARD_BUSY) break; } else { if (cmd.resp[0] & CARD_BUSY) break; } err = -1; mmcsd_delay_ms(10); } if (cmd5_resp) *cmd5_resp = cmd.resp[controller_is_spi(host) ? 1 : 0]; return err; } int32_t sdio_io_rw_direct(struct mmcsd_card *card, int32_t rw, uint32_t fn, uint32_t reg_addr, uint8_t *pdata, uint8_t raw) { struct mmcsd_cmd cmd; int32_t err; configASSERT(card != NULL); configASSERT(fn <= SDIO_MAX_FUNCTIONS); configASSERT(pdata != NULL); if (reg_addr & ~SDIO_ARG_CMD53_REG_MASK) return -1; memset(&cmd, 0, sizeof(struct mmcsd_cmd)); cmd.cmd_code = SD_IO_RW_DIRECT; cmd.arg = rw ? SDIO_ARG_CMD52_WRITE : SDIO_ARG_CMD52_READ; cmd.arg |= fn << SDIO_ARG_CMD52_FUNC_SHIFT; cmd.arg |= raw ? SDIO_ARG_CMD52_RAW_FLAG : 0x00000000; cmd.arg |= reg_addr << SDIO_ARG_CMD52_REG_SHIFT; cmd.arg |= *pdata; cmd.flags = RESP_SPI_R5 | RESP_R5 | CMD_AC; err = mmcsd_send_cmd(card->host, &cmd, 0); if (err) return err; if (!controller_is_spi(card->host)) { if (cmd.resp[0] & R5_ERROR) return -EIO; if (cmd.resp[0] & R5_FUNCTION_NUMBER) return -1; if (cmd.resp[0] & R5_OUT_OF_RANGE) return -1; } if (!rw || raw) { if (controller_is_spi(card->host)) *pdata = (cmd.resp[0] >> 8) & 0xFF; else *pdata = cmd.resp[0] & 0xFF; } return 0; } int32_t sdio_io_rw_extended(struct mmcsd_card *card, int32_t rw, uint32_t fn, uint32_t addr, int32_t op_code, uint8_t *buf, uint32_t blocks, uint32_t blksize) { struct mmcsd_req req; struct mmcsd_cmd cmd; struct mmcsd_data data; configASSERT(card != NULL); configASSERT(fn <= SDIO_MAX_FUNCTIONS); configASSERT(blocks != 1 || blksize <= 512); configASSERT(blocks != 0); //configASSERT(blksize != 0); if (blksize == 0) { printf("\r\n %s blksize = 0 \r\n", __func__); return -1; } if (addr & ~SDIO_ARG_CMD53_REG_MASK) return -1; memset(&req, 0, sizeof(struct mmcsd_req)); memset(&cmd, 0, sizeof(struct mmcsd_cmd)); memset(&data, 0, sizeof(struct mmcsd_data)); req.cmd = &cmd; req.data = &data; cmd.cmd_code = SD_IO_RW_EXTENDED; cmd.arg = rw ? SDIO_ARG_CMD53_WRITE : SDIO_ARG_CMD53_READ; cmd.arg |= fn << SDIO_ARG_CMD53_FUNC_SHIFT; cmd.arg |= op_code ? SDIO_ARG_CMD53_INCREMENT : 0x00000000; cmd.arg |= addr << SDIO_ARG_CMD53_REG_SHIFT; if (blocks == 1 && blksize <= 512) cmd.arg |= (blksize == 512) ? 0 : blksize; /* byte mode */ else cmd.arg |= SDIO_ARG_CMD53_BLOCK_MODE | blocks; /* block mode */ cmd.flags = RESP_SPI_R5 | RESP_R5 | CMD_ADTC; data.blksize = blksize; data.blks = blocks; data.flags = rw ? DATA_DIR_WRITE : DATA_DIR_READ; data.buf = (uint32_t *)buf; mmcsd_set_data_timeout(&data, card); mmcsd_send_request(card->host, &req); if (cmd.err) return cmd.err; if (data.err) return data.err; if (!controller_is_spi(card->host)) { if (cmd.resp[0] & R5_ERROR) return -EIO; if (cmd.resp[0] & R5_FUNCTION_NUMBER) return -1; if (cmd.resp[0] & R5_OUT_OF_RANGE) return -1; } return 0; } static inline uint32_t sdio_max_block_size(struct sdio_function *func) { uint32_t size = MIN(func->card->host->max_seg_size, func->card->host->max_blk_size); size = MIN(size, func->max_blk_size); return MIN(size, 512u); /* maximum size for byte mode */ } int32_t sdio_io_rw_extended_block(struct sdio_function *func, int32_t rw, uint32_t addr, int32_t op_code, uint8_t *buf, uint32_t len) { int32_t ret; uint32_t left_size; uint32_t max_blks, blks; left_size = len; /* Do the bulk of the transfer using block mode (if supported). */ if (func->card->cccr.multi_block && (len > sdio_max_block_size(func))) { max_blks = MIN(func->card->host->max_blk_count, func->card->host->max_seg_size / func->cur_blk_size); max_blks = MIN(max_blks, 511u); while (left_size > func->cur_blk_size) { blks = left_size / func->cur_blk_size; if (blks > max_blks) blks = max_blks; len = blks * func->cur_blk_size; ret = sdio_io_rw_extended(func->card, rw, func->num, addr, op_code, buf, blks, func->cur_blk_size); if (ret) return ret; left_size -= len; buf += len; if (op_code) addr += len; } } while (left_size > 0) { len = MIN(left_size, sdio_max_block_size(func)); ret = sdio_io_rw_extended(func->card, rw, func->num, addr, op_code, buf, 1, len); if (ret) return ret; left_size -= len; buf += len; if (op_code) addr += len; } return 0; } uint8_t sdio_io_readb(struct sdio_function *func, uint32_t reg, int32_t *err) { uint8_t data = 0; int32_t ret; ret = sdio_io_rw_direct(func->card, 0, func->num, reg, &data, 0); if (err) { *err = ret; } return data; } int32_t sdio_io_writeb(struct sdio_function *func, uint32_t reg, uint8_t data) { return sdio_io_rw_direct(func->card, 1, func->num, reg, &data, 0); } uint16_t sdio_io_readw(struct sdio_function *func, uint32_t addr, int32_t *err) { int32_t ret; uint32_t dmabuf; if (err) *err = 0; ret = sdio_io_rw_extended_block(func, 0, addr, 1, (uint8_t *)&dmabuf, 4); if (ret) { if (err) *err = ret; } return (uint16_t)dmabuf; } int32_t sdio_io_writew(struct sdio_function *func, uint16_t data, uint32_t addr) { uint32_t dmabuf = 0; dmabuf = data; return sdio_io_rw_extended_block(func, 1, addr, 1, (uint8_t *)&dmabuf, 4); } uint32_t sdio_io_readl(struct sdio_function *func, uint32_t addr, int32_t *err) { int32_t ret; uint32_t dmabuf; if (err) *err = 0; ret = sdio_io_rw_extended_block(func, 0, addr, 1, (uint8_t *)&dmabuf, 4); if (ret) { if (err) *err = ret; } return dmabuf; } int32_t sdio_io_writel(struct sdio_function *func, uint32_t data, uint32_t addr) { uint32_t dmabuf = data; return sdio_io_rw_extended_block(func, 1, addr, 1, (uint8_t *)&dmabuf, 4); } int32_t sdio_io_read_multi_fifo_b(struct sdio_function *func, uint32_t addr, uint8_t *buf, uint32_t len) { return sdio_io_rw_extended_block(func, 0, addr, 0, buf, len); } int32_t sdio_io_write_multi_fifo_b(struct sdio_function *func, uint32_t addr, uint8_t *buf, uint32_t len) { return sdio_io_rw_extended_block(func, 1, addr, 0, buf, len); } int32_t sdio_io_read_multi_incr_b(struct sdio_function *func, uint32_t addr, uint8_t *buf, uint32_t len) { return sdio_io_rw_extended_block(func, 0, addr, 1, buf, len); } int32_t sdio_io_write_multi_incr_b(struct sdio_function *func, uint32_t addr, uint8_t *buf, uint32_t len) { return sdio_io_rw_extended_block(func, 1, addr, 1, buf, len); } static int32_t sdio_read_cccr(struct mmcsd_card *card) { int32_t ret; int32_t cccr_version; uint8_t data; memset(&card->cccr, 0, sizeof(struct sdio_cccr)); data = sdio_io_readb(card->sdio_function[0], SDIO_REG_CCCR_CCCR_REV, &ret); if (ret) goto out; cccr_version = data & 0x0f; if (cccr_version > SDIO_CCCR_REV_3_00) { TRACE_ERROR("unrecognised CCCR structure version %d", cccr_version); return -1; } card->cccr.sdio_version = (data & 0xf0) >> 4; data = sdio_io_readb(card->sdio_function[0], SDIO_REG_CCCR_CARD_CAPS, &ret); if (ret) goto out; if (data & SDIO_CCCR_CAP_SMB) card->cccr.multi_block = 1; if (data & SDIO_CCCR_CAP_LSC) card->cccr.low_speed = 1; if (data & SDIO_CCCR_CAP_4BLS) card->cccr.low_speed_4 = 1; if (data & SDIO_CCCR_CAP_4BLS) card->cccr.bus_width = 1; if (cccr_version >= SDIO_CCCR_REV_1_10) { data = sdio_io_readb(card->sdio_function[0], SDIO_REG_CCCR_POWER_CTRL, &ret); if (ret) goto out; if (data & SDIO_POWER_SMPC) card->cccr.power_ctrl = 1; } if (cccr_version >= SDIO_CCCR_REV_1_20) { data = sdio_io_readb(card->sdio_function[0], SDIO_REG_CCCR_SPEED, &ret); if (ret) goto out; if (data & SDIO_SPEED_SHS) card->cccr.high_speed = 1; } out: return ret; } static int32_t cistpl_funce_func0(struct mmcsd_card *card, const uint8_t *buf, uint32_t size) { if (size < 0x04 || buf[0] != 0) return -1; /* TPLFE_FN0_BLK_SIZE */ card->cis.func0_blk_size = buf[1] | (buf[2] << 8); /* TPLFE_MAX_TRAN_SPEED */ card->cis.max_tran_speed = speed_value[(buf[3] >> 3) & 15] * speed_unit[buf[3] & 7]; return 0; } static int32_t cistpl_funce_func(struct sdio_function *func, const uint8_t *buf, uint32_t size) { uint32_t version; uint32_t min_size; version = func->card->cccr.sdio_version; min_size = (version == SDIO_SDIO_REV_1_00) ? 28 : 42; if (size < min_size || buf[0] != 1) return -1; /* TPLFE_MAX_BLK_SIZE */ func->max_blk_size = buf[12] | (buf[13] << 8); /* TPLFE_ENABLE_TIMEOUT_VAL, present in ver 1.1 and above */ if (version > SDIO_SDIO_REV_1_00) func->enable_timeout_val = (buf[28] | (buf[29] << 8)) * 10; else func->enable_timeout_val = 1000; /* 1000ms */ return 0; } static int32_t sdio_read_cis(struct sdio_function *func) { int32_t ret; struct sdio_function_tuple *curr, **prev; uint32_t i, cisptr = 0; uint8_t data; uint8_t tpl_code, tpl_link; struct mmcsd_card *card = func->card; struct sdio_function *func0 = card->sdio_function[0]; configASSERT(func0 != NULL); for (i = 0; i < 3; i++) { data = sdio_io_readb(func0, SDIO_REG_FBR_BASE(func->num) + SDIO_REG_FBR_CIS + i, &ret); if (ret) return ret; cisptr |= data << (i * 8); } prev = &func->tuples; do { tpl_code = sdio_io_readb(func0, cisptr++, &ret); if (ret) break; tpl_link = sdio_io_readb(func0, cisptr++, &ret); if (ret) break; if ((tpl_code == CISTPL_END) || (tpl_link == 0xff)) break; if (tpl_code == CISTPL_NULL) continue; curr = pvPortMalloc(sizeof(struct sdio_function_tuple) + tpl_link); if (!curr) return -ENOMEM; curr->data = (uint8_t *)curr + sizeof(struct sdio_function_tuple); for (i = 0; i < tpl_link; i++) { curr->data[i] = sdio_io_readb(func0, cisptr + i, &ret); if (ret) break; } if (ret) { vPortFree(curr); break; } switch (tpl_code) { case CISTPL_MANFID: if (tpl_link < 4) { TRACE_DEBUG("bad CISTPL_MANFID length"); break; } if (func->num != 0) { func->manufacturer = curr->data[0]; func->manufacturer |= curr->data[1] << 8; func->product = curr->data[2]; func->product |= curr->data[3] << 8; } else { card->cis.manufacturer = curr->data[0]; card->cis.manufacturer |= curr->data[1] << 8; card->cis.product = curr->data[2]; card->cis.product |= curr->data[3] << 8; } break; case CISTPL_FUNCE: if (func->num != 0) ret = cistpl_funce_func(func, curr->data, tpl_link); else ret = cistpl_funce_func0(card, curr->data, tpl_link); if (ret) { TRACE_DEBUG("bad CISTPL_FUNCE size %u " "type %u", tpl_link, curr->data[0]); } break; case CISTPL_VERS_1: if (tpl_link < 2) { TRACE_DEBUG("CISTPL_VERS_1 too short"); } break; default: /* this tuple is unknown to the core */ curr->next = NULL; curr->code = tpl_code; curr->size = tpl_link; *prev = curr; prev = &curr->next; TRACE_DEBUG( "function %d, CIS tuple code %#x, length %d", func->num, tpl_code, tpl_link); break; } cisptr += tpl_link; } while (1); /* * Link in all unknown tuples found in the common CIS so that * drivers don't have to go digging in two places. */ if (func->num != 0) *prev = func0->tuples; return ret; } void sdio_free_cis(struct sdio_function *func) { struct sdio_function_tuple *tuple, *tmp; struct mmcsd_card *card = func->card; tuple = func->tuples; while (tuple && ((tuple != card->sdio_function[0]->tuples) || (!func->num))) { tmp = tuple; tuple = tuple->next; vPortFree(tmp); } func->tuples = NULL; } static int32_t sdio_read_fbr(struct sdio_function *func) { int32_t ret; uint8_t data; struct sdio_function *func0 = func->card->sdio_function[0]; data = sdio_io_readb(func0, SDIO_REG_FBR_BASE(func->num) + SDIO_REG_FBR_STD_FUNC_IF, &ret); if (ret) goto err; data &= 0x0f; if (data == 0x0f) { data = sdio_io_readb(func0, SDIO_REG_FBR_BASE(func->num) + SDIO_REG_FBR_STD_IF_EXT, &ret); if (ret) goto err; } func->func_code = data; err: return ret; } static int32_t sdio_initialize_function(struct mmcsd_card *card, uint32_t func_num) { int32_t ret; struct sdio_function *func; configASSERT(func_num <= SDIO_MAX_FUNCTIONS); func = pvPortMalloc(sizeof(struct sdio_function)); if (!func) { TRACE_ERROR("malloc sdio_function failed"); ret = -ENOMEM; goto err; } memset(func, 0, sizeof(struct sdio_function)); func->card = card; func->num = func_num; ret = sdio_read_fbr(func); if (ret) goto err1; ret = sdio_read_cis(func); if (ret) goto err1; /* * product/manufacturer id is optional for function CIS, so * copy it from the card structure as needed. */ if (func->product == 0) { func->manufacturer = card->cis.manufacturer; func->product = card->cis.product; } if (func->max_blk_size > 0) sdio_set_block_size(func, func->max_blk_size); else sdio_set_block_size(func, 512); card->sdio_function[func_num] = func; return 0; err1: sdio_free_cis(func); vPortFree(func); card->sdio_function[func_num] = NULL; err: return ret; } static int32_t sdio_set_highspeed(struct mmcsd_card *card) { int32_t ret; uint8_t speed; if (!(card->host->flags & MMCSD_SUP_HIGHSPEED)) return 0; if (!card->cccr.high_speed) return 0; speed = sdio_io_readb(card->sdio_function[0], SDIO_REG_CCCR_SPEED, &ret); if (ret) return ret; speed |= SDIO_SPEED_EHS; ret = sdio_io_writeb(card->sdio_function[0], SDIO_REG_CCCR_SPEED, speed); if (ret) return ret; card->flags |= CARD_FLAG_HIGHSPEED; return 0; } static int32_t sdio_set_bus_wide(struct mmcsd_card *card) { int32_t ret; uint8_t busif; if (!(card->host->flags & MMCSD_BUSWIDTH_4)) return 0; if (card->cccr.low_speed && !card->cccr.bus_width) return 0; busif = sdio_io_readb(card->sdio_function[0], SDIO_REG_CCCR_BUS_IF, &ret); if (ret) return ret; busif |= SDIO_BUS_WIDTH_4BIT; ret = sdio_io_writeb(card->sdio_function[0], SDIO_REG_CCCR_BUS_IF, busif); if (ret) return ret; mmcsd_set_bus_width(card->host, MMCSD_BUS_WIDTH_4); return 0; } static int32_t sdio_register_card(struct mmcsd_card *card) { struct sdio_card *sc; struct sdio_driver *sd; ListItem_t *pxListItem; sc = pvPortMalloc(sizeof(struct sdio_card)); if (sc == NULL) { TRACE_ERROR("malloc sdio card failed"); return -ENOMEM; } sc->card = card; vListInitialiseItem(&sc->list); listSET_LIST_ITEM_OWNER(&sc->list, sc); vListInsertEnd(&sdio_cards, &sc->list); if (listLIST_IS_EMPTY(&sdio_drivers)) { goto out; } list_for_each_entry(pxListItem, sd, &sdio_drivers) { if (sdio_match_card(card, sd->drv->id)) { sd->drv->probe(card); } } out: return 0; } static int32_t sdio_init_card(struct mmcsd_host *host, uint32_t ocr) { int32_t err = 0; int32_t i, function_num; uint32_t cmd5_resp; struct mmcsd_card *card; err = sdio_io_send_op_cond(host, ocr, &cmd5_resp); if (err) goto err; if (controller_is_spi(host)) { err = mmcsd_spi_use_crc(host, host->spi_use_crc); if (err) goto err; } function_num = (cmd5_resp & 0x70000000) >> 28; card = pvPortMalloc(sizeof(struct mmcsd_card)); if (!card) { TRACE_ERROR("malloc card failed"); err = -ENOMEM; goto err; } memset(card, 0, sizeof(struct mmcsd_card)); card->card_type = CARD_TYPE_SDIO; card->sdio_function_num = function_num; card->host = host; host->card = card; card->sdio_function[0] = pvPortMalloc(sizeof(struct sdio_function)); if (!card->sdio_function[0]) { TRACE_ERROR("malloc sdio_func0 failed"); err = -ENOMEM; goto err1; } memset(card->sdio_function[0], 0, sizeof(struct sdio_function)); card->sdio_function[0]->card = card; card->sdio_function[0]->num = 0; if (!controller_is_spi(host)) { err = mmcsd_get_card_addr(host, &card->rca); if (err) goto err2; mmcsd_set_bus_mode(host, MMCSD_BUSMODE_PUSHPULL); } if (!controller_is_spi(host)) { err = mmcsd_select_card(card); if (err) goto err2; } err = sdio_read_cccr(card); if (err) goto err2; err = sdio_read_cis(card->sdio_function[0]); if (err) goto err2; err = sdio_set_highspeed(card); if (err) goto err2; if (card->flags & CARD_FLAG_HIGHSPEED) { mmcsd_set_clock(host, card->host->freq_max > 50000000 ? 50000000 : card->host->freq_max); } else { mmcsd_set_clock(host, card->cis.max_tran_speed); } err = sdio_set_bus_wide(card); if (err) goto err2; for (i = 1; i < function_num + 1; i++) { err = sdio_initialize_function(card, i); if (err) goto err3; } wifi_sdio_func = card->sdio_function[1]; /* register sdio card */ err = sdio_register_card(card);printf("%s wifi_sdio_func:%08x\r\n", __func__, (int)wifi_sdio_func); if (err) { goto err3; } return 0; err3: if (host->card) { for (i = 1; i < host->card->sdio_function_num + 1; i++) { if (host->card->sdio_function[i]) { sdio_free_cis(host->card->sdio_function[i]); vPortFree(host->card->sdio_function[i]); host->card->sdio_function[i] = NULL; vPortFree(host->card); host->card = NULL; break; } } } err2: if (host->card && host->card->sdio_function[0]) { sdio_free_cis(host->card->sdio_function[0]); vPortFree(host->card->sdio_function[0]); host->card->sdio_function[0] = NULL; } err1: if (host->card) { vPortFree(host->card); } err: TRACE_ERROR("error %d while initialising SDIO card", err); return err; } int32_t init_sdio(struct mmcsd_host *host, uint32_t ocr) { int32_t err; uint32_t current_ocr; configASSERT(host != NULL); if (ocr & 0x7F) { TRACE_WARNING("Card ocr below the defined voltage rang.\r\n"); ocr &= ~0x7F; } if (ocr & VDD_165_195) { TRACE_WARNING("Can't support the low voltage SDIO card.\r\n"); ocr &= ~VDD_165_195; } current_ocr = mmcsd_select_voltage(host, ocr); if (!current_ocr) { err = -1; goto err; } err = sdio_init_card(host, current_ocr); if (err) goto remove_card; return 0; remove_card: vPortFree(host->card); host->card = NULL; err: TRACE_ERROR("init SDIO card failed"); return err; } static void sdio_irq_thread(void *param) { int32_t i, ret; uint8_t pending; struct mmcsd_card *card; struct mmcsd_host *host = (struct mmcsd_host *)param; configASSERT(host != NULL); card = host->card; configASSERT(card != NULL); while (1) { if (xSemaphoreTake(host->sdio_irq_sem, portMAX_DELAY) == pdPASS) { mmcsd_host_lock(host); pending = sdio_io_readb(host->card->sdio_function[0], SDIO_REG_CCCR_INT_PEND, &ret); if (ret) { mmcsd_dbg("error %d reading SDIO_REG_CCCR_INT_PEND\n", ret); goto out; } for (i = 1; i <= 7; i++) { if (pending & (1 << i)) { struct sdio_function *func = card->sdio_function[i]; if (!func) { mmcsd_dbg("pending IRQ for " "non-existant function %d\n", func->num); goto out; } else if (func->irq_handler) { func->irq_handler(func); } else { mmcsd_dbg("pending IRQ with no register handler\n"); goto out; } } } out: mmcsd_host_unlock(host); if (host->flags & MMCSD_SUP_SDIO_IRQ) host->ops->enable_sdio_irq(host, 1); continue; } } } static int32_t sdio_irq_thread_create(struct mmcsd_card *card) { struct mmcsd_host *host = card->host; /* init semaphore and create sdio irq processing thread */ if (!host->sdio_irq_num) { host->sdio_irq_num++; host->sdio_irq_sem = xSemaphoreCreateCounting(32, 0); configASSERT(host->sdio_irq_sem != NULL); xTaskCreate(sdio_irq_thread, "sdio_irq", SDIO_STACK_SIZE, host, SDIO_THREAD_PRIORITY, &host->sdio_irq_thread);// } return 0; } static int32_t sdio_irq_thread_delete(struct mmcsd_card *card) { struct mmcsd_host *host = card->host; configASSERT(host->sdio_irq_num > 0); host->sdio_irq_num--; if (!host->sdio_irq_num) { if (host->flags & MMCSD_SUP_SDIO_IRQ) host->ops->enable_sdio_irq(host, 0); vSemaphoreDelete(host->sdio_irq_sem); host->sdio_irq_sem = NULL; vTaskDelete(host->sdio_irq_thread); host->sdio_irq_thread = NULL; } return 0; } int32_t sdio_attach_irq(struct sdio_function *func, sdio_irq_handler_t *handler) { int32_t ret; uint8_t reg; struct sdio_function *func0; configASSERT(func != NULL); configASSERT(func->card != NULL); func0 = func->card->sdio_function[0]; mmcsd_dbg("SDIO: enabling IRQ for function %d\n", func->num); if (func->irq_handler) { mmcsd_dbg("SDIO: IRQ for already in use.\n"); return -EBUSY; } reg = sdio_io_readb(func0, SDIO_REG_CCCR_INT_EN, &ret); if (ret) return ret; reg |= 1 << func->num; reg |= 1; /* Master interrupt enable */ ret = sdio_io_writeb(func0, SDIO_REG_CCCR_INT_EN, reg); if (ret) return ret; func->irq_handler = handler; ret = sdio_irq_thread_create(func->card); if (ret) func->irq_handler = NULL; return ret; } int32_t sdio_detach_irq(struct sdio_function *func) { int32_t ret; uint8_t reg; struct sdio_function *func0; configASSERT(func != NULL); configASSERT(func->card != NULL); func0 = func->card->sdio_function[0]; mmcsd_dbg("SDIO: disabling IRQ for function %d\n", func->num); if (func->irq_handler) { func->irq_handler = NULL; sdio_irq_thread_delete(func->card); } reg = sdio_io_readb(func0, SDIO_REG_CCCR_INT_EN, &ret); if (ret) return ret; reg &= ~(1 << func->num); /* Disable master interrupt with the last function interrupt */ if (!(reg & 0xFE)) reg = 0; ret = sdio_io_writeb(func0, SDIO_REG_CCCR_INT_EN, reg); if (ret) return ret; return 0; } void sdio_irq_wakeup_isr(struct mmcsd_host *host) { if (host->flags & MMCSD_SUP_SDIO_IRQ) host->ops->enable_sdio_irq(host, 0); if (host->sdio_irq_sem) xSemaphoreGiveFromISR(host->sdio_irq_sem, 0); } void sdio_irq_wakeup(struct mmcsd_host *host) { if (host->flags & MMCSD_SUP_SDIO_IRQ) host->ops->enable_sdio_irq(host, 0); if (host->sdio_irq_sem) xSemaphoreGive(host->sdio_irq_sem); } int32_t sdio_enable_func(struct sdio_function *func) { int32_t ret; uint8_t reg; uint32_t timeout; struct sdio_function *func0; configASSERT(func != NULL); configASSERT(func->card != NULL); func0 = func->card->sdio_function[0]; mmcsd_dbg("SDIO: enabling function %d\n", func->num); reg = sdio_io_readb(func0, SDIO_REG_CCCR_IO_EN, &ret); if (ret) goto err; reg |= 1 << func->num; ret = sdio_io_writeb(func0, SDIO_REG_CCCR_IO_EN, reg); if (ret) goto err; timeout = xTaskGetTickCount() + func->enable_timeout_val * configTICK_RATE_HZ / 1000; while (1) { reg = sdio_io_readb(func0, SDIO_REG_CCCR_IO_RDY, &ret); if (ret) goto err; if (reg & (1 << func->num)) break; ret = -1; if (xTaskGetTickCount() > timeout) goto err; } mmcsd_dbg("SDIO: enabled function successfull\n"); return 0; err: mmcsd_dbg("SDIO: failed to enable function %d\n", func->num); return ret; } int32_t sdio_disable_func(struct sdio_function *func) { int32_t ret; uint8_t reg; struct sdio_function *func0; configASSERT(func != NULL); configASSERT(func->card != NULL); func0 = func->card->sdio_function[0]; mmcsd_dbg("SDIO: disabling function %d\n", func->num); reg = sdio_io_readb(func0, SDIO_REG_CCCR_IO_EN, &ret); if (ret) goto err; reg &= ~(1 << func->num); ret = sdio_io_writeb(func0, SDIO_REG_CCCR_IO_EN, reg); if (ret) goto err; mmcsd_dbg("SDIO: disabled function successfull\n"); return 0; err: mmcsd_dbg("SDIO: failed to disable function %d\n", func->num); return -EIO; } void sdio_set_drvdata(struct sdio_function *func, void *data) { func->priv = data; } void* sdio_get_drvdata(struct sdio_function *func) { return func->priv; } int32_t sdio_set_block_size(struct sdio_function *func, uint32_t blksize) { int32_t ret; struct sdio_function *func0 = func->card->sdio_function[0]; if (blksize > func->card->host->max_blk_size) return -1; if (blksize == 0) { blksize = MIN(func->max_blk_size, func->card->host->max_blk_size); blksize = MIN(blksize, 512u); } ret = sdio_io_writeb(func0, SDIO_REG_FBR_BASE(func->num) + SDIO_REG_FBR_BLKSIZE, blksize & 0xff); if (ret) return ret; ret = sdio_io_writeb(func0, SDIO_REG_FBR_BASE(func->num) + SDIO_REG_FBR_BLKSIZE + 1, (blksize >> 8) & 0xff); if (ret) return ret; func->cur_blk_size = blksize; return 0; } static inline int32_t sdio_match_card(struct mmcsd_card *card, const struct sdio_device_id *id) { uint8_t num = 1; if ((id->manufacturer != SDIO_ANY_MAN_ID) && (id->manufacturer != card->cis.manufacturer)) return 0; while (num <= card->sdio_function_num) { if ((id->product != SDIO_ANY_PROD_ID) && (id->product == card->sdio_function[num]->product)) return 1; num++; } return 0; } static struct mmcsd_card *sdio_match_driver(struct sdio_device_id *id) { ListItem_t *pxListItem; struct sdio_card *sc; struct mmcsd_card *card; list_for_each_entry(pxListItem, sc, &sdio_cards) { card = sc->card; if (sdio_match_card(card, id)) { return card; } } return NULL; } int32_t sdio_register_driver(struct sdio_driver_t *driver) { struct sdio_driver *sd; struct mmcsd_card *card; sd = pvPortMalloc(sizeof(struct sdio_driver)); if (sd == NULL) { TRACE_ERROR("malloc sdio driver failed"); return -ENOMEM; } sd->drv = driver; vListInitialiseItem(&sd->list); listSET_LIST_ITEM_OWNER(&sd->list, sd); vListInsertEnd(&sdio_drivers, &sd->list); if (!listLIST_IS_EMPTY(&sdio_cards)) { card = sdio_match_driver(driver->id); if (card != NULL) { return driver->probe(card); } } return -1; } int32_t sdio_unregister_driver(struct sdio_driver_t *driver) { ListItem_t *pxListItem; struct sdio_driver *sd = NULL; struct mmcsd_card *card; list_for_each_entry(pxListItem, sd, &sdio_drivers) { if (sd->drv != driver) { sd = NULL; } } if (sd == NULL) { TRACE_ERROR("SDIO driver %s not register", driver->name); return -1; } if (!listLIST_IS_EMPTY(&sdio_cards)) { card = sdio_match_driver(driver->id); if (card != NULL) { driver->remove(card); uxListRemove(&sd->list); vPortFree(sd); } } return 0; } void sdio_init(void) { vListInitialise(&sdio_cards); vListInitialise(&sdio_drivers); }