/* ********************************************************************** Copyright (c)2007 Arkmicro Technologies Inc. All Rights Reserved Filename: sdmmc.c Version : 1.0 Date : 2015.12.01 Abstract: ark1680 soc sd driver History : *********************************************************************** */ #include #include "typedef.h" #include "amt630h.h" #include "sdmmc.h" #include "UartPrint.h" #include "timer.h" #include "fs/ff.h" #include "fs/diskio.h" #include "crc32.h" #include "sysinfo.h" #define SDMMC_BUS_CLK CLK_24MHZ #define INIT_CLOCK 400000 #define SD_TRUE 1 #define SD_FAULSE 0 #define TIMEOUT_SD 10000 #if SD_DEBUG #define DEBUG_MSG(fmt, ...) printf(fmt, __VA_ARGS__) #else #define DEBUG_MSG(fmt, ...) #endif static UINT32 lg_ulChip; static UINT32 SDHC_Controls[1] = {SDHC0_BASE}; static UINT32 mmc_voltages = MMC_VDD_32_33 | MMC_VDD_33_34 | MMC_VDD_165_195; #define READ_INT32(r) *((volatile UINT32 *)(r)) #define WRITE_INT32(r,d) (*((volatile UINT32 *)(r)) = d) #define SDHC_REG_READ32(c,r)\ (READ_INT32(SDHC_Controls[(c)] + (r))) #define SDHC_REG_WRITE32(c,r,v)\ (WRITE_INT32(SDHC_Controls[(c)] + (r),(v))) #define SDMMC_CTRL 0x00 #define SDMMC_PWREN 0x04 #define SDMMC_CLKDIV 0x08 #define SDMMC_CLKSRC 0x0C #define SDMMC_CLKENA 0x10 #define SDMMC_TMOUT 0x14 #define SDMMC_CTYPE 0x18 #define SDMMC_BLKSIZ 0x1C #define SDMMC_BYTCNT 0x20 #define SDMMC_INTMASK 0x24 #define SDMMC_CMDARG 0x28 #define SDMMC_CMD 0x2C #define SDMMC_RESP0 0x30 #define SDMMC_RESP1 0x34 #define SDMMC_RESP2 0x38 #define SDMMC_RESP3 0x3C #define SDMMC_MINTSTS 0x40 #define SDMMC_RINTSTS 0x44 #define SDMMC_STATUS 0x48 #define SDMMC_FIFOTH 0x4C #define SDMMC_CDETECT 0x50 #define SDMMC_WRTPRT 0x54 #define SDMMC_GPIO 0x58 #define SDMMC_TCBCNT 0x5C #define SDMMC_TBBCNT 0x60 #define SDMMC_DEBNCE 0x64 #define SDMMC_USRID 0x68 #define SDMMC_VERID 0x6C #define SDMMC_HCON 0x70 #define SDMMC_UHS_REG 0x74 #define SDMMC_BMOD 0x80 #define SDMMC_PLDMND 0x84 #define SDMMC_DBADDR 0x88 #define SDMMC_IDSTS 0x8C #define SDMMC_IDINTEN 0x90 #define SDMMC_DATA 0x200 #define SDMMC_FIFO (SDHC_Controls[lg_ulChip] + 0x200) /* Interrupt Mask register */ #define SDMMC_INTMSK_ALL 0xffffffff #define SDMMC_INTMSK_RE (1 << 1) #define SDMMC_INTMSK_CDONE (1 << 2) #define SDMMC_INTMSK_DTO (1 << 3) #define SDMMC_INTMSK_TXDR (1 << 4) #define SDMMC_INTMSK_RXDR (1 << 5) #define SDMMC_INTMSK_DCRC (1 << 7) #define SDMMC_INTMSK_RTO (1 << 8) #define SDMMC_INTMSK_DRTO (1 << 9) #define SDMMC_INTMSK_HTO (1 << 10) #define SDMMC_INTMSK_FRUN (1 << 11) #define SDMMC_INTMSK_HLE (1 << 12) #define SDMMC_INTMSK_SBE (1 << 13) #define SDMMC_INTMSK_ACD (1 << 14) #define SDMMC_INTMSK_EBE (1 << 15) /* Raw interrupt Regsiter */ #define SDMMC_DATA_ERR (SDMMC_INTMSK_EBE | SDMMC_INTMSK_SBE | SDMMC_INTMSK_HLE |\ SDMMC_INTMSK_FRUN | SDMMC_INTMSK_EBE | SDMMC_INTMSK_DCRC) #define SDMMC_DATA_TOUT (SDMMC_INTMSK_HTO | SDMMC_INTMSK_DRTO) /* CTRL register */ #define SDMMC_CTRL_RESET (1 << 0) #define SDMMC_CTRL_FIFO_RESET (1 << 1) #define SDMMC_CTRL_DMA_RESET (1 << 2) #define SDMMC_DMA_EN (1 << 5) #define SDMMC_CTRL_SEND_AS_CCSD (1 << 10) #define SDMMC_IDMAC_EN (1 << 25) #define SDMMC_RESET_ALL (SDMMC_CTRL_RESET | SDMMC_CTRL_FIFO_RESET |\ SDMMC_CTRL_DMA_RESET) /* CMD register */ #define SDMMC_CMD_RESP_EXP (1 << 6) #define SDMMC_CMD_RESP_LENGTH (1 << 7) #define SDMMC_CMD_CHECK_CRC (1 << 8) #define SDMMC_CMD_DATA_EXP (1 << 9) #define SDMMC_CMD_RW (1 << 10) #define SDMMC_CMD_SEND_STOP (1 << 12) #define SDMMC_CMD_ABORT_STOP (1 << 14) #define SDMMC_CMD_PRV_DAT_WAIT (1 << 13) #define SDMMC_CMD_UPD_CLK (1 << 21) #define SDMMC_CMD_USE_HOLD_REG (1 << 29) #define SDMMC_CMD_START (1UL << 31) /* CLKENA register */ #define SDMMC_CLKEN_ENABLE (1 << 0) #define SDMMC_CLKEN_LOW_PWR (1 << 16) /* Card-type registe */ #define SDMMC_CTYPE_1BIT 0 #define SDMMC_CTYPE_4BIT (1 << 0) #define SDMMC_CTYPE_8BIT (1 << 16) /* Status Register */ #define SDMMC_BUSY (1 << 9) #define SDMMC_FIFO_MASK 0x1fff #define SDMMC_FIFO_SHIFT 17 /* FIFOTH Register */ #define MSIZE(x) ((x) << 28) #define RX_WMARK(x) ((x) << 16) #define TX_WMARK(x) (x) #define RX_WMARK_SHIFT 16 #define RX_WMARK_MASK (0xfff << RX_WMARK_SHIFT) #define fifo_tran_over() do{}while (!(SDHC_REG_READ32(lg_ulChip,SDMMC_STATUS) & 0x00000004)) #define confi_fifo_full() do{}while (!(SDHC_REG_READ32(lg_ulChip,SDMMC_STATUS) & 0x00000008)) //#define confi_fifo_unempty() do{}while ((rSTATUS & 0x00000004)) /* frequency bases */ /* divided by 10 to be nice to platforms without floating point */ static const int fbase[] = { 10000, 100000, 1000000, 10000000, }; /* Multiplier values for TRAN_SPEED. Multiplied by 10 to be nice * to platforms without floating point. */ static const UINT8 multipliers[] = { 0, /* reserved */ 10, 12, 13, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 70, 80, }; //extern volatile FS_CARD SDCard; static UINT32 fifoth_val; static UINT32 sd_ocr; static UINT32 sd_cid[4]; static UINT32 sd_csd[4]; static UINT32 sd_rca; static UINT32 read_bl_len; static UINT32 write_bl_len; static UINT32 erase_grp_size; static UINT64 capacity_user; typedef enum {MMC, SD}CARDTYPE; static CARDTYPE CardType = SD; // 1 sd card, 0 means MMC static enum {Ver0, Ver1, Ver2} Spec = Ver1; static enum {Standard, High} Capacity = Standard; //static INT8 *sd_spec[3]={"1.0 & 1.01", "1.1", "2.0"}; //static INT8 *mmc_spec[5]={"1.0-1.2", "1.4", "2.0-2.2","3.1-3.2-3.31","4.x"}; //static UINT8 SD_SPEC; //static UINT8 MMC_SPEC; static UINT32 g_MatchSdVcc = 1; #define SDMMC_SECTOR_SIZE 512 static void select_sd_pad(UINT32 ulChip) { UINT32 val; UINT32 regval; val = rSYS_BOOT_SAMPLE; val = (val>>2)&0x1; if(val == 1) { /*sd0 128pin*/ regval = rSYS_PAD_CTRL01; regval &= ~((0x3<<12)|(0x3<<10)|(0x3<<8)|(0x3<<6)|(0x3<<4)|(0x3<<2)|(0x3<<0)); regval |= ((0x1<<12)|(0x1<<10)|(0x1<<8)|(0x1<<6)|(0x1<<4)|(0x1<<2)|(0x1<<0)); rSYS_PAD_CTRL01 = regval; regval = rSYS_PAD_CTRL07; regval &= ~((0x1<<26)|(0x1<<25)|(0x1<<24)|(0x1<<2)|(0x1<<1)|(0x1<<0)); rSYS_PAD_CTRL07 = regval; } else { /*sd0 96pin*/ regval = rSYS_PAD_CTRL01; regval &= ~((0x3<<20)|(0x3<<18)|(0x3<<16)|(0x3<<14)); regval |= ((0x3<<20)|(0x3<<18)|(0x3<<16)|(0x3<<14)); rSYS_PAD_CTRL01 = regval; regval = rSYS_PAD_CTRL02; regval &= ~((0x3<<28)|(0x3<<26)|(0x3<<24)); regval |= ((0x2<<28)|(0x2<<26)|(0x2<<24)); rSYS_PAD_CTRL02 = regval; regval = rSYS_PAD_CTRL07; regval &= ~((0x1<<31)|(0x1<<26)|(0x1<<25)|(0x1<<24)); regval |= (0x1<<31)|(0x1<<26)|(0x1<<25)|(0x1<<24); rSYS_PAD_CTRL07 = regval; } // rSYS_SDMMC_CLK_CFG |= (1<<6); } static int sdmmc_wait_reset(UINT32 value) { unsigned long timeout = 1000; UINT32 ctrl; SDHC_REG_WRITE32(lg_ulChip, SDMMC_CTRL, value); while (timeout--) { ctrl = SDHC_REG_READ32(lg_ulChip, SDMMC_CTRL); if (!(ctrl & SDMMC_RESET_ALL)) return -1; } return 0; } static int sdmmc_data_transfer(struct mmc_data *data) { int ret = 0; UINT32 timeout = 240000; UINT32 mask, size, i, len = 0; UINT32 *buf = NULL; ULONG start = get_timer(0); UINT32 fifo_depth = (((fifoth_val & RX_WMARK_MASK) >> RX_WMARK_SHIFT) + 1) * 2; size = data->blocksize * data->blocks / 4; if (data->flags == MMC_DATA_READ) buf = (unsigned int *)data->dest; else buf = (unsigned int *)data->src; for (;;) { mask = SDHC_REG_READ32(lg_ulChip, SDMMC_RINTSTS); /* Error during data transfer. */ if (mask & (SDMMC_DATA_ERR | SDMMC_DATA_TOUT)) { DEBUG_MSG("%s: DATA ERROR!\n", __func__); ret = -1; break; } if (size) { len = 0; if (data->flags == MMC_DATA_READ && (mask & SDMMC_INTMSK_RXDR)) { while (size) { len = SDHC_REG_READ32(lg_ulChip, SDMMC_STATUS); len = (len >> SDMMC_FIFO_SHIFT) & SDMMC_FIFO_MASK; len = min(size, len); for (i = 0; i < len; i++) *buf++ = SDHC_REG_READ32(lg_ulChip, SDMMC_DATA); size = size > len ? (size - len) : 0; } SDHC_REG_WRITE32(lg_ulChip, SDMMC_RINTSTS, SDMMC_INTMSK_RXDR); } else if (data->flags == MMC_DATA_WRITE && (mask & SDMMC_INTMSK_TXDR)) { while (size) { len = SDHC_REG_READ32(lg_ulChip, SDMMC_STATUS); len = fifo_depth - ((len >> SDMMC_FIFO_SHIFT) & SDMMC_FIFO_MASK); len = min(size, len); for (i = 0; i < len; i++) SDHC_REG_WRITE32(lg_ulChip, SDMMC_DATA, *buf++); size = size > len ? (size - len) : 0; } SDHC_REG_WRITE32(lg_ulChip, SDMMC_RINTSTS, SDMMC_INTMSK_TXDR); } } /* Data arrived correctly. */ if (mask & SDMMC_INTMSK_DTO) { ret = 0; break; } /* Check for timeout. */ if (get_timer(start) > timeout) { DEBUG_MSG("%s: Timeout waiting for data!\n", __func__); ret = -1; break; } } SDHC_REG_WRITE32(lg_ulChip, SDMMC_RINTSTS, mask); return ret; } static int sdmmc_set_transfer_mode(struct mmc_data *data) { unsigned long mode; mode = SDMMC_CMD_DATA_EXP; if (data->flags & MMC_DATA_WRITE) mode |= SDMMC_CMD_RW; return mode; } static int mmc_send_cmd(struct mmc_cmd *cmd, struct mmc_data *data) { int ret = 0, flags = 0, i; unsigned int timeout = 500; UINT32 retry = 100000; UINT32 mask; ULONG start = get_timer(0); while (SDHC_REG_READ32(lg_ulChip, SDMMC_STATUS) & SDMMC_BUSY) { if (get_timer(start) > timeout) { DEBUG_MSG("%s: Timeout on data busy\n", __func__); return SDMMC_RW_CMDTIMEROUT; } } SDHC_REG_WRITE32(lg_ulChip, SDMMC_RINTSTS, SDMMC_INTMSK_ALL); if (data) { SDHC_REG_WRITE32(lg_ulChip, SDMMC_BLKSIZ, data->blocksize); SDHC_REG_WRITE32(lg_ulChip, SDMMC_BYTCNT, data->blocksize * data->blocks); sdmmc_wait_reset(SDMMC_CTRL_FIFO_RESET); } SDHC_REG_WRITE32(lg_ulChip, SDMMC_CMDARG, cmd->cmdarg); if (data) flags = sdmmc_set_transfer_mode(data); if ((cmd->resp_type & MMC_RSP_136) && (cmd->resp_type & MMC_RSP_BUSY)) return -1; if (cmd->cmdidx == MMC_CMD_STOP_TRANSMISSION) flags |= SDMMC_CMD_ABORT_STOP; else flags |= SDMMC_CMD_PRV_DAT_WAIT; if (cmd->resp_type & MMC_RSP_PRESENT) { flags |= SDMMC_CMD_RESP_EXP; if (cmd->resp_type & MMC_RSP_136) flags |= SDMMC_CMD_RESP_LENGTH; } if (cmd->resp_type & MMC_RSP_CRC) flags |= SDMMC_CMD_CHECK_CRC; flags |= (cmd->cmdidx | SDMMC_CMD_START | SDMMC_CMD_USE_HOLD_REG); DEBUG_MSG("Sending CMD%d\n",cmd->cmdidx); SDHC_REG_WRITE32(lg_ulChip, SDMMC_CMD, flags); for (i = 0; i < retry; i++) { mask = SDHC_REG_READ32(lg_ulChip, SDMMC_RINTSTS); if (mask & SDMMC_INTMSK_CDONE) { if (!data) SDHC_REG_WRITE32(lg_ulChip, SDMMC_RINTSTS, mask); break; } } if (i == retry) { DEBUG_MSG("%s: Timeout.\n", __func__); return SDMMC_RW_CMDTIMEROUT; } if (mask & SDMMC_INTMSK_RTO) { /* * Timeout here is not necessarily fatal. (e)MMC cards * will splat here when they receive CMD55 as they do * not support this command and that is exactly the way * to tell them apart from SD cards. Thus, this output * below shall be debug(). eMMC cards also do not favor * CMD8, please keep that in mind. */ DEBUG_MSG("%s: Response Timeout.\n", __func__); return SDMMC_RW_CMDTIMEROUT; } else if (mask & SDMMC_INTMSK_RE) { DEBUG_MSG("%s: Response Error.\n", __func__); return -1; } if (cmd->resp_type & MMC_RSP_PRESENT) { if (cmd->resp_type & MMC_RSP_136) { cmd->response[0] = SDHC_REG_READ32(lg_ulChip, SDMMC_RESP3); cmd->response[1] = SDHC_REG_READ32(lg_ulChip, SDMMC_RESP2); cmd->response[2] = SDHC_REG_READ32(lg_ulChip, SDMMC_RESP1); cmd->response[3] = SDHC_REG_READ32(lg_ulChip, SDMMC_RESP0); } else { cmd->response[0] = SDHC_REG_READ32(lg_ulChip, SDMMC_RESP0); } } if (data) { ret = sdmmc_data_transfer(data); } udelay(100); return ret; } /* static void GetCardInfo(INT32 *CID, CARDTYPE ct) { UINT16 Year; UINT8 Month; UINT8 CardName[7]; UINT8 RevisionN; UINT8 RevisionM; if(ct== MMC) { Month = (UINT8)((CID[0]&0x0000f000)>>12); Year = (unsigned long)((CID[0]&0x00000f00)>>8)+1997; RevisionN = (UINT8)((CID[1]&0x00f00000)>>20); RevisionM = (UINT8)((CID[1]&0x000f0000)>>16); CardName[0] = (UINT8)(CID[3]&0x000000ff); CardName[1] = (UINT8)((CID[2]&0xff000000)>>24); CardName[2] = (UINT8)((CID[2]&0x00ff0000)>>16); CardName[3] = (UINT8)((CID[2]&0x0000ff00)>>8); CardName[4] = (UINT8)(CID[2]&0x000000ff); CardName[5] = (UINT8)((CID[1]&0xff000000)>>24); CardName[6] = '\0'; DEBUG_MSG("Product Name : %s\n", CardName); DEBUG_MSG("Product revision : %d.%d\n", RevisionN, RevisionM); DEBUG_MSG("Manufacturing date %d-%d\n", Month, Year); } else { Month = (UINT8)((CID[0]&0x00000f00)>>8); Year = (unsigned long)((CID[0]&0x000ff000)>>12)+2000; RevisionN = (UINT8)((CID[1]&0xf0000000)>>28); RevisionM = (UINT8)((CID[1]&0x0f00000)>>24); CardName[0] = (UINT8)(CID[3]&0x000000ff); CardName[1] = (UINT8)((CID[2]&0xff000000)>>24); CardName[2] = (UINT8)((CID[2]&0x00ff0000)>>16); CardName[3] = (UINT8)((CID[2]&0x0000ff00)>>8); CardName[4] = (UINT8)(CID[2]&0x000000ff); CardName[5] = '\0'; DEBUG_MSG("Product Name : %s\n", CardName); DEBUG_MSG("Product revision : %d.%d\n", RevisionN, RevisionM); DEBUG_MSG("Manufacturing date %d-%d\n", Month, Year); } } */ /* static UINT8 GetSD_SPEC(UINT32 *scr) { UINT8 ss; ss=(UINT8)(scr[0]&0x0000000f); return ss; } static UINT8 GetMMC_SPEC(void) { UINT8 ss; ss = (sd_csd[3]>>26)&0x0000000f; return ss; } */ INT32 data_tran_over(void) { INT32 count_sd = 0; INT32 tt; do { count_sd++; if(count_sd > TIMEOUT_SD) return -1; //tt = rSDMMC_RINTSTS; //Command done tt = SDHC_REG_READ32(lg_ulChip, SDMMC_RINTSTS); }while (!(tt & 0x00000008)); if((tt&0xBFC2) != 0) { DEBUG_MSG("This rSDMMC_RINTSTS = 0x%x\n", tt); //rSDMMC_RINTSTS = 0x0000ffff; SDHC_REG_WRITE32(lg_ulChip, SDMMC_RINTSTS, 0x0000ffff); return -1; } //rSDMMC_RINTSTS = 0x0000ffff; SDHC_REG_WRITE32(lg_ulChip, SDMMC_RINTSTS, 0x0000ffff); return 0; // 0 means successful } static INT32 mmc_go_idle(void) { struct mmc_cmd cmd; int err; udelay(1000); cmd.cmdidx = MMC_CMD_GO_IDLE_STATE; cmd.cmdarg = 0; cmd.resp_type = MMC_RSP_NONE; err = mmc_send_cmd(&cmd, NULL); if (err) return err; udelay(2000); return 0; } static int mmc_set_blocklen(int len) { struct mmc_cmd cmd; int err; cmd.cmdidx = MMC_CMD_SET_BLOCKLEN; cmd.resp_type = MMC_RSP_R1; cmd.cmdarg = len; err = mmc_send_cmd(&cmd, NULL); return err; } static int sd_select_bus_width(int w) { int err; struct mmc_cmd cmd; if ((w != 4) && (w != 1)) return -1; cmd.cmdidx = MMC_CMD_APP_CMD; cmd.resp_type = MMC_RSP_R1; cmd.cmdarg = sd_rca << 16; err = mmc_send_cmd(&cmd, NULL); if (err) return err; cmd.cmdidx = SD_CMD_APP_SET_BUS_WIDTH; cmd.resp_type = MMC_RSP_R1; if (w == 4) cmd.cmdarg = 2; else if (w == 1) cmd.cmdarg = 0; err = mmc_send_cmd(&cmd, NULL); if (err) return err; return 0; } /* static UINT8 get_width(UINT32 *scr) { if((scr[0]&0x00000f00) == 0x00000500) return 4; else return 1; } */ static int sdmmc_setup_bus(UINT32 freq) { UINT32 div, status; int timeout = 10000; unsigned long sclk = SDMMC_BUS_CLK; div = sclk / freq; if (sclk % freq && sclk > freq) div += 1; div = (sclk != freq) ? DIV_ROUND_UP(div, 2) : 0; #if 0 if (sclk == freq) div = 0; /* bypass mode */ else div = DIV_ROUND_UP(sclk, 2 * freq); #endif SDHC_REG_WRITE32(lg_ulChip, SDMMC_CLKENA, 0); SDHC_REG_WRITE32(lg_ulChip, SDMMC_CLKSRC, 0); SDHC_REG_WRITE32(lg_ulChip, SDMMC_CLKDIV, div); SDHC_REG_WRITE32(lg_ulChip, SDMMC_CMD, SDMMC_CMD_PRV_DAT_WAIT | SDMMC_CMD_UPD_CLK | SDMMC_CMD_START); do { status = SDHC_REG_READ32(lg_ulChip, SDMMC_CMD); if (timeout-- < 0) { DEBUG_MSG("%s: Timeout!\n", __func__); return -1; } } while (status & SDMMC_CMD_START); SDHC_REG_WRITE32(lg_ulChip, SDMMC_CLKENA, SDMMC_CLKEN_ENABLE | SDMMC_CLKEN_LOW_PWR); SDHC_REG_WRITE32(lg_ulChip, SDMMC_CMD, SDMMC_CMD_PRV_DAT_WAIT | SDMMC_CMD_UPD_CLK | SDMMC_CMD_START); timeout = 10000; do { status = SDHC_REG_READ32(lg_ulChip, SDMMC_CMD); if (timeout-- < 0) { DEBUG_MSG("%s: Timeout!\n", __func__); return -1; } } while (status & SDMMC_CMD_START); return 0; } static int sdmmc_hw_init() { UINT32 fifo_size; SDHC_REG_WRITE32(lg_ulChip, SDMMC_PWREN, 1); if (!sdmmc_wait_reset(SDMMC_RESET_ALL)) { DEBUG_MSG("%s[%d] Fail-reset!!\n", __func__, __LINE__); return -1; } /* Enumerate at 400KHz */ sdmmc_setup_bus(INIT_CLOCK); SDHC_REG_WRITE32(lg_ulChip, SDMMC_RINTSTS, 0xFFFFFFFF); SDHC_REG_WRITE32(lg_ulChip, SDMMC_INTMASK, 0); SDHC_REG_WRITE32(lg_ulChip, SDMMC_TMOUT, 0xFFFFFFFF); SDHC_REG_WRITE32(lg_ulChip, SDMMC_IDINTEN, 0); SDHC_REG_WRITE32(lg_ulChip, SDMMC_BMOD, 1); fifo_size = SDHC_REG_READ32(lg_ulChip, SDMMC_FIFOTH); fifo_size = ((fifo_size & RX_WMARK_MASK) >> RX_WMARK_SHIFT) + 1; fifoth_val = MSIZE(0x2) | RX_WMARK(fifo_size / 2 - 1) | TX_WMARK(fifo_size / 2); SDHC_REG_WRITE32(lg_ulChip, SDMMC_FIFOTH, fifoth_val); return 0; } static int mmc_send_if_cond() { struct mmc_cmd cmd; int err; cmd.cmdidx = SD_CMD_SEND_IF_COND; /* We set the bit if the host supports voltages between 2.7 and 3.6 V */ cmd.cmdarg = (1 << 8) | 0xaa; cmd.resp_type = MMC_RSP_R7; err = mmc_send_cmd(&cmd, NULL); if (err) return err; if ((cmd.response[0] & 0xff) != 0xaa) return -1; else Spec = Ver2; return 0; } static int sd_send_op_cond() { int timeout = 1000; int err; struct mmc_cmd cmd; while (1) { cmd.cmdidx = MMC_CMD_APP_CMD; cmd.resp_type = MMC_RSP_R1; cmd.cmdarg = 0; err = mmc_send_cmd(&cmd, NULL); if (err) return err; cmd.cmdidx = SD_CMD_APP_SEND_OP_COND; cmd.resp_type = MMC_RSP_R3; /* * Most cards do not answer if some reserved bits * in the ocr are set. However, Some controller * can set bit 7 (reserved for low voltages), but * how to manage low voltages SD card is not yet * specified. */ cmd.cmdarg = mmc_voltages & 0xff8000; if (Spec == Ver2) cmd.cmdarg |= OCR_HCS; err = mmc_send_cmd(&cmd, NULL); if (err) return err; if (cmd.response[0] & OCR_BUSY) break; if (timeout-- <= 0) return -1; udelay(1000); } sd_ocr = cmd.response[0]; if ((sd_ocr & OCR_HCS) == OCR_HCS) Capacity = High; sd_rca = 0; return 0; } static int mmc_send_op_cond_iter(int use_arg) { struct mmc_cmd cmd; int err; cmd.cmdidx = MMC_CMD_SEND_OP_COND; cmd.resp_type = MMC_RSP_R3; cmd.cmdarg = 0; if (use_arg) cmd.cmdarg = OCR_HCS | (mmc_voltages & (sd_ocr & OCR_VOLTAGE_MASK)) | (sd_ocr & OCR_ACCESS_MODE); err = mmc_send_cmd(&cmd, NULL); if (err) return err; sd_ocr = cmd.response[0]; return 0; } static int mmc_send_op_cond() { int err, i; /* Some cards seem to need this */ mmc_go_idle(); /* Asking to the card its capabilities */ for (i = 0; i < 2; i++) { err = mmc_send_op_cond_iter(i != 0); if (err) return err; /* exit if not busy (flag seems to be inverted) */ if (sd_ocr & OCR_BUSY) break; } return 0; } static int mmc_complete_op_cond() { int timeout = 1000; ULONG start; int err; if (!(sd_ocr & OCR_BUSY)) { /* Some cards seem to need this */ mmc_go_idle(); start = get_timer(0); while (1) { err = mmc_send_op_cond_iter(1); if (err) return err; if (sd_ocr & OCR_BUSY) break; if (get_timer(start) > timeout) return -1; udelay(100); } } if ((sd_ocr & OCR_HCS) == OCR_HCS); Capacity = High; sd_rca = 1; return 0; } int mmc_send_status(int timeout) { struct mmc_cmd cmd; int err, retries = 5; cmd.cmdidx = MMC_CMD_SEND_STATUS; cmd.resp_type = MMC_RSP_R1; cmd.cmdarg = sd_rca << 16; while (1) { err = mmc_send_cmd(&cmd, NULL); if (!err) { if ((cmd.response[0] & MMC_STATUS_RDY_FOR_DATA) && (cmd.response[0] & MMC_STATUS_CURR_STATE) != MMC_STATE_PRG) break; if (cmd.response[0] & MMC_STATUS_MASK) { return -1; } } else if (--retries < 0) return err; if (timeout-- <= 0) break; udelay(1000); } if (timeout <= 0) { return -1; } return 0; } int mmc_switch(UINT8 set, UINT8 index, UINT8 value) { struct mmc_cmd cmd; int timeout = 1000; int retries = 3; int ret; cmd.cmdidx = MMC_CMD_SWITCH; cmd.resp_type = MMC_RSP_R1b; cmd.cmdarg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) | (index << 16) | (value << 8); while (retries > 0) { ret = mmc_send_cmd(&cmd, NULL); /* Waiting for the ready status */ if (!ret) { ret = mmc_send_status(timeout); return ret; } retries--; } return ret; } static int mmc_startup() { int err; UINT mult, freq; UINT64 cmult, csize; struct mmc_cmd cmd; /* Put the Card in Identify Mode */ cmd.cmdidx = MMC_CMD_ALL_SEND_CID; cmd.resp_type = MMC_RSP_R2; cmd.cmdarg = 0; err = mmc_send_cmd(&cmd, NULL); if (err) return err; memcpy(sd_cid, cmd.response, 16); /* * For MMC cards, set the Relative Address. * For SD cards, get the Relatvie Address. * This also puts the cards into Standby State */ cmd.cmdidx = SD_CMD_SEND_RELATIVE_ADDR; cmd.cmdarg = sd_rca << 16; cmd.resp_type = MMC_RSP_R6; err = mmc_send_cmd(&cmd, NULL); if (err) return err; if (CardType == SD) sd_rca = (cmd.response[0] >> 16) & 0xffff; /* Get the Card-Specific Data */ cmd.cmdidx = MMC_CMD_SEND_CSD; cmd.resp_type = MMC_RSP_R2; cmd.cmdarg = sd_rca << 16; err = mmc_send_cmd(&cmd, NULL); if (err) return err; sd_csd[0] = cmd.response[0]; sd_csd[1] = cmd.response[1]; sd_csd[2] = cmd.response[2]; sd_csd[3] = cmd.response[3]; /* divide frequency by 10, since the mults are 10x bigger */ freq = fbase[(cmd.response[0] & 0x7)]; mult = multipliers[((cmd.response[0] >> 3) & 0xf)]; read_bl_len = 1 << ((cmd.response[1] >> 16) & 0xf); if (CardType == SD) write_bl_len = read_bl_len; else//emmc write_bl_len = 1 << ((cmd.response[3] >> 22) & 0xf); if (Capacity == High) { csize = (sd_csd[1] & 0x3f) << 16 | (sd_csd[2] & 0xffff0000) >> 16; cmult = 8; } else { csize = (sd_csd[1] & 0x3ff) << 2 | (sd_csd[2] & 0xc0000000) >> 30; cmult = (sd_csd[2] & 0x00038000) >> 15; } capacity_user = (csize + 1) << (cmult + 2); capacity_user *= read_bl_len; if (read_bl_len > MMC_MAX_BLOCK_LEN) read_bl_len = MMC_MAX_BLOCK_LEN; if (write_bl_len > MMC_MAX_BLOCK_LEN) write_bl_len = MMC_MAX_BLOCK_LEN; erase_grp_size = 0x400; /* Select the card, and put it into Transfer Mode */ cmd.cmdidx = MMC_CMD_SELECT_CARD; cmd.resp_type = MMC_RSP_R1; cmd.cmdarg = sd_rca << 16; err = mmc_send_cmd(&cmd, NULL); if (err) return err; mmc_set_blocklen(read_bl_len); sdmmc_setup_bus(freq * mult); if (CardType == SD) { err = sd_select_bus_width(4); SDHC_REG_WRITE32(0, SDMMC_CTYPE, 0x00000001); } else err = mmc_switch(EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH, EXT_CSD_BUS_WIDTH_1); if (err) return err; return 0; } INT32 sd_mmc_card_identify(void) { INT32 ret; INT32 op_cond_pending = 0; CardType = SD; Capacity = Standard; //need to re_initialize in case of MMC card sdmmc_hw_init(); // set the controller 1bit mode SDHC_REG_WRITE32(lg_ulChip, SDMMC_CTYPE, 0x00000000); if (mmc_go_idle()) return -1; /* Test for SD version 2 */ mmc_send_if_cond(); if (g_MatchSdVcc) ret = sd_send_op_cond(); else ret = SDMMC_RW_CMDTIMEROUT; if (ret == SDMMC_RW_CMDTIMEROUT) { /* If the command timed out, we check for an MMC card */ ret = mmc_send_op_cond(); if (ret) { DEBUG_MSG("Card did not respond to voltage select!\n"); return -1; } CardType = MMC; op_cond_pending = 1; } if (op_cond_pending) mmc_complete_op_cond(); return 0; } static int mmc_read_blocks(void *dst, ULONG start, ULONG blkcnt) { struct mmc_cmd cmd; struct mmc_data data; if (blkcnt > 1) cmd.cmdidx = MMC_CMD_READ_MULTIPLE_BLOCK; else cmd.cmdidx = MMC_CMD_READ_SINGLE_BLOCK; if (Capacity == High) cmd.cmdarg = start; else cmd.cmdarg = start * read_bl_len; cmd.resp_type = MMC_RSP_R1; data.dest = dst; data.blocks = blkcnt; data.blocksize = read_bl_len; data.flags = MMC_DATA_READ; if (mmc_send_cmd(&cmd, &data)) return 0; if (blkcnt > 1) { cmd.cmdidx = MMC_CMD_STOP_TRANSMISSION; cmd.cmdarg = 0; cmd.resp_type = MMC_RSP_R1b; if (mmc_send_cmd(&cmd, NULL)) { return 0; } } return blkcnt; } static INT32 SD_Identify(UINT32 Unit) { INT32 ret; ret = sd_mmc_card_identify(); // if(ret) // DEBUG_MSG("SD_Identify fails\n"); return ret; } INT32 SD_Init(UINT32 Unit) { INT32 ret; ret = mmc_startup(); return ret; } INT32 SD_ReadSector(UINT32 Unit,ULONG Sector,UINT8 *pBuffer, ULONG Count) { INT32 ret; ret = mmc_read_blocks((UINT32 *)pBuffer, Sector, Count); return ret; } INT32 InitSDMMCCard() { INT32 result = -1; if (!SD_Identify(lg_ulChip)) { SendUartString("SDMMC card successfully\n"); if (!SD_Init(lg_ulChip)) { result = 0; } } else { SendUartString("SDMMC card identify failed\n"); } return result; } int IsCardExist(void) { return !(SDHC_REG_READ32(lg_ulChip, SDMMC_CDETECT) & 0x1); } #ifdef CHECK_FISRT_FILE static BYTE *g_rBuffer = g_fs.win; static INT32 check_fatfs(UINT8 *buf) { if (!memcmp(&buf[BS_FilSysType], "FAT", 3)) /* Check FAT signature */ return 0; if (!memcmp(&buf[BS_FilSysType32], "FAT32", 5) && !(buf[BPB_ExtFlags] & 0x80)) return 0; return 1; } static INT32 check_loaderfile(void) { BYTE fmt, *tbl; DWORD bootsect = 0, fatsize, fatbase, totalsect, csize, n_rootdir, maxclust, dirbase; INT i; if (mmc_read_blocks((UINT32 *)g_rBuffer, 0, 1) != 1) return 1; fmt = check_fatfs(g_rBuffer); #if 0 if (fmt == 1) { /* Not an FAT boot record, it may be patitioned */ /* Check a partition listed in top of the partition table */ tbl = &g_rBuffer[MBR_Table]; /* Partition table */ if (tbl[4]) { /* Is the partition existing? */ bootsect = LD_DWORD(&tbl[8]); /* Partition offset in LBA */ if (mmc_read_blocks((UINT32 *)g_rBuffer, bootsect, 1) != 1) return 1; fmt = check_fatfs(g_rBuffer); /* Check the partition */ } } #else /* Check a first fat partition listed in partition table */ for(i = 0; i < 4; i++) { tbl = &g_rBuffer[MBR_Table + i * 16]; /* Partition table */ if (tbl[4] == 0x01 || tbl[4] == 0x04 || tbl[4] == 0x06 || tbl[4] == 0x0B || tbl[4] == 0x0C || tbl[4] == 0x0E) { /* Is the FAT partition? */ bootsect = LD_DWORD(&tbl[8]); /* Partition offset in LBA */ if (mmc_read_blocks((UINT32 *)g_rBuffer, bootsect, 1) != 1) return 1; fmt = check_fatfs(g_rBuffer); /* Check the partition */ break; } } #endif if (fmt || LD_WORD(&g_rBuffer[BPB_BytsPerSec]) != 512) /* No valid FAT patition is found */ { SendUartString("Not found fatfs.\r\n"); return 2; } /* Initialize the file system object */ fatsize = LD_WORD(&g_rBuffer[BPB_FATSz16]); /* Number of sectors per FAT */ if (!fatsize) fatsize = LD_DWORD(&g_rBuffer[BPB_FATSz32]); fatsize *= g_rBuffer[BPB_NumFATs]; /* (Number of sectors in FAT area) */ fatbase = bootsect + LD_WORD(&g_rBuffer[BPB_RsvdSecCnt]); /* FAT start sector (lba) */ csize = g_rBuffer[BPB_SecPerClus]; /* Number of sectors per cluster */ n_rootdir = LD_WORD(&g_rBuffer[BPB_RootEntCnt]); /* Nmuber of root directory entries */ totalsect = LD_WORD(&g_rBuffer[BPB_TotSec16]); /* Number of sectors on the file system */ if (!totalsect) totalsect = LD_DWORD(&g_rBuffer[BPB_TotSec32]); maxclust = (totalsect /* max_clust = Last cluster# + 1 */ - LD_WORD(&g_rBuffer[BPB_RsvdSecCnt]) - fatsize - n_rootdir / (512/32) ) / csize + 2; fmt = FS_FAT12; /* Determine the FAT sub type */ if (maxclust >= 0xFF7) fmt = FS_FAT16; if (maxclust >= 0xFFF7) fmt = FS_FAT32; dirbase = fatbase + fatsize; /* Root directory start sector (lba) */ if (fmt == FS_FAT32) { DWORD clust = LD_DWORD(&g_rBuffer[BPB_RootClus]); if(clust <= maxclust) dirbase += csize * (clust - 2); /* Root directory start cluster */ } if (mmc_read_blocks((UINT32 *)g_rBuffer, dirbase, 1) != 1) return 1; //有卷标时第一个拷贝的文件位于第二个目录项 if (!memcmp(&g_rBuffer[0], "ARKSDLDRBIN", 11) || !memcmp(&g_rBuffer[32], "ARKSDLDRBIN", 11) ) { return 0; } //Win10下格式化会自动生成一个System Volume Information目录 else if (!memcmp(&g_rBuffer[64], "SYSTEM~1 ", 11)) { if (!memcmp(&g_rBuffer[96], "ARKSDLDRBIN", 11) || !memcmp(&g_rBuffer[128], "ARKSDLDRBIN", 11)) return 0; } //有卷标 else if (!memcmp(&g_rBuffer[96], "SYSTEM~1 ", 11)) { if (!memcmp(&g_rBuffer[128], "ARKSDLDRBIN", 11) || !memcmp(&g_rBuffer[160], "ARKSDLDRBIN", 11)) return 0; } else { SendUartString("Not found ARKSDLDR.bin.\r\n"); return 3; } return -1; } #endif void updateFromSD(int chipid) { FRESULT fret; FIL fp = {0}; UINT32 size; void (*funPtr)(void); lg_ulChip = chipid; g_MatchSdVcc = 1; select_sd_pad(lg_ulChip); if(!IsCardExist()) { SendUartString("Card is not in the slot.\r\n"); return; } else { if(InitSDMMCCard()) { SendUartString("InitSDMMCCard fail.\r\n"); return; } } fret = f_mount(MMC, &g_fs); if(fret == FR_OK) SendUartString("Mount file ok\r\n"); else { SendUartString("Mount file fail\r\n"); return; } SendUartString("load stepldr... \r\n"); fret = f_open(&fp, STEPLDR_FILE_NAME, FA_OPEN_EXISTING | FA_READ); if(fret != FR_OK) { SendUartString("Open file fail\r\n"); return; } fret = f_read(&fp, (void *)STEPLDR_ENTRY, STEPLDR_MAX_SIZE, &size); if(fret != FR_OK) { SendUartString("Read file fail\r\n"); return; } f_close(&fp); funPtr = (void (*)(void))STEPLDR_ENTRY; funPtr(); } // for fatfs's sd interface static unsigned long sdmmc_disk_size; #define SECOTR_SIZE 512 int MMC_disk_initialize() { UINT64 secotrs; /* if(InitSDMMCCard() < 0) { SendUartString("disk mount fail!\r\n"); return -1; } else SendUartString("disk mount success!\r\n"); */ secotrs = capacity_user / SECOTR_SIZE; if(secotrs == -1) return -1; //最大支持4G卡。 if(secotrs * SECOTR_SIZE > (unsigned int)-1 ) secotrs = ((unsigned int)-1)/SECOTR_SIZE; sdmmc_disk_size = secotrs * SECOTR_SIZE; return 0; } static ulong mmc_erase_t(ulong start, lbaint_t blkcnt) { struct mmc_cmd cmd; ulong end; int err, start_cmd, end_cmd; if (Capacity == High) { end = start + blkcnt - 1; } else { end = (start + blkcnt - 1) * write_bl_len; start *= write_bl_len; } if (0) { start_cmd = SD_CMD_ERASE_WR_BLK_START; end_cmd = SD_CMD_ERASE_WR_BLK_END; } else { start_cmd = MMC_CMD_ERASE_GROUP_START; end_cmd = MMC_CMD_ERASE_GROUP_END; } cmd.cmdidx = start_cmd; cmd.cmdarg = start; cmd.resp_type = MMC_RSP_R1; err = mmc_send_cmd(&cmd, NULL); if (err) goto err_out; cmd.cmdidx = end_cmd; cmd.cmdarg = end; err = mmc_send_cmd(&cmd, NULL); if (err) goto err_out; cmd.cmdidx = MMC_CMD_ERASE; cmd.cmdarg = MMC_ERASE_ARG; cmd.resp_type = MMC_RSP_R1b; err = mmc_send_cmd(&cmd, NULL); if (err) goto err_out; return 0; err_out: SendUartString("mmc erase failed\n"); return err; } ulong mmc_berase( lbaint_t start, lbaint_t blkcnt) { int err = 0; lbaint_t blk = 0, blk_r = 0; int timeout = 1000; while (blk < blkcnt) { if (0/*IS_SD(mmc) && mmc->ssr.au*/) { ; //blk_r = ((blkcnt - blk) > mmc->ssr.au) ? // mmc->ssr.au : (blkcnt - blk); } else { blk_r = ((blkcnt - blk) > erase_grp_size) ? erase_grp_size : (blkcnt - blk); } err = mmc_erase_t(start + blk, blk_r); if (err) break; blk += blk_r; /* Waiting for the ready status */ if (mmc_send_status(timeout)) return 0; } return blk; } static ulong mmc_write_blocks(lbaint_t start, lbaint_t blkcnt, const void *src) { struct mmc_cmd cmd; struct mmc_data data; int timeout = 1000; /* if ((start + blkcnt) > mmc_get_blk_desc(mmc)->lba) { printf("MMC: block number 0x" LBAF " exceeds max(0x" LBAF ")\n", start + blkcnt, mmc_get_blk_desc(mmc)->lba); return 0; }*/ if (blkcnt == 0) return 0; else if (blkcnt == 1) cmd.cmdidx = MMC_CMD_WRITE_SINGLE_BLOCK; else cmd.cmdidx = MMC_CMD_WRITE_MULTIPLE_BLOCK; if (Capacity == High) cmd.cmdarg = start; else cmd.cmdarg = start * write_bl_len; cmd.resp_type = MMC_RSP_R1; data.src = src; data.blocks = blkcnt; data.blocksize = write_bl_len; data.flags = MMC_DATA_WRITE; if (mmc_send_cmd(&cmd, &data)) { SendUartString("mmc write failed\n"); return 0; } /* SPI multiblock writes terminate using a special * token, not a STOP_TRANSMISSION request. */ if (blkcnt > 1) { cmd.cmdidx = MMC_CMD_STOP_TRANSMISSION; cmd.cmdarg = 0; cmd.resp_type = MMC_RSP_R1b; if (mmc_send_cmd(&cmd, NULL)) { SendUartString("mmc fail to send stop cmd\n"); return 0; } } /* Waiting for the ready status */ if (mmc_send_status(timeout)) return 0; return blkcnt; } ulong mmc_bwrite(lbaint_t start, lbaint_t blkcnt, const void *src) { lbaint_t cur, blocks_todo = blkcnt; unsigned char *buf = (unsigned char*)src; if (mmc_set_blocklen(read_bl_len)) return 0; do { cur = (blocks_todo > CONFIG_SYS_MMC_MAX_BLK_COUNT) ? CONFIG_SYS_MMC_MAX_BLK_COUNT : blocks_todo; if (mmc_write_blocks(start, cur, buf) != cur) return 0; blocks_todo -= cur; start += cur; buf += cur * write_bl_len; } while (blocks_todo > 0); return blkcnt; } unsigned int mmc_write(void *buf, unsigned int offset, unsigned int size/*, int show_progress*/) { int blkstart, blkcnt; unsigned int *pbuf = (unsigned int *)buf; if(offset%write_bl_len) blkstart = offset/write_bl_len + 1; else blkstart = offset/write_bl_len; // blkstart = offset;//offset/write_bl_len; if(size%write_bl_len) blkcnt = (size/write_bl_len) +1; else blkcnt = size/write_bl_len; mmc_bwrite(blkstart,blkcnt, pbuf); // if (show_progress) // update_progress_set(100); return 0; } ulong mmc_bread(lbaint_t start, lbaint_t blkcnt, void *dst) { lbaint_t cur, blocks_todo = blkcnt; unsigned char *buf = (unsigned char*)dst; if (blkcnt == 0) return 0; if (mmc_set_blocklen(read_bl_len)) { SendUartString("mmc_bread: Failed to set blocklen\n"); return 0; } do { cur = (blocks_todo > CONFIG_SYS_MMC_MAX_BLK_COUNT) ? CONFIG_SYS_MMC_MAX_BLK_COUNT : blocks_todo; if (mmc_read_blocks(buf, start, cur) != cur) { SendUartString("mmc_bread: Failed to read blocks\n"); return 0; } blocks_todo -= cur; start += cur; buf += cur * read_bl_len; } while (blocks_todo > 0); return blkcnt; } unsigned int mmc_read(void *buf, unsigned int offset, unsigned int size) { int blkstart, blkcnt; unsigned int inoffset = 0; unsigned int readsize = 0; blkstart = offset/read_bl_len; inoffset = offset - blkstart*read_bl_len; readsize = size + inoffset; if(readsize%read_bl_len) blkcnt = (readsize/read_bl_len) +1; else blkcnt = readsize/read_bl_len; mmc_bread(blkstart, blkcnt, buf); return 0; } int EmmcInit(int chipid) { lg_ulChip = chipid; g_MatchSdVcc = 0; select_sd_pad(lg_ulChip); if(InitSDMMCCard()) { SendUartString("InitSDMMCCard fail.\r\n"); return -1; } return 0; } int EmmcBurn(void *buf, unsigned int offset, unsigned int size, int show_progress) { int blkstart, blkcnt; unsigned int *pbuf = (unsigned int *)buf; if(offset%write_bl_len) blkstart = offset/write_bl_len + 1; else blkstart = offset/write_bl_len; // blkstart = offset;//offset/write_bl_len; if(size%write_bl_len) blkcnt = (size/write_bl_len) +1; else blkcnt = size/write_bl_len; mmc_berase(blkstart,blkcnt); mmc_bwrite(blkstart,blkcnt, pbuf); // if (show_progress) // update_progress_set(100); return 0; } void EmmcWriteSysInfo(SysInfo *info) { EmmcBurn(info, SYSINFOB_OFFSET, sizeof(SysInfo), 0); EmmcBurn(info, SYSINFOA_OFFSET, sizeof(SysInfo), 0); } int EmmcReadSysInfo(SysInfo *info) { int startoffset; UINT32 checksum; UINT32 calc_checksum; unsigned char data[512]; startoffset = SYSINFOA_OFFSET; mmc_read(data, startoffset, sizeof(SysInfo)); checksum = *(UINT32*)((UINT32)data + sizeof(SysInfo) - 4); calc_checksum = xcrc32((unsigned char*)data, sizeof(SysInfo) - 4, 0xffffffff); if (calc_checksum == checksum) { memcpy(info, data, sizeof(SysInfo)); return 0; } startoffset = SYSINFOB_OFFSET; mmc_read(data, startoffset, sizeof(SysInfo)); checksum = *(UINT32*)((UINT32)data + sizeof(SysInfo) - 4); calc_checksum = xcrc32((unsigned char*)data, sizeof(SysInfo) - 4, 0xffffffff); if (calc_checksum == checksum) { memcpy(info, data, sizeof(SysInfo)); return 0; } return -1; } int MMC_disk_read(void *buff, DWORD sector, BYTE count) { return SD_ReadSector(0, sector, buff, count); } int MMC_disk_ioctl(BYTE ctrl, void *buff) { switch(ctrl) { case CTRL_SYNC: break; case GET_SECTOR_COUNT: *(DWORD*)buff = sdmmc_disk_size / SECOTR_SIZE; break; case GET_BLOCK_SIZE: *(DWORD*)buff = 1; break; default: return -1; } return 0; } void bootFromEMMC(int chipid) { void (*funPtr)(); INT32 nSectorCount; UINT32 blksart = 0 ; SysInfo *pSysInfo = NULL; EmmcInit(chipid); if (ReadSysInfo()) { SendUartString("read sysinfo fail, use default.\r\n"); SetDefaultSysInfo(); } pSysInfo = GetSysInfo(); PrintVariableValueHex("stepldr_offset", pSysInfo->stepldr_offset); blksart = pSysInfo->stepldr_offset / 512; nSectorCount = DIV_ROUND_UP(STEPLDR_MAX_SIZE, SDMMC_SECTOR_SIZE); if (mmc_read_blocks((UINT32 *)STEPLDR_ENTRY, blksart, nSectorCount) != nSectorCount) { SendUartString("EMMC Read fail.\r\n"); //return; } SendUartString("Load STEP !!!\r\n"); funPtr = (void (*)(void))STEPLDR_ENTRY; funPtr(); return; } void launchEMMC(int chipid) { void (*funPtr)(); INT32 nSectorCount; SysInfo *pSysInfo = NULL; EmmcInit(chipid); if (ReadSysInfo()) { SendUartString("read sysinfo fail, use default.\r\n"); SetDefaultSysInfo(); } pSysInfo = GetSysInfo(); PrintVariableValueHex("loader_offset", pSysInfo->loader_offset); nSectorCount = DIV_ROUND_UP(LOADER_MAX_SIZE, SDMMC_SECTOR_SIZE); if (mmc_read_blocks((UINT32 *)IMAGE_ENTRY, pSysInfo->loader_offset / 512, nSectorCount) != nSectorCount) { SendUartString("EMMC Read fail.\r\n"); //return; } if((CheckImageValid)) { funPtr = (void (*)(void))IMAGE_ENTRY; funPtr(); } else SendUartString("invalid Image\n"); while(1); }