#include "FreeRTOS.h" #include "chip.h" #include "board.h" #include "pinctrl.h" #include #define SPI0_CS0_GPIO 32 #define SPI0_IO0_GPIO 34 /* Register offsets */ #define DW_SPI_CTRL0 0x00 #define DW_SPI_CTRL1 0x04 #define DW_SPI_SSIENR 0x08 #define DW_SPI_MWCR 0x0c #define DW_SPI_SER 0x10 #define DW_SPI_BAUDR 0x14 #define DW_SPI_TXFLTR 0x18 #define DW_SPI_RXFLTR 0x1c #define DW_SPI_TXFLR 0x20 #define DW_SPI_RXFLR 0x24 #define DW_SPI_SR 0x28 #define DW_SPI_IMR 0x2c #define DW_SPI_ISR 0x30 #define DW_SPI_RISR 0x34 #define DW_SPI_TXOICR 0x38 #define DW_SPI_RXOICR 0x3c #define DW_SPI_RXUICR 0x40 #define DW_SPI_MSTICR 0x44 #define DW_SPI_ICR 0x48 #define DW_SPI_DMACR 0x4c #define DW_SPI_DMATDLR 0x50 #define DW_SPI_DMARDLR 0x54 #define DW_SPI_IDR 0x58 #define DW_SPI_VERSION 0x5c #define DW_SPI_DR 0x60 #define DW_SPI_QSPI_CTRL0 0xf4 /* Bit fields in CTRLR0 */ #define SPI_DFS_OFFSET 0 #define SPI_FRF_OFFSET 4 #define SPI_FRF_SPI 0x0 #define SPI_FRF_SSP 0x1 #define SPI_FRF_MICROWIRE 0x2 #define SPI_FRF_RESV 0x3 #define SPI_MODE_OFFSET 6 #define SPI_SCPH_OFFSET 6 #define SPI_SCOL_OFFSET 7 #define SPI_TMOD_OFFSET 8 #define SPI_TMOD_MASK (0x3 << SPI_TMOD_OFFSET) #define SPI_TMOD_TR 0x0 /* xmit & recv */ #define SPI_TMOD_TO 0x1 /* xmit only */ #define SPI_TMOD_RO 0x2 /* recv only */ #define SPI_TMOD_EPROMREAD 0x3 /* eeprom read mode */ #define SPI_SLVOE_OFFSET 10 #define SPI_SRL_OFFSET 11 #define SPI_CFS_OFFSET 12 #define SPI_DFS32_OFFSET 16 #define SPI_DAF_OFFSET 21 #define SPI_DAF_STANDARD 0 #define SPI_DAF_DUAL 1 #define SPI_DAF_QUAD 2 /* Bit fields in QSPI_CTRLR0 */ #define SPI_TRANS_TYPE_OFFSET 0 #define SPI_ADDR_LENGTH_OFFSET 2 #define SPI_INST_LENGTH_OFFSET 8 #define SPI_WAIT_CYCLES_OFFSET 11 /* Bit fields in SR, 7 bits */ #define SR_MASK 0x7f /* cover 7 bits */ #define SR_BUSY (1 << 0) #define SR_TF_NOT_FULL (1 << 1) #define SR_TF_EMPT (1 << 2) #define SR_RF_NOT_EMPT (1 << 3) #define SR_RF_FULL (1 << 4) #define SR_TX_ERR (1 << 5) #define SR_DCOL (1 << 6) /* Bit fields in ISR, IMR, RISR, 7 bits */ #define SPI_INT_TXEI (1 << 0) #define SPI_INT_TXOI (1 << 1) #define SPI_INT_RXUI (1 << 2) #define SPI_INT_RXOI (1 << 3) #define SPI_INT_RXFI (1 << 4) #define SPI_INT_MSTI (1 << 5) /* Bit fields in DMACR */ #define SPI_DMA_RDMAE (1 << 0) #define SPI_DMA_TDMAE (1 << 1) /* TX RX interrupt level threshold, max can be 256 */ #define SPI_INT_THRESHOLD 32 enum dw_ssi_type { SSI_MOTO_SPI = 0, SSI_TI_SSP, SSI_NS_MICROWIRE, }; struct dw_spi; struct dw_spi_dma_ops { int (*dma_init)(struct dw_spi *dws); void (*dma_exit)(struct dw_spi *dws); int (*dma_setup)(struct dw_spi *dws, struct spi_message *message); bool (*can_dma)(struct dw_spi *dws, struct spi_message *message); int (*dma_transfer)(struct dw_spi *dws, struct spi_message *message); void (*dma_stop)(struct dw_spi *dws); }; /* Slave spi_dev related */ struct chip_data { u8 cs; /* chip select pin */ u8 tmode; /* TR/TO/RO/EEPROM */ u8 type; /* SPI/SSP/MicroWire */ u8 poll_mode; /* 1 means use poll mode */ u8 enable_dma; u16 clk_div; /* baud rate divider */ u16 qspi_clk_div; u32 speed_hz; /* baud rate */ void (*cs_control)(u32 command); }; struct dw_spi { struct spi_slave slave; QueueHandle_t xfer_done; enum dw_ssi_type type; void __iomem *regs; struct clk *clk; unsigned long paddr; int irq; u32 fifo_len; /* depth of the FIFO buffer */ u32 max_freq; /* max bus freq supported */ u16 bus_num; u16 num_cs; /* supported slave numbers */ u32 cs_gpio; /* Current message transfer state info */ size_t len; void *tx; void *tx_end; void *rx; void *rx_end; u32 rxlevel; int dma_mapped; char *rx_dummy_buffer; u8 n_bytes; /* current is a 1/2 bytes op */ u32 dma_width; void (*transfer_handler)(struct dw_spi *dws); u32 current_freq; /* frequency in hz */ u32 current_qspi_freq; int xfer_ret; /* DMA info */ int dma_inited; struct dma_chan *txchan; struct dma_chan *rxchan; unsigned long dma_chan_busy; dma_addr_t dma_addr; /* phy address of the Data register */ const struct dw_spi_dma_ops *dma_ops; void *dma_tx; void *dma_rx; /* Bus interface info */ void *priv; struct chip_data *chip; }; /* * Each SPI slave device to work with dw_api controller should * has such a structure claiming its working mode (poll or PIO/DMA), * which can be save in the "controller_data" member of the * struct spi_device. */ struct dw_spi_chip { u8 poll_mode; /* 1 for controller polling mode */ u8 type; /* SPI/SSP/MicroWire */ void (*cs_control)(u32 command); }; static inline u32 dw_readl(struct dw_spi *dws, u32 offset) { return readl((u32)dws->regs + offset); } static inline void dw_writel(struct dw_spi *dws, u32 offset, u32 val) { writel(val, (u32)dws->regs + offset); } static inline u32 dw_read_io_reg(struct dw_spi *dws, u32 offset) { return dw_readl(dws, offset); } static inline void dw_write_io_reg(struct dw_spi *dws, u32 offset, u32 val) { dw_writel(dws, offset, val); } static inline void spi_enable_chip(struct dw_spi *dws, int enable) { dw_writel(dws, DW_SPI_SSIENR, (enable ? 1 : 0)); } static inline void spi_set_clk(struct dw_spi *dws, u16 div) { dw_writel(dws, DW_SPI_BAUDR, div); } /* Disable IRQ bits */ static inline void spi_mask_intr(struct dw_spi *dws, u32 mask) { u32 new_mask; new_mask = dw_readl(dws, DW_SPI_IMR) & ~mask; dw_writel(dws, DW_SPI_IMR, new_mask); } /* Enable IRQ bits */ static inline void spi_umask_intr(struct dw_spi *dws, u32 mask) { u32 new_mask; new_mask = dw_readl(dws, DW_SPI_IMR) | mask; dw_writel(dws, DW_SPI_IMR, new_mask); } /* * This does disable the SPI controller, interrupts, and re-enable the * controller back. Transmit and receive FIFO buffers are cleared when the * device is disabled. */ static inline void spi_reset_chip(struct dw_spi *dws) { spi_enable_chip(dws, 0); spi_mask_intr(dws, 0xff); spi_enable_chip(dws, 1); } /* static inline void spi_shutdown_chip(struct dw_spi *dws) { spi_enable_chip(dws, 0); spi_set_clk(dws, 0); } */ /* Return the max entries we can fill into tx fifo */ static inline u32 tx_max(struct dw_spi *dws) { u32 tx_left, tx_room, rxtx_gap; tx_left = ((u32)dws->tx_end - (u32)dws->tx) / dws->n_bytes; tx_room = dws->fifo_len - dw_readl(dws, DW_SPI_TXFLR); /* * Another concern is about the tx/rx mismatch, we * though to use (dws->fifo_len - rxflr - txflr) as * one maximum value for tx, but it doesn't cover the * data which is out of tx/rx fifo and inside the * shift registers. So a control from sw point of * view is taken. */ rxtx_gap = (((u32)dws->rx_end - (u32)dws->rx) - ((u32)dws->tx_end - (u32)dws->tx)) / dws->n_bytes; return configMIN(tx_left, configMIN(tx_room, (u32) (dws->fifo_len - rxtx_gap))); } /* Return the max entries we should read out of rx fifo */ static inline u32 rx_max(struct dw_spi *dws) { u32 rx_left = ((u32)dws->rx_end - (u32)dws->rx) / dws->n_bytes; return configMIN(rx_left, dw_readl(dws, DW_SPI_RXFLR)); } static void dw_writer(struct dw_spi *dws) { u32 max = tx_max(dws); u32 txw = 0; while (max--) { /* Set the tx word if the transfer's original "tx" is not null */ if ((u32)dws->tx_end - dws->len) { if (dws->n_bytes == 1) txw = *(u8 *)(dws->tx); else if (dws->n_bytes == 2) txw = *(u16 *)(dws->tx); else txw = *(u32 *)(dws->tx); } dw_write_io_reg(dws, DW_SPI_DR, txw); dws->tx = (u8*)dws->tx + dws->n_bytes; } } static void dw_reader(struct dw_spi *dws) { u32 max = rx_max(dws); u32 rxw; while (max--) { rxw = dw_read_io_reg(dws, DW_SPI_DR); /* Care rx only if the transfer's original "rx" is not null */ if ((u32)dws->rx_end - dws->len) { if (dws->n_bytes == 1) *(u8 *)(dws->rx) = rxw; else if (dws->n_bytes == 2) *(u16 *)(dws->rx) = rxw; else *(u32 *)(dws->rx) = rxw; } dws->rx = (u8*)dws->rx + dws->n_bytes; } } static void int_error_stop(struct dw_spi *dws, const char *msg) { spi_reset_chip(dws); dev_err(&dws->master->dev, "%s\n", msg); } static void interrupt_transfer(struct dw_spi *dws) { u16 irq_status = dw_readl(dws, DW_SPI_ISR); /* Error handling */ if (irq_status & (SPI_INT_TXOI | SPI_INT_RXOI | SPI_INT_RXUI)) { dw_readl(dws, DW_SPI_ICR); int_error_stop(dws, "interrupt_transfer: fifo overrun/underrun"); xQueueSendFromISR(dws->xfer_done, NULL, 0); return; } dw_reader(dws); if (dws->rx_end == dws->rx) { spi_mask_intr(dws, SPI_INT_TXEI); xQueueSendFromISR(dws->xfer_done, NULL, 0); return; } if (irq_status & SPI_INT_TXEI) { spi_mask_intr(dws, SPI_INT_TXEI); dw_writer(dws); /* Enable TX irq always, it will be disabled when RX finished */ spi_umask_intr(dws, SPI_INT_TXEI); } return; } static void qspi_read_interrupt(struct dw_spi *dws) { u16 irq_status = dw_readl(dws, DW_SPI_ISR); //u32 rxw; //int i; /* Error handling */ if (irq_status & (SPI_INT_RXOI | SPI_INT_RXUI)) { dw_readl(dws, DW_SPI_ICR); int_error_stop(dws, "qspi_read_interrupt: fifo overrun/underrun"); xQueueSendFromISR(dws->xfer_done, NULL, 0); return; } if (irq_status & SPI_INT_RXFI) { /*for (i = 0; i < dws->rxlevel; i++) { rxw = dw_read_io_reg(dws, DW_SPI_DR); if (dws->n_bytes == 1) *(u8 *)(dws->rx) = rxw; else if (dws->n_bytes == 2) *(u16 *)(dws->rx) = rxw; else *(u32 *)(dws->rx) = rxw; dws->rx = (u8*)dws->rx + dws->n_bytes; }*/ dw_reader(dws); } if (dws->rx_end == dws->rx) { xQueueSendFromISR(dws->xfer_done, NULL, 0); return; } return; } static void dma_transfer(struct dw_spi *dws) { u16 irq_status = dw_readl(dws, DW_SPI_ISR); printf("status=0x%x.\n", irq_status); if (!irq_status) return; dw_readl(dws, DW_SPI_ICR); int_error_stop(dws, "dma_transfer: fifo overrun/underrun"); dws->xfer_ret = 1; xQueueSendFromISR(dws->xfer_done, NULL, 0); return; } static void dw_spi_irq(void *param) { struct dw_spi *dws = param; u16 irq_status = dw_readl(dws, DW_SPI_ISR) & 0x3f; if (!irq_status) return; dws->transfer_handler(dws); } /* Must be called inside pump_transfers() */ static int poll_transfer(struct dw_spi *dws) { do { dw_writer(dws); dw_reader(dws); taskYIELD(); } while (dws->rx_end > dws->rx); return 0; } static void dw_spi_chipselect(struct dw_spi *dws, int is_active) { int dev_is_lowactive = !(dws->slave.mode & SPI_CS_HIGH); if (dws->slave.mode & SPI_NO_CS) return; gpio_direction_output(dws->cs_gpio, is_active ^ dev_is_lowactive); } static int dw_spi_calculate_timeout(struct dw_spi *dws, int size) { unsigned long timeout = 0; /* Time with actual data transfer and CS change delay related to HW */ timeout = (8 + 4) * size / dws->current_freq; /* Add extra second for scheduler related activities */ timeout += 1; /* Double calculated timeout */ return pdMS_TO_TICKS(2 * timeout * MSEC_PER_SEC); } static int dw_spi_transfer_one(struct spi_slave *slave, struct spi_message *message) { struct dw_spi *dws = (struct dw_spi *)slave; struct chip_data *chip = dws->chip; u8 imask = 0; u16 txlevel = 0; u32 cr0; u32 bits_per_word = 0; unsigned long transfer_timeout; int ret = 0; chip->tmode = SPI_TMOD_TR; dws->dma_mapped = 0; dws->tx = (void *)message->send_buf; dws->tx_end = (u8*)dws->tx + message->length; dws->rx = message->recv_buf; dws->rx_end = (u8*)dws->rx + message->length; dws->len = message->length; spi_enable_chip(dws, 0); spi_set_clk(dws, chip->clk_div); if (message->cs_take) dw_spi_chipselect(dws, 1); if (message->length & 1 || (u32)dws->tx & 1 || (u32)dws->rx & 1) bits_per_word = 8; else if (message->length & 3 || (u32)dws->tx & 3 || (u32)dws->rx & 3) bits_per_word = 16; else bits_per_word = 32; //printk("len=%d, bits_per_word=%d.\n", transfer->len, bits_per_word); if (bits_per_word == 8) { dws->n_bytes = 1; dws->dma_width = DMA_BUSWIDTH_1_BYTE; } else if (bits_per_word == 16) { dws->n_bytes = 2; dws->dma_width = DMA_BUSWIDTH_2_BYTES; } else if (bits_per_word == 32) { dws->n_bytes = 4; dws->dma_width = DMA_BUSWIDTH_4_BYTES; } else { ret = -EINVAL; goto end; } /* Default SPI mode is SCPOL = 0, SCPH = 0 */ cr0 = ((bits_per_word - 1) << SPI_DFS32_OFFSET) | (chip->type << SPI_FRF_OFFSET) | ((dws->slave.mode & 3) << SPI_MODE_OFFSET) | (chip->tmode << SPI_TMOD_OFFSET); /* * Adjust transfer mode if necessary. Requires platform dependent * chipselect mechanism. */ if (chip->cs_control) { if (dws->rx && dws->tx) chip->tmode = SPI_TMOD_TR; else if (dws->rx) chip->tmode = SPI_TMOD_RO; else chip->tmode = SPI_TMOD_TO; cr0 &= ~SPI_TMOD_MASK; cr0 |= (chip->tmode << SPI_TMOD_OFFSET); } dw_writel(dws, DW_SPI_CTRL0, cr0); /* For poll mode just disable all interrupts */ spi_mask_intr(dws, 0xff); /* * Interrupt mode * we only need set the TXEI IRQ, as TX/RX always happen syncronizely */ if (dws->dma_mapped) { ret = dws->dma_ops->dma_setup(dws, message); if (ret < 0) { spi_enable_chip(dws, 1); goto end; } } else if (!chip->poll_mode) { dw_writel(dws, DW_SPI_DMACR, 0); txlevel = configMIN(dws->fifo_len / 2, dws->len / dws->n_bytes); dw_writel(dws, DW_SPI_TXFLTR, txlevel); /* Set the interrupt mask */ imask |= SPI_INT_TXEI | SPI_INT_TXOI | SPI_INT_RXUI | SPI_INT_RXOI; spi_umask_intr(dws, imask); dws->transfer_handler = interrupt_transfer; } xQueueReset(dws->xfer_done); dw_writel(dws, DW_SPI_SER, BIT(dws->slave.cs)); spi_enable_chip(dws, 1); if (dws->dma_mapped) { ret = dws->dma_ops->dma_transfer(dws, message); if (ret < 0) goto end; } if (chip->poll_mode) { ret = poll_transfer(dws); goto end; } transfer_timeout = dw_spi_calculate_timeout(dws, message->length); if (xQueueReceive(dws->xfer_done, NULL, transfer_timeout) != pdTRUE) { int_error_stop(dws, "transfer timeout"); ret = -ETIMEDOUT; goto end; } end: if (message->cs_release) dw_spi_chipselect(dws, 0); return ret; } static int dw_qspi_read(struct spi_slave *slave, struct qspi_message *qspi_message) { struct dw_spi *dws = (struct dw_spi *)slave; struct chip_data *chip = dws->chip; struct spi_message *message = (struct spi_message *)&qspi_message->message; u8 imask = 0; u16 rxlevel = 0; u32 cr0, qspi_cr0, ndf; u32 bits_per_word = 0; u32 addr; unsigned long transfer_timeout; u32 xfer_len = 0; int ret = 0; chip->tmode = SPI_TMOD_RO; if (message->length & 1) bits_per_word = 8; else if (message->length & 3) bits_per_word = 16; else bits_per_word = 32; if (bits_per_word == 8) { dws->n_bytes = 1; dws->dma_width = DMA_BUSWIDTH_1_BYTE; } else if (bits_per_word == 16) { dws->n_bytes = 2; dws->dma_width = DMA_BUSWIDTH_2_BYTES; } else if (bits_per_word == 32) { dws->n_bytes = 4; dws->dma_width = DMA_BUSWIDTH_4_BYTES; } else { ret = -EINVAL; goto end; } xfer_continue: ndf = (message->length - xfer_len) / dws->n_bytes - 1; if (ndf > 0xffff) ndf = 0xffff; dws->dma_mapped = 1; dws->xfer_ret = 0; dws->rx = (u8*)message->recv_buf + xfer_len; dws->len = (ndf + 1) * dws->n_bytes; dws->rx_end = (u8*)dws->rx + dws->len; spi_enable_chip(dws, 0); spi_set_clk(dws, chip->qspi_clk_div); if (message->cs_take) dw_spi_chipselect(dws, 1); /* Default SPI mode is SCPOL = 0, SCPH = 0 */ cr0 = ((bits_per_word - 1) << SPI_DFS32_OFFSET) | (chip->type << SPI_FRF_OFFSET) | ((dws->slave.mode & 3) << SPI_MODE_OFFSET) | (chip->tmode << SPI_TMOD_OFFSET); if (qspi_message->qspi_data_lines == 4) cr0 |= SPI_DAF_QUAD << SPI_DAF_OFFSET; else if (qspi_message->qspi_data_lines == 2) cr0 |= SPI_DAF_DUAL << SPI_DAF_OFFSET; dw_writel(dws, DW_SPI_CTRL0, cr0); dw_writel(dws, DW_SPI_CTRL1, ndf); qspi_cr0 = ((qspi_message->dummy_cycles & 0xf) << SPI_WAIT_CYCLES_OFFSET) | (2 << SPI_INST_LENGTH_OFFSET) | ((qspi_message->address.size >> 2) << SPI_ADDR_LENGTH_OFFSET); if (qspi_message->instruction.qspi_lines == 1 && qspi_message->address.qspi_lines > 1) qspi_cr0 |= 1; else if (qspi_message->instruction.qspi_lines > 1 && qspi_message->address.qspi_lines > 1) qspi_cr0 |= 2; dw_writel(dws, DW_SPI_QSPI_CTRL0, qspi_cr0); /* For poll mode just disable all interrupts */ spi_mask_intr(dws, 0xff); /* * Interrupt mode * we only need set the TXEI IRQ, as TX/RX always happen syncronizely */ if (dws->dma_mapped) { ret = dws->dma_ops->dma_setup(dws, message); if (ret < 0) { spi_enable_chip(dws, 1); goto end; } } else if (!chip->poll_mode) { dw_writel(dws, DW_SPI_DMACR, 0); rxlevel = 1 << __ffs(dws->len / dws->n_bytes); while (rxlevel > dws->fifo_len / 2) rxlevel >>= 1; dws->rxlevel = rxlevel; dw_writel(dws, DW_SPI_RXFLTR, rxlevel - 1); /* Set the interrupt mask */ imask |= SPI_INT_RXUI | SPI_INT_RXOI | SPI_INT_RXFI; spi_umask_intr(dws, imask); dws->transfer_handler = qspi_read_interrupt; } xQueueReset(dws->xfer_done); dw_writel(dws, DW_SPI_SER, BIT(dws->slave.cs)); spi_enable_chip(dws, 1); if (dws->dma_mapped) { ret = dws->dma_ops->dma_transfer(dws, message); if (ret < 0) goto end; } addr = qspi_message->address.content + xfer_len; if (qspi_message->address.size == 32) { addr = ((addr >> 24) & 0xff) | (((addr >> 16) & 0xff) << 8) | (((addr >> 8) & 0xff) << 16) | ((addr & 0xff) << 24); } else { addr = ((addr >> 16) & 0xff) | (((addr >> 8) & 0xff) << 8) | ((addr & 0xff) << 16); } dw_write_io_reg(dws, DW_SPI_DR, qspi_message->instruction.content); dw_write_io_reg(dws, DW_SPI_DR, addr); transfer_timeout = dw_spi_calculate_timeout(dws, message->length); if (xQueueReceive(dws->xfer_done, NULL, transfer_timeout) != pdTRUE) { int_error_stop(dws, "transfer timeout"); ret = -ETIMEDOUT; if (dws->dma_mapped) dma_stop_channel(dws->dma_rx); goto end; } if (dws->xfer_ret) { dws->xfer_ret = 0; ret = -1; if (dws->dma_mapped) dma_stop_channel(dws->dma_rx); goto end; } if (dws->dma_mapped) { /* Invalidate cache after dma read, rx and len must align to cacheline(32bytes) */ portDISABLE_INTERRUPTS(); if (dws->rx_dummy_buffer) CP15_invalidate_dcache_for_dma((uint32_t)dws->rx_dummy_buffer, (uint32_t)dws->rx_dummy_buffer + dws->len); else CP15_invalidate_dcache_for_dma((uint32_t)dws->rx, (uint32_t)dws->rx + dws->len); portENABLE_INTERRUPTS(); if (dws->rx_dummy_buffer) { memcpy(dws->rx, dws->rx_dummy_buffer, dws->len); vPortFree(dws->rx_dummy_buffer); dws->rx_dummy_buffer = NULL; } } dma_stop_channel(dws->dma_rx); xfer_len += dws->len; if (xfer_len < message->length) { if (message->cs_release) dw_spi_chipselect(dws, 0); udelay(1); goto xfer_continue; } end: if (message->cs_release) dw_spi_chipselect(dws, 0); return ret; } /* This may be called twice for each spi dev */ int dw_spi_setup(struct spi_slave *slave, struct spi_configuration *configuration) { struct dw_spi *dws = (struct dw_spi *)slave; struct chip_data *chip; /* Only alloc on first setup */ chip = dws->chip; if (!chip) { chip = pvPortMalloc(sizeof(struct chip_data)); if (!chip) return -ENOMEM; memset(chip, 0, sizeof(struct chip_data)); dws->chip = chip; } dws->slave.mode = configuration->mode; chip->clk_div = (DIV_ROUND_UP(dws->max_freq, configuration->max_hz) + 1) & 0xfffe; chip->qspi_clk_div = (DIV_ROUND_UP(dws->max_freq, configuration->qspi_max_hz) + 1) & 0xfffe; dws->current_freq = dws->max_freq / chip->clk_div; dws->current_qspi_freq = dws->max_freq / chip->qspi_clk_div; printf("spi max_freq %u, current freq %u, qspi_freq %u.\n", dws->max_freq, dws->current_freq, dws->current_qspi_freq); gpio_direction_output(dws->cs_gpio, !(dws->slave.mode & SPI_CS_HIGH)); return 0; } /* Restart the controller, disable all interrupts, clean rx fifo */ static void spi_hw_init(struct dw_spi *dws) { spi_reset_chip(dws); /* * Try to detect the FIFO depth if not set by interface driver, * the depth could be from 2 to 256 from HW spec */ if (!dws->fifo_len) { u32 fifo; for (fifo = 1; fifo < 256; fifo++) { dw_writel(dws, DW_SPI_TXFLTR, fifo); if (fifo != dw_readl(dws, DW_SPI_TXFLTR)) break; } dw_writel(dws, DW_SPI_TXFLTR, 0); dws->fifo_len = (fifo == 1) ? 0 : fifo; dev_dbg(dev, "Detected FIFO size: %u bytes\n", dws->fifo_len); } } static int dw_spi_add_host(struct dw_spi *dws) { int ret; BUG_ON(dws == NULL); dws->type = SSI_MOTO_SPI; dws->dma_inited = 0; dws->dma_addr = (dma_addr_t)(dws->paddr + DW_SPI_DR); ret = request_irq(dws->irq, 0, dw_spi_irq, dws); if (ret < 0) { dev_err(dev, "can not get IRQ\n"); goto err_exit; } /* Basic HW init */ spi_hw_init(dws); if (dws->dma_ops && dws->dma_ops->dma_init) { ret = dws->dma_ops->dma_init(dws); if (ret) { dev_warn(dev, "DMA init failed\n"); dws->dma_inited = 0; dws->dma_mapped = 1; } } return 0; err_exit: return ret; } /* static void dw_spi_remove_host(struct dw_spi *dws) { if (dws->dma_ops && dws->dma_ops->dma_exit) dws->dma_ops->dma_exit(dws); spi_shutdown_chip(dws); free_irq(dws->irq); } */ void dwspi_jedec252_reset(void) { int i; int si = 0; gpio_direction_output(SPI0_CS0_GPIO, 1); gpio_direction_output(SPI0_IO0_GPIO, 1); udelay(300); for (i = 0; i < 4; i++) { gpio_direction_output(SPI0_CS0_GPIO, 0); gpio_direction_output(SPI0_IO0_GPIO, si); si = !si; udelay(300); gpio_direction_output(SPI0_CS0_GPIO, 1); udelay(300); } } static void dw_spi_dma_complete_callback(void *param, unsigned int mask) { struct dw_spi *dws = param; xQueueSendFromISR(dws->xfer_done, NULL, 0); } static int dw_spi_dma_init(struct dw_spi *dws) { dws->dma_rx = dma_request_channel(SPI0_RX_DMA_CH); if (!dws->dma_rx) { printf("dwspi request dma channel fail.\n"); return -1; } return 0; } static int dw_spi_dma_setup(struct dw_spi *dws, struct spi_message *message) { dws->rxlevel = dws->fifo_len / 4; dw_writel(dws, DW_SPI_DMARDLR, dws->rxlevel - 1); dw_writel(dws, DW_SPI_DMACR, SPI_DMA_RDMAE); /* Set the interrupt mask */ spi_umask_intr(dws, SPI_INT_RXUI | SPI_INT_RXOI); dws->transfer_handler = dma_transfer; return 0; } static int dw_spi_dma_transfer(struct dw_spi *dws, struct spi_message *message) { struct dma_config cfg = {0}; int ret; /* Set external dma config: burst size, burst width */ cfg.dst_addr_width = dws->dma_width; cfg.src_addr_width = dws->dma_width; /* Match burst msize with external dma config */ cfg.dst_maxburst = dws->rxlevel; cfg.src_maxburst = dws->rxlevel; cfg.transfer_size = dws->len; cfg.direction = DMA_DEV_TO_MEM; cfg.src_addr = REGS_SPI0_BASE + DW_SPI_DR; //if (((u32)dws->rx/* | dws->len*/) & (ARCH_DMA_MINALIGN - 1)) { if ((u32)dws->rx & 31) { dws->rx_dummy_buffer = pvPortMalloc(dws->len); if (!dws->rx_dummy_buffer) return -ENOMEM; cfg.dst_addr = (u32)dws->rx_dummy_buffer; } else { cfg.dst_addr = (u32)dws->rx; } /* Invalidate cache before read */ CP15_flush_dcache_for_dma(cfg.dst_addr, cfg.dst_addr + dws->len); cfg.src_id = SPI0_RX; ret = dma_config_channel(dws->dma_rx, &cfg); if (ret) { printf("dwspi failed to config dma.\n"); return -EBUSY; } /* Set dw_spi_dma_complete_callback as callback */ dma_register_complete_callback(dws->dma_rx, dw_spi_dma_complete_callback, dws); dma_start_channel(dws->dma_rx); return 0; } static const struct dw_spi_dma_ops dw_dma_ops = { .dma_init = dw_spi_dma_init, .dma_setup = dw_spi_dma_setup, .dma_transfer = dw_spi_dma_transfer, }; int dwspi_init(void) { struct dw_spi *dws; int ret; dwspi_jedec252_reset(); pinctrl_set_group(PGRP_SPI0); dws = pvPortMalloc(sizeof(struct dw_spi)); if (!dws) return -ENOMEM; memset(dws, 0, sizeof(struct dw_spi)); dws->xfer_done = xQueueCreate(1, 0); dws->regs = (void __iomem *)REGS_SPI0_BASE; dws->irq = SPI0_IRQn; dws->bus_num = 0; dws->max_freq = ulClkGetRate(CLK_SPI0); vClkEnable(CLK_SPI0); dws->num_cs = 1; dws->cs_gpio = SPI0_CS0_GPIO; dws->slave.mode = SPI_MODE_0; dws->slave.cs = 0; dws->slave.xfer = dw_spi_transfer_one; dws->slave.qspi_read = dw_qspi_read; dws->slave.configure = dw_spi_setup; dws->dma_ops = &dw_dma_ops; ret = dw_spi_add_host(dws); if (ret) goto out; strncpy(dws->slave.name, "spi0", 16); spi_add_slave(&dws->slave); return 0; out: return ret; }