Files
2025-01-21 16:49:37 +08:00

1179 lines
35 KiB
C

/* sha.c
*
* Copyright (C) 2006-2023 wolfSSL Inc.
*
* This file is part of wolfSSL.
*
* wolfSSL is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* wolfSSL is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <wolfssl/wolfcrypt/settings.h>
#ifdef DEBUG_WOLFSSL_VERBOSE
#if defined(WOLFSSL_ESPIDF)
#include <esp_log.h>
#else
#include <wolfssl/wolfcrypt/logging.h>
#endif
#endif
#if !defined(NO_SHA)
#if FIPS_VERSION3_GE(2,0,0)
/* set NO_WRAPPERS before headers, use direct internal f()s not wrappers */
#define FIPS_NO_WRAPPERS
#ifdef USE_WINDOWS_API
#pragma code_seg(".fipsA$k")
#pragma const_seg(".fipsB$k")
#endif
#endif
#include <wolfssl/wolfcrypt/sha.h>
#include <wolfssl/wolfcrypt/error-crypt.h>
#include <wolfssl/wolfcrypt/hash.h>
#ifdef WOLF_CRYPTO_CB
#include <wolfssl/wolfcrypt/cryptocb.h>
#endif
#ifdef WOLFSSL_IMXRT1170_CAAM
#include <wolfssl/wolfcrypt/port/caam/wolfcaam_fsl_nxp.h>
#endif
/* Assume no hash HW available until supporting HW found. */
#undef WOLFSSL_USE_ESP32_CRYPT_HASH_HW
#if defined(WOLFSSL_ESP32_CRYPT) && \
!defined(NO_WOLFSSL_ESP32_CRYPT_HASH)
/* define a single keyword for simplicity & readability
*
* by default the HW acceleration is on for ESP32-WROOM32
* but individual components can be turned off.
*/
#define WOLFSSL_USE_ESP32_CRYPT_HASH_HW
#include "wolfssl/wolfcrypt/port/Espressif/esp32-crypt.h"
/* Although we have hardware acceleration,
** we may need to fall back to software */
#define USE_SHA_SOFTWARE_IMPL
#elif defined(WOLFSSL_USE_ESP32C3_CRYPT_HASH_HW)
/* The ESP32C3 is different; HW crypto here. Not yet implemented.
** We'll be using software for RISC-V at this time */
#else
#undef WOLFSSL_USE_ESP32_CRYPT_HASH_HW
#endif
#undef WOLFSSL_USE_ESP32_CRYPT_HASH_HW
#if defined(WOLFSSL_ESP32_CRYPT) && \
!defined(NO_WOLFSSL_ESP32_CRYPT_HASH)
/* define a single keyword for simplicity & readability
*
* by default the HW acceleration is on for ESP32-WROOM32
* but individual components can be turned off.
*/
#define WOLFSSL_USE_ESP32_CRYPT_HASH_HW
#include "wolfssl/wolfcrypt/port/Espressif/esp32-crypt.h"
/* Although we have hardware acceleration,
** we may need to fall back to software */
#define USE_SHA_SOFTWARE_IMPL
static const char* TAG = "wc_sha";
#elif defined(WOLFSSL_USE_ESP32C3_CRYPT_HASH_HW)
/* The ESP32C3 is different; HW crypto here. Not yet implemented.
** We'll be using software for RISC-V at this time */
static const char* TAG = "wc_sha-c3";
#else
#undef WOLFSSL_USE_ESP32_CRYPT_HASH_HW
#endif
#if defined(WOLFSSL_TI_HASH)
/* #include <wolfcrypt/src/port/ti/ti-hash.c> included by wc_port.c */
#else
#include <wolfssl/wolfcrypt/logging.h>
#ifdef NO_INLINE
#include <wolfssl/wolfcrypt/misc.h>
#else
#define WOLFSSL_MISC_INCLUDED
#include <wolfcrypt/src/misc.c>
#endif
#if FIPS_VERSION3_GE(6,0,0)
const unsigned int wolfCrypt_FIPS_sha_ro_sanity[2] =
{ 0x1a2b3c4d, 0x00000013 };
int wolfCrypt_FIPS_SHA_sanity(void)
{
return 0;
}
#endif
/* Hardware Acceleration */
#if defined(WOLFSSL_PIC32MZ_HASH)
#include <wolfssl/wolfcrypt/port/pic32/pic32mz-crypt.h>
#elif defined(STM32_HASH)
/* Supports CubeMX HAL or Standard Peripheral Library */
int wc_InitSha_ex(wc_Sha* sha, void* heap, int devId)
{
if (sha == NULL) {
return BAD_FUNC_ARG;
}
(void)devId;
(void)heap;
wc_Stm32_Hash_Init(&sha->stmCtx);
return 0;
}
int wc_ShaUpdate(wc_Sha* sha, const byte* data, word32 len)
{
int ret;
if (sha == NULL || (data == NULL && len > 0)) {
return BAD_FUNC_ARG;
}
ret = wolfSSL_CryptHwMutexLock();
if (ret == 0) {
ret = wc_Stm32_Hash_Update(&sha->stmCtx, HASH_AlgoSelection_SHA1,
data, len, WC_SHA_BLOCK_SIZE);
wolfSSL_CryptHwMutexUnLock();
}
return ret;
}
int wc_ShaFinal(wc_Sha* sha, byte* hash)
{
int ret;
if (sha == NULL || hash == NULL) {
return BAD_FUNC_ARG;
}
ret = wolfSSL_CryptHwMutexLock();
if (ret == 0) {
ret = wc_Stm32_Hash_Final(&sha->stmCtx, HASH_AlgoSelection_SHA1,
hash, WC_SHA_DIGEST_SIZE);
wolfSSL_CryptHwMutexUnLock();
}
(void)wc_InitSha(sha); /* reset state */
return ret;
}
#elif defined(FREESCALE_LTC_SHA)
#include "fsl_ltc.h"
int wc_InitSha_ex(wc_Sha* sha, void* heap, int devId)
{
if (sha == NULL) {
return BAD_FUNC_ARG;
}
(void)devId;
(void)heap;
LTC_HASH_Init(LTC_BASE, &sha->ctx, kLTC_Sha1, NULL, 0);
return 0;
}
int wc_ShaUpdate(wc_Sha* sha, const byte* data, word32 len)
{
LTC_HASH_Update(&sha->ctx, data, len);
return 0;
}
int wc_ShaFinal(wc_Sha* sha, byte* hash)
{
word32 hashlen = WC_SHA_DIGEST_SIZE;
LTC_HASH_Finish(&sha->ctx, hash, &hashlen);
return wc_InitSha(sha); /* reset state */
}
#elif defined(FREESCALE_MMCAU_SHA)
#ifdef FREESCALE_MMCAU_CLASSIC_SHA
#include "cau_api.h"
#else
#include "fsl_mmcau.h"
#endif
#define USE_SHA_SOFTWARE_IMPL /* Only for API's, actual transform is here */
#define XTRANSFORM(S,B) Transform((S),(B))
#define XTRANSFORM_LEN(S,B,L) Transform_Len((S),(B),(L))
#ifndef WC_HASH_DATA_ALIGNMENT
/* these hardware API's require 4 byte (word32) alignment */
#define WC_HASH_DATA_ALIGNMENT 4
#endif
static int InitSha(wc_Sha* sha)
{
int ret = 0;
ret = wolfSSL_CryptHwMutexLock();
if (ret != 0) {
return ret;
}
#ifdef FREESCALE_MMCAU_CLASSIC_SHA
cau_sha1_initialize_output(sha->digest);
#else
MMCAU_SHA1_InitializeOutput((word32*)sha->digest);
#endif
wolfSSL_CryptHwMutexUnLock();
sha->buffLen = 0;
sha->loLen = 0;
sha->hiLen = 0;
return ret;
}
static int Transform(wc_Sha* sha, const byte* data)
{
int ret = wolfSSL_CryptHwMutexLock();
if (ret == 0) {
#ifdef FREESCALE_MMCAU_CLASSIC_SHA
cau_sha1_hash_n((byte*)data, 1, sha->digest);
#else
MMCAU_SHA1_HashN((byte*)data, 1, (word32*)sha->digest);
#endif
wolfSSL_CryptHwMutexUnLock();
}
return ret;
}
static int Transform_Len(wc_Sha* sha, const byte* data, word32 len)
{
int ret = wolfSSL_CryptHwMutexLock();
if (ret == 0) {
#if defined(WC_HASH_DATA_ALIGNMENT) && WC_HASH_DATA_ALIGNMENT > 0
if ((wc_ptr_t)data % WC_HASH_DATA_ALIGNMENT) {
/* data pointer is NOT aligned,
* so copy and perform one block at a time */
byte* local = (byte*)sha->buffer;
while (len >= WC_SHA_BLOCK_SIZE) {
XMEMCPY(local, data, WC_SHA_BLOCK_SIZE);
#ifdef FREESCALE_MMCAU_CLASSIC_SHA
cau_sha1_hash_n(local, 1, sha->digest);
#else
MMCAU_SHA1_HashN(local, 1, sha->digest);
#endif
data += WC_SHA_BLOCK_SIZE;
len -= WC_SHA_BLOCK_SIZE;
}
}
else
#endif
{
#ifdef FREESCALE_MMCAU_CLASSIC_SHA
cau_sha1_hash_n((byte*)data, len/WC_SHA_BLOCK_SIZE, sha->digest);
#else
MMCAU_SHA1_HashN((byte*)data, len/WC_SHA_BLOCK_SIZE,
(word32*)sha->digest);
#endif
}
wolfSSL_CryptHwMutexUnLock();
}
return ret;
}
#elif defined(WOLFSSL_IMX6_CAAM) && !defined(NO_IMX6_CAAM_HASH) && \
!defined(WOLFSSL_QNX_CAAM)
/* wolfcrypt/src/port/caam/caam_sha.c */
#elif defined(WOLFSSL_USE_ESP32_CRYPT_HASH_HW) || \
defined(WOLFSSL_USE_ESP32C3_CRYPT_HASH_HW)
/* This function initializes SHA.
** This is automatically called by wc_ShaHash */
static int InitSha(wc_Sha* sha)
{
int ret = 0;
sha->digest[0] = 0x67452301L;
sha->digest[1] = 0xEFCDAB89L;
sha->digest[2] = 0x98BADCFEL;
sha->digest[3] = 0x10325476L;
sha->digest[4] = 0xC3D2E1F0L;
sha->buffLen = 0;
sha->loLen = 0;
sha->hiLen = 0;
/* HW needs to be carefully initialized, taking into account soft copy.
** If already in use; copy may revert to SW as needed. */
ret = esp_sha_init(&(sha->ctx), WC_HASH_TYPE_SHA);
return ret;
}
#elif (defined(WOLFSSL_RENESAS_TSIP_TLS) || \
defined(WOLFSSL_RENESAS_TSIP_CRYPTONLY)) && \
!defined(NO_WOLFSSL_RENESAS_TSIP_CRYPT_HASH)
/* implemented in wolfcrypt/src/port/Renesas/renesas_tsip_sha.c */
#elif defined(WOLFSSL_RENESAS_RSIP) && \
!defined(NO_WOLFSSL_RENESAS_FSPSM_HASH)
/* implemented in wolfcrypt/src/port/Renesas/renesas_fspsm_sha.c */
#elif defined(WOLFSSL_IMXRT_DCP)
#include <wolfssl/wolfcrypt/port/nxp/dcp_port.h>
/* implemented in wolfcrypt/src/port/nxp/dcp_port.c */
#elif defined(WOLFSSL_SILABS_SE_ACCEL)
/* implemented in wolfcrypt/src/port/silabs/silabs_hash.c */
#elif defined(WOLFSSL_RENESAS_RX64_HASH)
/* implemented in wolfcrypt/src/port/Renesas/renesas_rx64_hw_sha.c */
#elif defined(WOLFSSL_SE050) && defined(WOLFSSL_SE050_HASH)
#include <wolfssl/wolfcrypt/port/nxp/se050_port.h>
int wc_InitSha_ex(wc_Sha* sha, void* heap, int devId)
{
if (sha == NULL) {
return BAD_FUNC_ARG;
}
(void)devId;
return se050_hash_init(&sha->se050Ctx, heap);
}
int wc_ShaUpdate(wc_Sha* sha, const byte* data, word32 len)
{
return se050_hash_update(&sha->se050Ctx, data, len);
}
int wc_ShaFinal(wc_Sha* sha, byte* hash)
{
int ret = 0;
ret = se050_hash_final(&sha->se050Ctx, hash, WC_SHA_DIGEST_SIZE,
kAlgorithm_SSS_SHA1);
return ret;
}
int wc_ShaFinalRaw(wc_Sha* sha, byte* hash)
{
int ret = 0;
ret = se050_hash_final(&sha->se050Ctx, hash, WC_SHA_DIGEST_SIZE,
kAlgorithm_SSS_SHA1);
return ret;
}
#elif defined(WOLFSSL_HAVE_PSA) && !defined(WOLFSSL_PSA_NO_HASH)
/* implemented in wolfcrypt/src/port/psa/psa_hash.c */
#else
/* Software implementation */
#define USE_SHA_SOFTWARE_IMPL
static int InitSha(wc_Sha* sha)
{
int ret = 0;
sha->digest[0] = 0x67452301L;
sha->digest[1] = 0xEFCDAB89L;
sha->digest[2] = 0x98BADCFEL;
sha->digest[3] = 0x10325476L;
sha->digest[4] = 0xC3D2E1F0L;
sha->buffLen = 0;
sha->loLen = 0;
sha->hiLen = 0;
#ifdef WOLFSSL_HASH_FLAGS
sha->flags = 0;
#endif
return ret;
}
#endif /* End Hardware Acceleration */
/* Software implementation */
#ifdef USE_SHA_SOFTWARE_IMPL
static WC_INLINE void AddLength(wc_Sha* sha, word32 len)
{
word32 tmp = sha->loLen;
if ((sha->loLen += len) < tmp)
sha->hiLen++; /* carry low to high */
}
/* Check if custom wc_Sha transform is used */
#ifndef XTRANSFORM
#define XTRANSFORM(S,B) Transform((S),(B))
#define blk0(i) (W[i] = *((word32*)&data[(i)*sizeof(word32)]))
#define blk1(i) (W[(i)&15] = \
rotlFixed(W[((i)+13)&15]^W[((i)+8)&15]^W[((i)+2)&15]^W[(i)&15],1))
#define f1(x,y,z) ((z)^((x) &((y)^(z))))
#define f2(x,y,z) ((x)^(y)^(z))
#define f3(x,y,z) (((x)&(y))|((z)&((x)|(y))))
#define f4(x,y,z) ((x)^(y)^(z))
#ifdef WOLFSSL_NUCLEUS_1_2
/* nucleus.h also defines R1-R4 */
#undef R1
#undef R2
#undef R3
#undef R4
#endif
/* (R0+R1), R2, R3, R4 are the different operations used in SHA1 */
#define R0(v,w,x,y,z,i) (z)+= f1((w),(x),(y)) + blk0((i)) + 0x5A827999+ \
rotlFixed((v),5); (w) = rotlFixed((w),30);
#define R1(v,w,x,y,z,i) (z)+= f1((w),(x),(y)) + blk1((i)) + 0x5A827999+ \
rotlFixed((v),5); (w) = rotlFixed((w),30);
#define R2(v,w,x,y,z,i) (z)+= f2((w),(x),(y)) + blk1((i)) + 0x6ED9EBA1+ \
rotlFixed((v),5); (w) = rotlFixed((w),30);
#define R3(v,w,x,y,z,i) (z)+= f3((w),(x),(y)) + blk1((i)) + 0x8F1BBCDC+ \
rotlFixed((v),5); (w) = rotlFixed((w),30);
#define R4(v,w,x,y,z,i) (z)+= f4((w),(x),(y)) + blk1((i)) + 0xCA62C1D6+ \
rotlFixed((v),5); (w) = rotlFixed((w),30);
static int Transform(wc_Sha* sha, const byte* data)
{
word32 W[WC_SHA_BLOCK_SIZE / sizeof(word32)];
/* Copy context->state[] to working vars */
word32 a = sha->digest[0];
word32 b = sha->digest[1];
word32 c = sha->digest[2];
word32 d = sha->digest[3];
word32 e = sha->digest[4];
#ifdef USE_SLOW_SHA
word32 t, i;
for (i = 0; i < 16; i++) {
R0(a, b, c, d, e, i);
t = e; e = d; d = c; c = b; b = a; a = t;
}
for (; i < 20; i++) {
R1(a, b, c, d, e, i);
t = e; e = d; d = c; c = b; b = a; a = t;
}
for (; i < 40; i++) {
R2(a, b, c, d, e, i);
t = e; e = d; d = c; c = b; b = a; a = t;
}
for (; i < 60; i++) {
R3(a, b, c, d, e, i);
t = e; e = d; d = c; c = b; b = a; a = t;
}
for (; i < 80; i++) {
R4(a, b, c, d, e, i);
t = e; e = d; d = c; c = b; b = a; a = t;
}
#else
/* nearly 1 K bigger in code size but 25% faster */
/* 4 rounds of 20 operations each. Loop unrolled. */
R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3);
R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7);
R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11);
R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15);
R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19);
R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23);
R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27);
R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31);
R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35);
R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39);
R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43);
R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47);
R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51);
R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55);
R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59);
R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63);
R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67);
R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71);
R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75);
R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79);
#endif
/* Add the working vars back into digest state[] */
sha->digest[0] += a;
sha->digest[1] += b;
sha->digest[2] += c;
sha->digest[3] += d;
sha->digest[4] += e;
(void)data; /* Not used */
return 0;
}
#endif /* XTRANSFORM when USE_SHA_SOFTWARE_IMPL is enabled */
/*
** wolfCrypt InitSha external wrapper.
**
** we'll assume this is ALWAYS for a new, uninitialized sha
*/
int wc_InitSha_ex(wc_Sha* sha, void* heap, int devId)
{
int ret = 0;
if (sha == NULL) {
return BAD_FUNC_ARG;
}
sha->heap = heap;
#ifdef WOLF_CRYPTO_CB
sha->devId = devId;
sha->devCtx = NULL;
#endif
#ifdef WOLFSSL_USE_ESP32_CRYPT_HASH_HW
if (sha->ctx.mode != ESP32_SHA_INIT) {
/* it may be interesting to see old values during debugging */
ESP_LOGV(TAG, "Set ctx mode from prior value: %d", sha->ctx.mode);
}
/* We know this is a fresh, uninitialized item, so set to INIT */
sha->ctx.mode = ESP32_SHA_INIT;
#endif
ret = InitSha(sha);
if (ret != 0) {
return ret;
}
#if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_SHA)
ret = wolfAsync_DevCtxInit(&sha->asyncDev, WOLFSSL_ASYNC_MARKER_SHA,
sha->heap, devId);
#else
(void)devId;
#endif /* WOLFSSL_ASYNC_CRYPT */
#ifdef WOLFSSL_IMXRT1170_CAAM
ret = wc_CAAM_HashInit(&sha->hndl, &sha->ctx, WC_HASH_TYPE_SHA);
#endif
return ret;
} /* wc_InitSha_ex */
/* do block size increments/updates */
int wc_ShaUpdate(wc_Sha* sha, const byte* data, word32 len)
{
int ret = 0;
word32 blocksLen;
byte* local;
if (sha == NULL || (data == NULL && len > 0)) {
return BAD_FUNC_ARG;
}
if (data == NULL && len == 0) {
/* valid, but do nothing */
return 0;
}
#ifdef WOLF_CRYPTO_CB
if (sha->devId != INVALID_DEVID) {
ret = wc_CryptoCb_ShaHash(sha, data, len, NULL);
if (ret != WC_NO_ERR_TRACE(CRYPTOCB_UNAVAILABLE))
return ret;
ret = 0; /* reset ret */
/* fall-through when unavailable */
}
#endif
#if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_SHA)
if (sha->asyncDev.marker == WOLFSSL_ASYNC_MARKER_SHA) {
#if defined(HAVE_INTEL_QA)
return IntelQaSymSha(&sha->asyncDev, NULL, data, len);
#endif
}
#endif /* WOLFSSL_ASYNC_CRYPT */
/* check that internal buffLen is valid */
if (sha->buffLen >= WC_SHA_BLOCK_SIZE) {
return BUFFER_E;
}
/* add length for final */
AddLength(sha, len);
local = (byte*)sha->buffer;
/* process any remainder from previous operation */
if (sha->buffLen > 0) {
blocksLen = min(len, WC_SHA_BLOCK_SIZE - sha->buffLen);
XMEMCPY(&local[sha->buffLen], data, blocksLen);
sha->buffLen += blocksLen;
data += blocksLen;
len -= blocksLen;
if (sha->buffLen == WC_SHA_BLOCK_SIZE) {
#if defined(WOLFSSL_USE_ESP32_CRYPT_HASH_HW)
if (sha->ctx.mode == ESP32_SHA_INIT) {
#if defined(WOLFSSL_DEBUG_MUTEX)
{
ESP_LOGI(TAG, "wc_ShaUpdate try hardware");
}
#endif
esp_sha_try_hw_lock(&sha->ctx);
}
#endif
#if defined(LITTLE_ENDIAN_ORDER) && !defined(FREESCALE_MMCAU_SHA)
#if ( defined(CONFIG_IDF_TARGET_ESP32C2) || \
defined(CONFIG_IDF_TARGET_ESP8684) || \
defined(CONFIG_IDF_TARGET_ESP32C3) || \
defined(CONFIG_IDF_TARGET_ESP32C6) \
) && \
defined(WOLFSSL_ESP32_CRYPT) && \
!defined(NO_WOLFSSL_ESP32_CRYPT_HASH)
/* For Espressif RISC-V Targets, we *may* need to reverse bytes
* depending on if HW is active or not. */
if (esp_sha_need_byte_reversal(&sha->ctx))
#endif
{
ByteReverseWords(sha->buffer, sha->buffer, WC_SHA_BLOCK_SIZE);
}
#endif
#if defined(WOLFSSL_USE_ESP32_CRYPT_HASH_HW)
if (sha->ctx.mode == ESP32_SHA_SW) {
#if defined(WOLFSSL_DEBUG_MUTEX)
{
ESP_LOGI(TAG, "wc_ShaUpdate process software");
}
#endif
ret = XTRANSFORM(sha, (const byte*)local);
}
else {
#if defined(WOLFSSL_DEBUG_MUTEX)
{
ESP_LOGI(TAG, "wc_ShaUpdate process hardware");
}
#endif
esp_sha_process(sha, (const byte*)local);
}
#elif defined (WOLFSSL_USE_ESP32C3_CRYPT_HASH_HW)
ESP_LOGI(TAG, "wc_ShaUpdate not implemented for ESP32C3");
ret = XTRANSFORM(sha, (const byte*)local);
#else
ret = XTRANSFORM(sha, (const byte*)local);
#endif
if (ret != 0) {
return ret;
}
sha->buffLen = 0; /* Nothing left to do, so set to zero. */
} /* (sha->buffLen == WC_SHA_BLOCK_SIZE) */
} /* (sha->buffLen > 0) Process any remainder from previous operation. */
/* process blocks */
#ifdef XTRANSFORM_LEN
/* get number of blocks */
/* 64-1 = 0x3F (~ Inverted = 0xFFFFFFC0) */
/* len (masked by 0xFFFFFFC0) returns block aligned length */
blocksLen = len & ~(WC_SHA_BLOCK_SIZE-1);
if (blocksLen > 0) {
/* Byte reversal performed in function if required. */
XTRANSFORM_LEN(sha, data, blocksLen);
data += blocksLen;
len -= blocksLen;
}
#else
while (len >= WC_SHA_BLOCK_SIZE) {
word32* local32 = sha->buffer;
/* optimization to avoid memcpy if data pointer is properly aligned */
/* Little Endian requires byte swap, so can't use data directly */
#if defined(WC_HASH_DATA_ALIGNMENT) && !defined(LITTLE_ENDIAN_ORDER)
if (((wc_ptr_t)data % WC_HASH_DATA_ALIGNMENT) == 0) {
local32 = (word32*)data;
}
else
#endif
{
XMEMCPY(local32, data, WC_SHA_BLOCK_SIZE);
}
data += WC_SHA_BLOCK_SIZE;
len -= WC_SHA_BLOCK_SIZE;
#if defined(WOLFSSL_USE_ESP32_CRYPT_HASH_HW)
if (sha->ctx.mode == ESP32_SHA_INIT){
esp_sha_try_hw_lock(&sha->ctx);
}
#endif
#if defined(LITTLE_ENDIAN_ORDER) && !defined(FREESCALE_MMCAU_SHA)
#if ( defined(CONFIG_IDF_TARGET_ESP32C2) || \
defined(CONFIG_IDF_TARGET_ESP8684) || \
defined(CONFIG_IDF_TARGET_ESP32C3) || \
defined(CONFIG_IDF_TARGET_ESP32C6) \
) && \
defined(WOLFSSL_ESP32_CRYPT) && \
!defined(NO_WOLFSSL_ESP32_CRYPT_HASH)
/* For Espressif RISC-V Targets, we *may* need to reverse bytes
* depending on if HW is active or not. */
if (esp_sha_need_byte_reversal(&sha->ctx))
#endif
{
ByteReverseWords(local32, local32, WC_SHA_BLOCK_SIZE);
}
#endif
#if defined(WOLFSSL_USE_ESP32_CRYPT_HASH_HW)
if (sha->ctx.mode == ESP32_SHA_SW){
ret = XTRANSFORM(sha, (const byte*)local32);
}
else {
esp_sha_process(sha, (const byte*)local32);
}
#else
ret = XTRANSFORM(sha, (const byte*)local32);
#endif
}
#endif /* XTRANSFORM_LEN */
/* save remainder */
if (len > 0) {
XMEMCPY(local, data, len);
sha->buffLen = len;
}
return ret;
}
int wc_ShaFinalRaw(wc_Sha* sha, byte* hash)
{
#ifdef LITTLE_ENDIAN_ORDER
word32 digest[WC_SHA_DIGEST_SIZE / sizeof(word32)];
#endif
if (sha == NULL || hash == NULL) {
return BAD_FUNC_ARG;
}
#ifdef LITTLE_ENDIAN_ORDER
#if ( defined(CONFIG_IDF_TARGET_ESP32C2) || \
defined(CONFIG_IDF_TARGET_ESP8684) || \
defined(CONFIG_IDF_TARGET_ESP32C3) || \
defined(CONFIG_IDF_TARGET_ESP32C6) \
) && \
defined(WOLFSSL_ESP32_CRYPT) && \
!defined(NO_WOLFSSL_ESP32_CRYPT_HASH)
/* For Espressif RISC-V Targets, we *may* need to reverse bytes
* depending on if HW is active or not. */
if (esp_sha_need_byte_reversal(&sha->ctx))
#endif
{
ByteReverseWords((word32*)digest, (word32*)sha->digest, WC_SHA_DIGEST_SIZE);
}
XMEMCPY(hash, (byte *)&digest[0], WC_SHA_DIGEST_SIZE);
#else
XMEMCPY(hash, sha->digest, WC_SHA_DIGEST_SIZE);
#endif
return 0;
}
/*
** Finalizes hashing of data. Result is placed into hash.
** Resets state of sha struct.
*/
int wc_ShaFinal(wc_Sha* sha, byte* hash)
{
int ret;
byte* local;
if (sha == NULL || hash == NULL) {
return BAD_FUNC_ARG;
}
local = (byte*)sha->buffer;
#ifdef WOLF_CRYPTO_CB
if (sha->devId != INVALID_DEVID) {
ret = wc_CryptoCb_ShaHash(sha, NULL, 0, hash);
if (ret != WC_NO_ERR_TRACE(CRYPTOCB_UNAVAILABLE))
return ret;
/* fall-through when unavailable */
}
#endif
#if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_SHA)
if (sha->asyncDev.marker == WOLFSSL_ASYNC_MARKER_SHA) {
#if defined(HAVE_INTEL_QA)
return IntelQaSymSha(&sha->asyncDev, hash, NULL, WC_SHA_DIGEST_SIZE);
#endif
}
#endif /* WOLFSSL_ASYNC_CRYPT */
/* we'll add a 0x80 byte at the end,
** so make sure we have appropriate buffer length. */
if (sha->buffLen > WC_SHA_BLOCK_SIZE - 1) {
/* exit with error code if there's a bad buffer size in buffLen */
return BAD_STATE_E;
} /* buffLen check */
local[sha->buffLen++] = 0x80; /* add 1 */
/* pad with zeros */
if (sha->buffLen > WC_SHA_PAD_SIZE) {
if (sha->buffLen < WC_SHA_BLOCK_SIZE) {
XMEMSET(&local[sha->buffLen], 0, WC_SHA_BLOCK_SIZE - sha->buffLen);
}
sha->buffLen += WC_SHA_BLOCK_SIZE - sha->buffLen;
#if defined(WOLFSSL_USE_ESP32_CRYPT_HASH_HW)
/* For a fresh sha.ctx, try to use hardware acceleration */
if (sha->ctx.mode == ESP32_SHA_INIT) {
esp_sha_try_hw_lock(&sha->ctx);
}
#endif
#if defined(LITTLE_ENDIAN_ORDER) && !defined(FREESCALE_MMCAU_SHA)
#if ( defined(CONFIG_IDF_TARGET_ESP32C2) || \
defined(CONFIG_IDF_TARGET_ESP8684) || \
defined(CONFIG_IDF_TARGET_ESP32C3) || \
defined(CONFIG_IDF_TARGET_ESP32C6) \
) && \
defined(WOLFSSL_ESP32_CRYPT) && \
!defined(NO_WOLFSSL_ESP32_CRYPT_HASH)
/* For Espressif RISC-V Targets, we *may* need to reverse bytes
* depending on if HW is active or not. */
if (esp_sha_need_byte_reversal(&sha->ctx))
#endif
{
ByteReverseWords(sha->buffer, sha->buffer, WC_SHA_BLOCK_SIZE);
}
#endif
#if defined(WOLFSSL_USE_ESP32_CRYPT_HASH_HW)
/* if HW was busy, we may need to fall back to SW. */
if (sha->ctx.mode == ESP32_SHA_SW) {
ret = XTRANSFORM(sha, (const byte*)local);
}
else {
ret = esp_sha_process(sha, (const byte*)local);
}
#else
/*
** The #if defined(WOLFSSL_USE_ESP32C3_CRYPT_HASH_HW) also falls
** though here to SW, as it's not yet implemented for HW.
*/
ret = XTRANSFORM(sha, (const byte*)local);
#endif
if (ret != 0) {
return ret;
}
sha->buffLen = 0;
} /* (sha->buffLen > WC_SHA_PAD_SIZE) */
XMEMSET(&local[sha->buffLen], 0, WC_SHA_PAD_SIZE - sha->buffLen);
#if defined(WOLFSSL_USE_ESP32_CRYPT_HASH_HW)
if (sha->ctx.mode == ESP32_SHA_INIT) {
esp_sha_try_hw_lock(&sha->ctx);
}
#endif
#if defined(LITTLE_ENDIAN_ORDER) && !defined(FREESCALE_MMCAU_SHA)
#if ( defined(CONFIG_IDF_TARGET_ESP32C2) || \
defined(CONFIG_IDF_TARGET_ESP8684) || \
defined(CONFIG_IDF_TARGET_ESP32C3) || \
defined(CONFIG_IDF_TARGET_ESP32C6) \
) && \
defined(WOLFSSL_ESP32_CRYPT) && \
!defined(NO_WOLFSSL_ESP32_CRYPT_HASH)
/* For Espressif RISC-V Targets, we *may* need to reverse bytes
* depending on if HW is active or not. */
if (esp_sha_need_byte_reversal(&sha->ctx))
#endif
{ /* reminder local also points to sha->buffer */
ByteReverseWords(sha->buffer, sha->buffer, WC_SHA_BLOCK_SIZE);
}
#endif
/* store lengths */
/* put lengths in bits */
sha->hiLen = (sha->loLen >> (8*sizeof(sha->loLen) - 3)) + (sha->hiLen << 3);
sha->loLen = sha->loLen << 3;
/* ! length ordering dependent on digest endian type ! */
XMEMCPY(&local[WC_SHA_PAD_SIZE], &sha->hiLen, sizeof(word32));
XMEMCPY(&local[WC_SHA_PAD_SIZE + sizeof(word32)], &sha->loLen, sizeof(word32));
#if defined(FREESCALE_MMCAU_SHA)
/* Kinetis requires only these bytes reversed */
ByteReverseWords(&sha->buffer[WC_SHA_PAD_SIZE/sizeof(word32)],
&sha->buffer[WC_SHA_PAD_SIZE/sizeof(word32)],
2 * sizeof(word32));
#endif
#if ( defined(CONFIG_IDF_TARGET_ESP32C2) || \
defined(CONFIG_IDF_TARGET_ESP8684) || \
defined(CONFIG_IDF_TARGET_ESP32C3) || \
defined(CONFIG_IDF_TARGET_ESP32C6) \
) && \
defined(WOLFSSL_ESP32_CRYPT) && !defined(NO_WOLFSSL_ESP32_CRYPT_HASH)
if (sha->ctx.mode == ESP32_SHA_HW) {
#if defined(WOLFSSL_SUPER_VERBOSE_DEBUG)
{
ESP_LOGV(TAG, "Start: Reverse PAD SIZE Endianness.");
}
#endif
ByteReverseWords(&sha->buffer[WC_SHA_PAD_SIZE/sizeof(word32)], /* out */
&sha->buffer[WC_SHA_PAD_SIZE/sizeof(word32)], /* in */
2 * sizeof(word32) /* byte count to reverse */
);
#if defined(WOLFSSL_SUPER_VERBOSE_DEBUG)
{
ESP_LOGV(TAG, "End: Reverse PAD SIZE Endianness.");
}
#endif
} /* end if (sha->ctx.mode == ESP32_SHA_HW) */
#endif
#if defined(WOLFSSL_USE_ESP32_CRYPT_HASH_HW)
if (sha->ctx.mode == ESP32_SHA_SW) {
ret = XTRANSFORM(sha, (const byte*)local);
}
else {
ret = esp_sha_digest_process(sha, 1);
}
/*
** The #if defined(WOLFSSL_USE_ESP32C3_CRYPT_HASH_HW) also falls
** though here to SW, as it's not yet implemented for HW.
*/
#else
ret = XTRANSFORM(sha, (const byte*)local);
#endif
#ifdef LITTLE_ENDIAN_ORDER
#if ( defined(CONFIG_IDF_TARGET_ESP32C2) || \
defined(CONFIG_IDF_TARGET_ESP8684) || \
defined(CONFIG_IDF_TARGET_ESP32C3) || \
defined(CONFIG_IDF_TARGET_ESP32C6) \
) && \
defined(WOLFSSL_ESP32_CRYPT) && !defined(NO_WOLFSSL_ESP32_CRYPT_HASH)
/* For Espressif RISC-V Targets, we *may* need to reverse bytes
* depending on if HW is active or not. */
if (esp_sha_need_byte_reversal(&sha->ctx))
#endif
{
ByteReverseWords(sha->digest, sha->digest, WC_SHA_DIGEST_SIZE);
}
#endif
XMEMCPY(hash, (byte *)&sha->digest[0], WC_SHA_DIGEST_SIZE);
/* we'll always reset state upon exit and return the error code from above,
* which may cause fall back to SW if HW is busy. we do not return result
* of initSha here */
(void)InitSha(sha); /* reset state */
return ret;
}
#if defined(OPENSSL_EXTRA) || defined(HAVE_CURL)
/* Apply SHA1 transformation to the data */
/* @param sha a pointer to wc_Sha structure */
/* @param data data to be applied SHA1 transformation */
/* @return 0 on successful, otherwise non-zero on failure */
int wc_ShaTransform(wc_Sha* sha, const unsigned char* data)
{
/* sanity check */
if (sha == NULL || data == NULL) {
return BAD_FUNC_ARG;
}
return (Transform(sha, data));
}
#endif
#endif /* USE_SHA_SOFTWARE_IMPL */
/*
** This function initializes SHA. This is automatically called by wc_ShaHash.
*/
int wc_InitSha(wc_Sha* sha)
{
return wc_InitSha_ex(sha, NULL, INVALID_DEVID);
}
#if !defined(WOLFSSL_HAVE_PSA) || defined(WOLFSSL_PSA_NO_HASH)
void wc_ShaFree(wc_Sha* sha)
{
if (sha == NULL)
return;
#if defined(WOLFSSL_ESP32) && !defined(NO_WOLFSSL_ESP32_CRYPT_HASH)
esp_sha_release_unfinished_lock(&sha->ctx);
#endif
#if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_SHA)
wolfAsync_DevCtxFree(&sha->asyncDev, WOLFSSL_ASYNC_MARKER_SHA);
#endif /* WOLFSSL_ASYNC_CRYPT */
#ifdef WOLFSSL_PIC32MZ_HASH
wc_ShaPic32Free(sha);
#endif
#if defined(WOLFSSL_SE050) && defined(WOLFSSL_SE050_HASH)
se050_hash_free(&sha->se050Ctx);
#endif
#if (defined(WOLFSSL_RENESAS_TSIP_TLS) || \
defined(WOLFSSL_RENESAS_TSIP_CRYPTONLY)) && \
!defined(NO_WOLFSSL_RENESAS_TSIP_CRYPT_HASH) || \
defined(WOLFSSL_RENESAS_RX64_HASH)
if (sha->msg != NULL) {
XFREE(sha->msg, sha->heap, DYNAMIC_TYPE_TMP_BUFFER);
sha->msg = NULL;
}
#endif
#ifdef WOLFSSL_IMXRT_DCP
DCPShaFree(sha);
#endif
}
#endif /* !defined(WOLFSSL_HAVE_PSA) || defined(WOLFSSL_PSA_NO_HASH) */
#endif /* !WOLFSSL_TI_HASH */
#if !defined(WOLFSSL_TI_HASH) && !defined(WOLFSSL_IMXRT_DCP)
#if ((!defined(WOLFSSL_RENESAS_TSIP_TLS) && \
!defined(WOLFSSL_RENESAS_TSIP_CRYPTONLY)) || \
defined(NO_WOLFSSL_RENESAS_TSIP_CRYPT_HASH)) && \
(!defined(WOLFSSL_RENESAS_RSIP) || \
defined(NO_WOLFSSL_RENESAS_FSPSM_HASH))
#if !defined(WOLFSSL_RENESAS_RX64_HASH)
#if !defined(WOLFSSL_HAVE_PSA) || defined(WOLFSSL_PSA_NO_HASH)
/* wc_ShaGetHash get hash value */
int wc_ShaGetHash(wc_Sha* sha, byte* hash)
{
int ret;
#ifdef WOLFSSL_SMALL_STACK
wc_Sha* tmpSha;
#else
wc_Sha tmpSha[1];
#endif
if (sha == NULL || hash == NULL) {
return BAD_FUNC_ARG;
}
#ifdef WOLFSSL_SMALL_STACK
tmpSha = (wc_Sha*)XMALLOC(sizeof(wc_Sha), NULL,
DYNAMIC_TYPE_TMP_BUFFER);
if (tmpSha == NULL) {
return MEMORY_E;
}
#endif
ret = wc_ShaCopy(sha, tmpSha);
if (ret == 0) {
ret = wc_ShaFinal(tmpSha, hash);
}
#ifdef WOLFSSL_SMALL_STACK
XFREE(tmpSha, NULL, DYNAMIC_TYPE_TMP_BUFFER);
#endif
return ret;
}
int wc_ShaCopy(wc_Sha* src, wc_Sha* dst)
{
int ret = 0;
if (src == NULL || dst == NULL)
return BAD_FUNC_ARG;
XMEMCPY(dst, src, sizeof(wc_Sha));
#if defined(WOLFSSL_SILABS_SE_ACCEL) && defined(WOLFSSL_SILABS_SE_ACCEL_3)
dst->silabsCtx.hash_ctx.cmd_ctx = &dst->silabsCtx.cmd_ctx;
dst->silabsCtx.hash_ctx.hash_type_ctx = &dst->silabsCtx.hash_type_ctx;
#endif
#if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_SHA)
ret = wolfAsync_DevCopy(&src->asyncDev, &dst->asyncDev);
#endif
#ifdef WOLFSSL_PIC32MZ_HASH
ret = wc_Pic32HashCopy(&src->cache, &dst->cache);
#endif
#if defined(WOLFSSL_SE050) && defined(WOLFSSL_SE050_HASH)
ret = se050_hash_copy(&src->se050Ctx, &dst->se050Ctx);
#endif
#if defined(WOLFSSL_USE_ESP32_CRYPT_HASH_HW)
esp_sha_ctx_copy(src, dst);
#endif
#ifdef WOLFSSL_HASH_FLAGS
dst->flags |= WC_HASH_FLAG_ISCOPY;
#endif
return ret;
}
#endif /* WOLFSSL_RENESAS_RX64_HASH */
#endif /* !defined(WOLFSSL_HAVE_PSA) || defined(WOLFSSL_PSA_NO_HASH) */
#endif /* !defined(WOLFSSL_RENESAS_TSIP_TLS) && \
!defined(WOLFSSL_RENESAS_TSIP_CRYPTONLY) ||
defined(NO_WOLFSSL_RENESAS_TSIP_CRYPT_HASH) */
#endif /* !defined(WOLFSSL_TI_HASH) && !defined(WOLFSSL_IMXRT_DCP) */
#ifdef WOLFSSL_HASH_FLAGS
int wc_ShaSetFlags(wc_Sha* sha, word32 flags)
{
if (sha) {
sha->flags = flags;
}
return 0;
}
int wc_ShaGetFlags(wc_Sha* sha, word32* flags)
{
if (sha && flags) {
*flags = sha->flags;
}
return 0;
}
#endif
#endif /* !NO_SHA */