1179 lines
35 KiB
C
1179 lines
35 KiB
C
/* sha.c
|
|
*
|
|
* Copyright (C) 2006-2023 wolfSSL Inc.
|
|
*
|
|
* This file is part of wolfSSL.
|
|
*
|
|
* wolfSSL is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* wolfSSL is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA
|
|
*/
|
|
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
#include <config.h>
|
|
#endif
|
|
|
|
#include <wolfssl/wolfcrypt/settings.h>
|
|
|
|
#ifdef DEBUG_WOLFSSL_VERBOSE
|
|
#if defined(WOLFSSL_ESPIDF)
|
|
#include <esp_log.h>
|
|
#else
|
|
#include <wolfssl/wolfcrypt/logging.h>
|
|
#endif
|
|
#endif
|
|
|
|
#if !defined(NO_SHA)
|
|
|
|
#if FIPS_VERSION3_GE(2,0,0)
|
|
/* set NO_WRAPPERS before headers, use direct internal f()s not wrappers */
|
|
#define FIPS_NO_WRAPPERS
|
|
|
|
#ifdef USE_WINDOWS_API
|
|
#pragma code_seg(".fipsA$k")
|
|
#pragma const_seg(".fipsB$k")
|
|
#endif
|
|
#endif
|
|
|
|
#include <wolfssl/wolfcrypt/sha.h>
|
|
#include <wolfssl/wolfcrypt/error-crypt.h>
|
|
#include <wolfssl/wolfcrypt/hash.h>
|
|
|
|
#ifdef WOLF_CRYPTO_CB
|
|
#include <wolfssl/wolfcrypt/cryptocb.h>
|
|
#endif
|
|
|
|
#ifdef WOLFSSL_IMXRT1170_CAAM
|
|
#include <wolfssl/wolfcrypt/port/caam/wolfcaam_fsl_nxp.h>
|
|
#endif
|
|
|
|
/* Assume no hash HW available until supporting HW found. */
|
|
#undef WOLFSSL_USE_ESP32_CRYPT_HASH_HW
|
|
|
|
#if defined(WOLFSSL_ESP32_CRYPT) && \
|
|
!defined(NO_WOLFSSL_ESP32_CRYPT_HASH)
|
|
/* define a single keyword for simplicity & readability
|
|
*
|
|
* by default the HW acceleration is on for ESP32-WROOM32
|
|
* but individual components can be turned off.
|
|
*/
|
|
#define WOLFSSL_USE_ESP32_CRYPT_HASH_HW
|
|
#include "wolfssl/wolfcrypt/port/Espressif/esp32-crypt.h"
|
|
|
|
/* Although we have hardware acceleration,
|
|
** we may need to fall back to software */
|
|
#define USE_SHA_SOFTWARE_IMPL
|
|
|
|
#elif defined(WOLFSSL_USE_ESP32C3_CRYPT_HASH_HW)
|
|
/* The ESP32C3 is different; HW crypto here. Not yet implemented.
|
|
** We'll be using software for RISC-V at this time */
|
|
#else
|
|
#undef WOLFSSL_USE_ESP32_CRYPT_HASH_HW
|
|
#endif
|
|
|
|
#undef WOLFSSL_USE_ESP32_CRYPT_HASH_HW
|
|
#if defined(WOLFSSL_ESP32_CRYPT) && \
|
|
!defined(NO_WOLFSSL_ESP32_CRYPT_HASH)
|
|
/* define a single keyword for simplicity & readability
|
|
*
|
|
* by default the HW acceleration is on for ESP32-WROOM32
|
|
* but individual components can be turned off.
|
|
*/
|
|
#define WOLFSSL_USE_ESP32_CRYPT_HASH_HW
|
|
#include "wolfssl/wolfcrypt/port/Espressif/esp32-crypt.h"
|
|
|
|
/* Although we have hardware acceleration,
|
|
** we may need to fall back to software */
|
|
#define USE_SHA_SOFTWARE_IMPL
|
|
static const char* TAG = "wc_sha";
|
|
#elif defined(WOLFSSL_USE_ESP32C3_CRYPT_HASH_HW)
|
|
/* The ESP32C3 is different; HW crypto here. Not yet implemented.
|
|
** We'll be using software for RISC-V at this time */
|
|
static const char* TAG = "wc_sha-c3";
|
|
#else
|
|
#undef WOLFSSL_USE_ESP32_CRYPT_HASH_HW
|
|
#endif
|
|
|
|
#if defined(WOLFSSL_TI_HASH)
|
|
/* #include <wolfcrypt/src/port/ti/ti-hash.c> included by wc_port.c */
|
|
|
|
#else
|
|
|
|
#include <wolfssl/wolfcrypt/logging.h>
|
|
#ifdef NO_INLINE
|
|
#include <wolfssl/wolfcrypt/misc.h>
|
|
#else
|
|
#define WOLFSSL_MISC_INCLUDED
|
|
#include <wolfcrypt/src/misc.c>
|
|
#endif
|
|
|
|
#if FIPS_VERSION3_GE(6,0,0)
|
|
const unsigned int wolfCrypt_FIPS_sha_ro_sanity[2] =
|
|
{ 0x1a2b3c4d, 0x00000013 };
|
|
int wolfCrypt_FIPS_SHA_sanity(void)
|
|
{
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
/* Hardware Acceleration */
|
|
#if defined(WOLFSSL_PIC32MZ_HASH)
|
|
#include <wolfssl/wolfcrypt/port/pic32/pic32mz-crypt.h>
|
|
|
|
#elif defined(STM32_HASH)
|
|
|
|
/* Supports CubeMX HAL or Standard Peripheral Library */
|
|
int wc_InitSha_ex(wc_Sha* sha, void* heap, int devId)
|
|
{
|
|
if (sha == NULL) {
|
|
return BAD_FUNC_ARG;
|
|
}
|
|
|
|
(void)devId;
|
|
(void)heap;
|
|
|
|
wc_Stm32_Hash_Init(&sha->stmCtx);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int wc_ShaUpdate(wc_Sha* sha, const byte* data, word32 len)
|
|
{
|
|
int ret;
|
|
|
|
if (sha == NULL || (data == NULL && len > 0)) {
|
|
return BAD_FUNC_ARG;
|
|
}
|
|
|
|
ret = wolfSSL_CryptHwMutexLock();
|
|
if (ret == 0) {
|
|
ret = wc_Stm32_Hash_Update(&sha->stmCtx, HASH_AlgoSelection_SHA1,
|
|
data, len, WC_SHA_BLOCK_SIZE);
|
|
wolfSSL_CryptHwMutexUnLock();
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
int wc_ShaFinal(wc_Sha* sha, byte* hash)
|
|
{
|
|
int ret;
|
|
|
|
if (sha == NULL || hash == NULL) {
|
|
return BAD_FUNC_ARG;
|
|
}
|
|
|
|
ret = wolfSSL_CryptHwMutexLock();
|
|
if (ret == 0) {
|
|
ret = wc_Stm32_Hash_Final(&sha->stmCtx, HASH_AlgoSelection_SHA1,
|
|
hash, WC_SHA_DIGEST_SIZE);
|
|
wolfSSL_CryptHwMutexUnLock();
|
|
}
|
|
|
|
(void)wc_InitSha(sha); /* reset state */
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
#elif defined(FREESCALE_LTC_SHA)
|
|
|
|
#include "fsl_ltc.h"
|
|
int wc_InitSha_ex(wc_Sha* sha, void* heap, int devId)
|
|
{
|
|
if (sha == NULL) {
|
|
return BAD_FUNC_ARG;
|
|
}
|
|
|
|
(void)devId;
|
|
(void)heap;
|
|
|
|
LTC_HASH_Init(LTC_BASE, &sha->ctx, kLTC_Sha1, NULL, 0);
|
|
return 0;
|
|
}
|
|
|
|
int wc_ShaUpdate(wc_Sha* sha, const byte* data, word32 len)
|
|
{
|
|
LTC_HASH_Update(&sha->ctx, data, len);
|
|
return 0;
|
|
}
|
|
|
|
int wc_ShaFinal(wc_Sha* sha, byte* hash)
|
|
{
|
|
word32 hashlen = WC_SHA_DIGEST_SIZE;
|
|
LTC_HASH_Finish(&sha->ctx, hash, &hashlen);
|
|
return wc_InitSha(sha); /* reset state */
|
|
}
|
|
|
|
|
|
#elif defined(FREESCALE_MMCAU_SHA)
|
|
|
|
#ifdef FREESCALE_MMCAU_CLASSIC_SHA
|
|
#include "cau_api.h"
|
|
#else
|
|
#include "fsl_mmcau.h"
|
|
#endif
|
|
|
|
#define USE_SHA_SOFTWARE_IMPL /* Only for API's, actual transform is here */
|
|
|
|
#define XTRANSFORM(S,B) Transform((S),(B))
|
|
#define XTRANSFORM_LEN(S,B,L) Transform_Len((S),(B),(L))
|
|
|
|
#ifndef WC_HASH_DATA_ALIGNMENT
|
|
/* these hardware API's require 4 byte (word32) alignment */
|
|
#define WC_HASH_DATA_ALIGNMENT 4
|
|
#endif
|
|
|
|
static int InitSha(wc_Sha* sha)
|
|
{
|
|
int ret = 0;
|
|
ret = wolfSSL_CryptHwMutexLock();
|
|
if (ret != 0) {
|
|
return ret;
|
|
}
|
|
#ifdef FREESCALE_MMCAU_CLASSIC_SHA
|
|
cau_sha1_initialize_output(sha->digest);
|
|
#else
|
|
MMCAU_SHA1_InitializeOutput((word32*)sha->digest);
|
|
#endif
|
|
wolfSSL_CryptHwMutexUnLock();
|
|
|
|
sha->buffLen = 0;
|
|
sha->loLen = 0;
|
|
sha->hiLen = 0;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int Transform(wc_Sha* sha, const byte* data)
|
|
{
|
|
int ret = wolfSSL_CryptHwMutexLock();
|
|
if (ret == 0) {
|
|
#ifdef FREESCALE_MMCAU_CLASSIC_SHA
|
|
cau_sha1_hash_n((byte*)data, 1, sha->digest);
|
|
#else
|
|
MMCAU_SHA1_HashN((byte*)data, 1, (word32*)sha->digest);
|
|
#endif
|
|
wolfSSL_CryptHwMutexUnLock();
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int Transform_Len(wc_Sha* sha, const byte* data, word32 len)
|
|
{
|
|
int ret = wolfSSL_CryptHwMutexLock();
|
|
if (ret == 0) {
|
|
#if defined(WC_HASH_DATA_ALIGNMENT) && WC_HASH_DATA_ALIGNMENT > 0
|
|
if ((wc_ptr_t)data % WC_HASH_DATA_ALIGNMENT) {
|
|
/* data pointer is NOT aligned,
|
|
* so copy and perform one block at a time */
|
|
byte* local = (byte*)sha->buffer;
|
|
while (len >= WC_SHA_BLOCK_SIZE) {
|
|
XMEMCPY(local, data, WC_SHA_BLOCK_SIZE);
|
|
#ifdef FREESCALE_MMCAU_CLASSIC_SHA
|
|
cau_sha1_hash_n(local, 1, sha->digest);
|
|
#else
|
|
MMCAU_SHA1_HashN(local, 1, sha->digest);
|
|
#endif
|
|
data += WC_SHA_BLOCK_SIZE;
|
|
len -= WC_SHA_BLOCK_SIZE;
|
|
}
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
#ifdef FREESCALE_MMCAU_CLASSIC_SHA
|
|
cau_sha1_hash_n((byte*)data, len/WC_SHA_BLOCK_SIZE, sha->digest);
|
|
#else
|
|
MMCAU_SHA1_HashN((byte*)data, len/WC_SHA_BLOCK_SIZE,
|
|
(word32*)sha->digest);
|
|
#endif
|
|
}
|
|
wolfSSL_CryptHwMutexUnLock();
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
#elif defined(WOLFSSL_IMX6_CAAM) && !defined(NO_IMX6_CAAM_HASH) && \
|
|
!defined(WOLFSSL_QNX_CAAM)
|
|
/* wolfcrypt/src/port/caam/caam_sha.c */
|
|
|
|
#elif defined(WOLFSSL_USE_ESP32_CRYPT_HASH_HW) || \
|
|
defined(WOLFSSL_USE_ESP32C3_CRYPT_HASH_HW)
|
|
|
|
/* This function initializes SHA.
|
|
** This is automatically called by wc_ShaHash */
|
|
static int InitSha(wc_Sha* sha)
|
|
{
|
|
int ret = 0;
|
|
|
|
sha->digest[0] = 0x67452301L;
|
|
sha->digest[1] = 0xEFCDAB89L;
|
|
sha->digest[2] = 0x98BADCFEL;
|
|
sha->digest[3] = 0x10325476L;
|
|
sha->digest[4] = 0xC3D2E1F0L;
|
|
|
|
sha->buffLen = 0;
|
|
sha->loLen = 0;
|
|
sha->hiLen = 0;
|
|
|
|
/* HW needs to be carefully initialized, taking into account soft copy.
|
|
** If already in use; copy may revert to SW as needed. */
|
|
ret = esp_sha_init(&(sha->ctx), WC_HASH_TYPE_SHA);
|
|
|
|
return ret;
|
|
}
|
|
|
|
#elif (defined(WOLFSSL_RENESAS_TSIP_TLS) || \
|
|
defined(WOLFSSL_RENESAS_TSIP_CRYPTONLY)) && \
|
|
!defined(NO_WOLFSSL_RENESAS_TSIP_CRYPT_HASH)
|
|
|
|
/* implemented in wolfcrypt/src/port/Renesas/renesas_tsip_sha.c */
|
|
|
|
#elif defined(WOLFSSL_RENESAS_RSIP) && \
|
|
!defined(NO_WOLFSSL_RENESAS_FSPSM_HASH)
|
|
|
|
/* implemented in wolfcrypt/src/port/Renesas/renesas_fspsm_sha.c */
|
|
|
|
#elif defined(WOLFSSL_IMXRT_DCP)
|
|
#include <wolfssl/wolfcrypt/port/nxp/dcp_port.h>
|
|
/* implemented in wolfcrypt/src/port/nxp/dcp_port.c */
|
|
|
|
#elif defined(WOLFSSL_SILABS_SE_ACCEL)
|
|
|
|
/* implemented in wolfcrypt/src/port/silabs/silabs_hash.c */
|
|
|
|
#elif defined(WOLFSSL_RENESAS_RX64_HASH)
|
|
|
|
/* implemented in wolfcrypt/src/port/Renesas/renesas_rx64_hw_sha.c */
|
|
|
|
#elif defined(WOLFSSL_SE050) && defined(WOLFSSL_SE050_HASH)
|
|
|
|
#include <wolfssl/wolfcrypt/port/nxp/se050_port.h>
|
|
int wc_InitSha_ex(wc_Sha* sha, void* heap, int devId)
|
|
{
|
|
if (sha == NULL) {
|
|
return BAD_FUNC_ARG;
|
|
}
|
|
(void)devId;
|
|
|
|
return se050_hash_init(&sha->se050Ctx, heap);
|
|
}
|
|
|
|
int wc_ShaUpdate(wc_Sha* sha, const byte* data, word32 len)
|
|
{
|
|
return se050_hash_update(&sha->se050Ctx, data, len);
|
|
|
|
}
|
|
|
|
int wc_ShaFinal(wc_Sha* sha, byte* hash)
|
|
{
|
|
int ret = 0;
|
|
ret = se050_hash_final(&sha->se050Ctx, hash, WC_SHA_DIGEST_SIZE,
|
|
kAlgorithm_SSS_SHA1);
|
|
return ret;
|
|
}
|
|
int wc_ShaFinalRaw(wc_Sha* sha, byte* hash)
|
|
{
|
|
int ret = 0;
|
|
ret = se050_hash_final(&sha->se050Ctx, hash, WC_SHA_DIGEST_SIZE,
|
|
kAlgorithm_SSS_SHA1);
|
|
return ret;
|
|
}
|
|
|
|
#elif defined(WOLFSSL_HAVE_PSA) && !defined(WOLFSSL_PSA_NO_HASH)
|
|
/* implemented in wolfcrypt/src/port/psa/psa_hash.c */
|
|
#else
|
|
/* Software implementation */
|
|
#define USE_SHA_SOFTWARE_IMPL
|
|
|
|
static int InitSha(wc_Sha* sha)
|
|
{
|
|
int ret = 0;
|
|
|
|
sha->digest[0] = 0x67452301L;
|
|
sha->digest[1] = 0xEFCDAB89L;
|
|
sha->digest[2] = 0x98BADCFEL;
|
|
sha->digest[3] = 0x10325476L;
|
|
sha->digest[4] = 0xC3D2E1F0L;
|
|
|
|
sha->buffLen = 0;
|
|
sha->loLen = 0;
|
|
sha->hiLen = 0;
|
|
#ifdef WOLFSSL_HASH_FLAGS
|
|
sha->flags = 0;
|
|
#endif
|
|
|
|
return ret;
|
|
}
|
|
#endif /* End Hardware Acceleration */
|
|
|
|
/* Software implementation */
|
|
#ifdef USE_SHA_SOFTWARE_IMPL
|
|
|
|
static WC_INLINE void AddLength(wc_Sha* sha, word32 len)
|
|
{
|
|
word32 tmp = sha->loLen;
|
|
if ((sha->loLen += len) < tmp)
|
|
sha->hiLen++; /* carry low to high */
|
|
}
|
|
|
|
/* Check if custom wc_Sha transform is used */
|
|
#ifndef XTRANSFORM
|
|
#define XTRANSFORM(S,B) Transform((S),(B))
|
|
|
|
#define blk0(i) (W[i] = *((word32*)&data[(i)*sizeof(word32)]))
|
|
#define blk1(i) (W[(i)&15] = \
|
|
rotlFixed(W[((i)+13)&15]^W[((i)+8)&15]^W[((i)+2)&15]^W[(i)&15],1))
|
|
|
|
#define f1(x,y,z) ((z)^((x) &((y)^(z))))
|
|
#define f2(x,y,z) ((x)^(y)^(z))
|
|
#define f3(x,y,z) (((x)&(y))|((z)&((x)|(y))))
|
|
#define f4(x,y,z) ((x)^(y)^(z))
|
|
|
|
#ifdef WOLFSSL_NUCLEUS_1_2
|
|
/* nucleus.h also defines R1-R4 */
|
|
#undef R1
|
|
#undef R2
|
|
#undef R3
|
|
#undef R4
|
|
#endif
|
|
|
|
/* (R0+R1), R2, R3, R4 are the different operations used in SHA1 */
|
|
#define R0(v,w,x,y,z,i) (z)+= f1((w),(x),(y)) + blk0((i)) + 0x5A827999+ \
|
|
rotlFixed((v),5); (w) = rotlFixed((w),30);
|
|
#define R1(v,w,x,y,z,i) (z)+= f1((w),(x),(y)) + blk1((i)) + 0x5A827999+ \
|
|
rotlFixed((v),5); (w) = rotlFixed((w),30);
|
|
#define R2(v,w,x,y,z,i) (z)+= f2((w),(x),(y)) + blk1((i)) + 0x6ED9EBA1+ \
|
|
rotlFixed((v),5); (w) = rotlFixed((w),30);
|
|
#define R3(v,w,x,y,z,i) (z)+= f3((w),(x),(y)) + blk1((i)) + 0x8F1BBCDC+ \
|
|
rotlFixed((v),5); (w) = rotlFixed((w),30);
|
|
#define R4(v,w,x,y,z,i) (z)+= f4((w),(x),(y)) + blk1((i)) + 0xCA62C1D6+ \
|
|
rotlFixed((v),5); (w) = rotlFixed((w),30);
|
|
|
|
static int Transform(wc_Sha* sha, const byte* data)
|
|
{
|
|
word32 W[WC_SHA_BLOCK_SIZE / sizeof(word32)];
|
|
|
|
/* Copy context->state[] to working vars */
|
|
word32 a = sha->digest[0];
|
|
word32 b = sha->digest[1];
|
|
word32 c = sha->digest[2];
|
|
word32 d = sha->digest[3];
|
|
word32 e = sha->digest[4];
|
|
|
|
#ifdef USE_SLOW_SHA
|
|
word32 t, i;
|
|
|
|
for (i = 0; i < 16; i++) {
|
|
R0(a, b, c, d, e, i);
|
|
t = e; e = d; d = c; c = b; b = a; a = t;
|
|
}
|
|
|
|
for (; i < 20; i++) {
|
|
R1(a, b, c, d, e, i);
|
|
t = e; e = d; d = c; c = b; b = a; a = t;
|
|
}
|
|
|
|
for (; i < 40; i++) {
|
|
R2(a, b, c, d, e, i);
|
|
t = e; e = d; d = c; c = b; b = a; a = t;
|
|
}
|
|
|
|
for (; i < 60; i++) {
|
|
R3(a, b, c, d, e, i);
|
|
t = e; e = d; d = c; c = b; b = a; a = t;
|
|
}
|
|
|
|
for (; i < 80; i++) {
|
|
R4(a, b, c, d, e, i);
|
|
t = e; e = d; d = c; c = b; b = a; a = t;
|
|
}
|
|
#else
|
|
/* nearly 1 K bigger in code size but 25% faster */
|
|
/* 4 rounds of 20 operations each. Loop unrolled. */
|
|
R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3);
|
|
R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7);
|
|
R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11);
|
|
R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15);
|
|
|
|
R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19);
|
|
|
|
R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23);
|
|
R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27);
|
|
R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31);
|
|
R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35);
|
|
R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39);
|
|
|
|
R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43);
|
|
R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47);
|
|
R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51);
|
|
R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55);
|
|
R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59);
|
|
|
|
R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63);
|
|
R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67);
|
|
R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71);
|
|
R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75);
|
|
R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79);
|
|
#endif
|
|
|
|
/* Add the working vars back into digest state[] */
|
|
sha->digest[0] += a;
|
|
sha->digest[1] += b;
|
|
sha->digest[2] += c;
|
|
sha->digest[3] += d;
|
|
sha->digest[4] += e;
|
|
|
|
(void)data; /* Not used */
|
|
|
|
return 0;
|
|
}
|
|
#endif /* XTRANSFORM when USE_SHA_SOFTWARE_IMPL is enabled */
|
|
|
|
|
|
/*
|
|
** wolfCrypt InitSha external wrapper.
|
|
**
|
|
** we'll assume this is ALWAYS for a new, uninitialized sha
|
|
*/
|
|
int wc_InitSha_ex(wc_Sha* sha, void* heap, int devId)
|
|
{
|
|
int ret = 0;
|
|
if (sha == NULL) {
|
|
return BAD_FUNC_ARG;
|
|
}
|
|
|
|
sha->heap = heap;
|
|
#ifdef WOLF_CRYPTO_CB
|
|
sha->devId = devId;
|
|
sha->devCtx = NULL;
|
|
#endif
|
|
|
|
#ifdef WOLFSSL_USE_ESP32_CRYPT_HASH_HW
|
|
if (sha->ctx.mode != ESP32_SHA_INIT) {
|
|
/* it may be interesting to see old values during debugging */
|
|
ESP_LOGV(TAG, "Set ctx mode from prior value: %d", sha->ctx.mode);
|
|
}
|
|
/* We know this is a fresh, uninitialized item, so set to INIT */
|
|
sha->ctx.mode = ESP32_SHA_INIT;
|
|
#endif
|
|
|
|
ret = InitSha(sha);
|
|
if (ret != 0) {
|
|
return ret;
|
|
}
|
|
|
|
#if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_SHA)
|
|
ret = wolfAsync_DevCtxInit(&sha->asyncDev, WOLFSSL_ASYNC_MARKER_SHA,
|
|
sha->heap, devId);
|
|
#else
|
|
(void)devId;
|
|
#endif /* WOLFSSL_ASYNC_CRYPT */
|
|
#ifdef WOLFSSL_IMXRT1170_CAAM
|
|
ret = wc_CAAM_HashInit(&sha->hndl, &sha->ctx, WC_HASH_TYPE_SHA);
|
|
#endif
|
|
|
|
return ret;
|
|
} /* wc_InitSha_ex */
|
|
|
|
/* do block size increments/updates */
|
|
int wc_ShaUpdate(wc_Sha* sha, const byte* data, word32 len)
|
|
{
|
|
int ret = 0;
|
|
word32 blocksLen;
|
|
byte* local;
|
|
|
|
if (sha == NULL || (data == NULL && len > 0)) {
|
|
return BAD_FUNC_ARG;
|
|
}
|
|
|
|
if (data == NULL && len == 0) {
|
|
/* valid, but do nothing */
|
|
return 0;
|
|
}
|
|
|
|
#ifdef WOLF_CRYPTO_CB
|
|
if (sha->devId != INVALID_DEVID) {
|
|
ret = wc_CryptoCb_ShaHash(sha, data, len, NULL);
|
|
if (ret != WC_NO_ERR_TRACE(CRYPTOCB_UNAVAILABLE))
|
|
return ret;
|
|
ret = 0; /* reset ret */
|
|
/* fall-through when unavailable */
|
|
}
|
|
#endif
|
|
#if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_SHA)
|
|
if (sha->asyncDev.marker == WOLFSSL_ASYNC_MARKER_SHA) {
|
|
#if defined(HAVE_INTEL_QA)
|
|
return IntelQaSymSha(&sha->asyncDev, NULL, data, len);
|
|
#endif
|
|
}
|
|
#endif /* WOLFSSL_ASYNC_CRYPT */
|
|
|
|
/* check that internal buffLen is valid */
|
|
if (sha->buffLen >= WC_SHA_BLOCK_SIZE) {
|
|
return BUFFER_E;
|
|
}
|
|
|
|
/* add length for final */
|
|
AddLength(sha, len);
|
|
|
|
local = (byte*)sha->buffer;
|
|
|
|
/* process any remainder from previous operation */
|
|
if (sha->buffLen > 0) {
|
|
blocksLen = min(len, WC_SHA_BLOCK_SIZE - sha->buffLen);
|
|
XMEMCPY(&local[sha->buffLen], data, blocksLen);
|
|
|
|
sha->buffLen += blocksLen;
|
|
data += blocksLen;
|
|
len -= blocksLen;
|
|
|
|
if (sha->buffLen == WC_SHA_BLOCK_SIZE) {
|
|
#if defined(WOLFSSL_USE_ESP32_CRYPT_HASH_HW)
|
|
if (sha->ctx.mode == ESP32_SHA_INIT) {
|
|
#if defined(WOLFSSL_DEBUG_MUTEX)
|
|
{
|
|
ESP_LOGI(TAG, "wc_ShaUpdate try hardware");
|
|
}
|
|
#endif
|
|
esp_sha_try_hw_lock(&sha->ctx);
|
|
}
|
|
#endif
|
|
|
|
#if defined(LITTLE_ENDIAN_ORDER) && !defined(FREESCALE_MMCAU_SHA)
|
|
#if ( defined(CONFIG_IDF_TARGET_ESP32C2) || \
|
|
defined(CONFIG_IDF_TARGET_ESP8684) || \
|
|
defined(CONFIG_IDF_TARGET_ESP32C3) || \
|
|
defined(CONFIG_IDF_TARGET_ESP32C6) \
|
|
) && \
|
|
defined(WOLFSSL_ESP32_CRYPT) && \
|
|
!defined(NO_WOLFSSL_ESP32_CRYPT_HASH)
|
|
/* For Espressif RISC-V Targets, we *may* need to reverse bytes
|
|
* depending on if HW is active or not. */
|
|
if (esp_sha_need_byte_reversal(&sha->ctx))
|
|
#endif
|
|
{
|
|
ByteReverseWords(sha->buffer, sha->buffer, WC_SHA_BLOCK_SIZE);
|
|
}
|
|
#endif
|
|
|
|
#if defined(WOLFSSL_USE_ESP32_CRYPT_HASH_HW)
|
|
if (sha->ctx.mode == ESP32_SHA_SW) {
|
|
#if defined(WOLFSSL_DEBUG_MUTEX)
|
|
{
|
|
ESP_LOGI(TAG, "wc_ShaUpdate process software");
|
|
}
|
|
#endif
|
|
ret = XTRANSFORM(sha, (const byte*)local);
|
|
}
|
|
else {
|
|
#if defined(WOLFSSL_DEBUG_MUTEX)
|
|
{
|
|
ESP_LOGI(TAG, "wc_ShaUpdate process hardware");
|
|
}
|
|
#endif
|
|
esp_sha_process(sha, (const byte*)local);
|
|
}
|
|
#elif defined (WOLFSSL_USE_ESP32C3_CRYPT_HASH_HW)
|
|
ESP_LOGI(TAG, "wc_ShaUpdate not implemented for ESP32C3");
|
|
ret = XTRANSFORM(sha, (const byte*)local);
|
|
#else
|
|
ret = XTRANSFORM(sha, (const byte*)local);
|
|
#endif
|
|
if (ret != 0) {
|
|
return ret;
|
|
}
|
|
|
|
sha->buffLen = 0; /* Nothing left to do, so set to zero. */
|
|
} /* (sha->buffLen == WC_SHA_BLOCK_SIZE) */
|
|
} /* (sha->buffLen > 0) Process any remainder from previous operation. */
|
|
|
|
/* process blocks */
|
|
#ifdef XTRANSFORM_LEN
|
|
/* get number of blocks */
|
|
/* 64-1 = 0x3F (~ Inverted = 0xFFFFFFC0) */
|
|
/* len (masked by 0xFFFFFFC0) returns block aligned length */
|
|
blocksLen = len & ~(WC_SHA_BLOCK_SIZE-1);
|
|
if (blocksLen > 0) {
|
|
/* Byte reversal performed in function if required. */
|
|
XTRANSFORM_LEN(sha, data, blocksLen);
|
|
data += blocksLen;
|
|
len -= blocksLen;
|
|
}
|
|
#else
|
|
while (len >= WC_SHA_BLOCK_SIZE) {
|
|
word32* local32 = sha->buffer;
|
|
/* optimization to avoid memcpy if data pointer is properly aligned */
|
|
/* Little Endian requires byte swap, so can't use data directly */
|
|
#if defined(WC_HASH_DATA_ALIGNMENT) && !defined(LITTLE_ENDIAN_ORDER)
|
|
if (((wc_ptr_t)data % WC_HASH_DATA_ALIGNMENT) == 0) {
|
|
local32 = (word32*)data;
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
XMEMCPY(local32, data, WC_SHA_BLOCK_SIZE);
|
|
}
|
|
|
|
data += WC_SHA_BLOCK_SIZE;
|
|
len -= WC_SHA_BLOCK_SIZE;
|
|
|
|
#if defined(WOLFSSL_USE_ESP32_CRYPT_HASH_HW)
|
|
if (sha->ctx.mode == ESP32_SHA_INIT){
|
|
esp_sha_try_hw_lock(&sha->ctx);
|
|
}
|
|
#endif
|
|
|
|
#if defined(LITTLE_ENDIAN_ORDER) && !defined(FREESCALE_MMCAU_SHA)
|
|
#if ( defined(CONFIG_IDF_TARGET_ESP32C2) || \
|
|
defined(CONFIG_IDF_TARGET_ESP8684) || \
|
|
defined(CONFIG_IDF_TARGET_ESP32C3) || \
|
|
defined(CONFIG_IDF_TARGET_ESP32C6) \
|
|
) && \
|
|
defined(WOLFSSL_ESP32_CRYPT) && \
|
|
!defined(NO_WOLFSSL_ESP32_CRYPT_HASH)
|
|
/* For Espressif RISC-V Targets, we *may* need to reverse bytes
|
|
* depending on if HW is active or not. */
|
|
if (esp_sha_need_byte_reversal(&sha->ctx))
|
|
#endif
|
|
{
|
|
ByteReverseWords(local32, local32, WC_SHA_BLOCK_SIZE);
|
|
}
|
|
#endif
|
|
|
|
#if defined(WOLFSSL_USE_ESP32_CRYPT_HASH_HW)
|
|
if (sha->ctx.mode == ESP32_SHA_SW){
|
|
ret = XTRANSFORM(sha, (const byte*)local32);
|
|
}
|
|
else {
|
|
esp_sha_process(sha, (const byte*)local32);
|
|
}
|
|
#else
|
|
ret = XTRANSFORM(sha, (const byte*)local32);
|
|
#endif
|
|
}
|
|
#endif /* XTRANSFORM_LEN */
|
|
|
|
/* save remainder */
|
|
if (len > 0) {
|
|
XMEMCPY(local, data, len);
|
|
sha->buffLen = len;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
int wc_ShaFinalRaw(wc_Sha* sha, byte* hash)
|
|
{
|
|
#ifdef LITTLE_ENDIAN_ORDER
|
|
word32 digest[WC_SHA_DIGEST_SIZE / sizeof(word32)];
|
|
#endif
|
|
|
|
if (sha == NULL || hash == NULL) {
|
|
return BAD_FUNC_ARG;
|
|
}
|
|
|
|
#ifdef LITTLE_ENDIAN_ORDER
|
|
#if ( defined(CONFIG_IDF_TARGET_ESP32C2) || \
|
|
defined(CONFIG_IDF_TARGET_ESP8684) || \
|
|
defined(CONFIG_IDF_TARGET_ESP32C3) || \
|
|
defined(CONFIG_IDF_TARGET_ESP32C6) \
|
|
) && \
|
|
defined(WOLFSSL_ESP32_CRYPT) && \
|
|
!defined(NO_WOLFSSL_ESP32_CRYPT_HASH)
|
|
/* For Espressif RISC-V Targets, we *may* need to reverse bytes
|
|
* depending on if HW is active or not. */
|
|
if (esp_sha_need_byte_reversal(&sha->ctx))
|
|
#endif
|
|
{
|
|
ByteReverseWords((word32*)digest, (word32*)sha->digest, WC_SHA_DIGEST_SIZE);
|
|
}
|
|
XMEMCPY(hash, (byte *)&digest[0], WC_SHA_DIGEST_SIZE);
|
|
#else
|
|
XMEMCPY(hash, sha->digest, WC_SHA_DIGEST_SIZE);
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** Finalizes hashing of data. Result is placed into hash.
|
|
** Resets state of sha struct.
|
|
*/
|
|
int wc_ShaFinal(wc_Sha* sha, byte* hash)
|
|
{
|
|
int ret;
|
|
byte* local;
|
|
|
|
if (sha == NULL || hash == NULL) {
|
|
return BAD_FUNC_ARG;
|
|
}
|
|
|
|
local = (byte*)sha->buffer;
|
|
|
|
#ifdef WOLF_CRYPTO_CB
|
|
if (sha->devId != INVALID_DEVID) {
|
|
ret = wc_CryptoCb_ShaHash(sha, NULL, 0, hash);
|
|
if (ret != WC_NO_ERR_TRACE(CRYPTOCB_UNAVAILABLE))
|
|
return ret;
|
|
/* fall-through when unavailable */
|
|
}
|
|
#endif
|
|
#if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_SHA)
|
|
if (sha->asyncDev.marker == WOLFSSL_ASYNC_MARKER_SHA) {
|
|
#if defined(HAVE_INTEL_QA)
|
|
return IntelQaSymSha(&sha->asyncDev, hash, NULL, WC_SHA_DIGEST_SIZE);
|
|
#endif
|
|
}
|
|
#endif /* WOLFSSL_ASYNC_CRYPT */
|
|
|
|
/* we'll add a 0x80 byte at the end,
|
|
** so make sure we have appropriate buffer length. */
|
|
if (sha->buffLen > WC_SHA_BLOCK_SIZE - 1) {
|
|
/* exit with error code if there's a bad buffer size in buffLen */
|
|
return BAD_STATE_E;
|
|
} /* buffLen check */
|
|
|
|
local[sha->buffLen++] = 0x80; /* add 1 */
|
|
|
|
/* pad with zeros */
|
|
if (sha->buffLen > WC_SHA_PAD_SIZE) {
|
|
if (sha->buffLen < WC_SHA_BLOCK_SIZE) {
|
|
XMEMSET(&local[sha->buffLen], 0, WC_SHA_BLOCK_SIZE - sha->buffLen);
|
|
}
|
|
|
|
sha->buffLen += WC_SHA_BLOCK_SIZE - sha->buffLen;
|
|
|
|
#if defined(WOLFSSL_USE_ESP32_CRYPT_HASH_HW)
|
|
/* For a fresh sha.ctx, try to use hardware acceleration */
|
|
if (sha->ctx.mode == ESP32_SHA_INIT) {
|
|
esp_sha_try_hw_lock(&sha->ctx);
|
|
}
|
|
#endif
|
|
|
|
#if defined(LITTLE_ENDIAN_ORDER) && !defined(FREESCALE_MMCAU_SHA)
|
|
#if ( defined(CONFIG_IDF_TARGET_ESP32C2) || \
|
|
defined(CONFIG_IDF_TARGET_ESP8684) || \
|
|
defined(CONFIG_IDF_TARGET_ESP32C3) || \
|
|
defined(CONFIG_IDF_TARGET_ESP32C6) \
|
|
) && \
|
|
defined(WOLFSSL_ESP32_CRYPT) && \
|
|
!defined(NO_WOLFSSL_ESP32_CRYPT_HASH)
|
|
/* For Espressif RISC-V Targets, we *may* need to reverse bytes
|
|
* depending on if HW is active or not. */
|
|
if (esp_sha_need_byte_reversal(&sha->ctx))
|
|
#endif
|
|
{
|
|
ByteReverseWords(sha->buffer, sha->buffer, WC_SHA_BLOCK_SIZE);
|
|
}
|
|
#endif
|
|
|
|
#if defined(WOLFSSL_USE_ESP32_CRYPT_HASH_HW)
|
|
/* if HW was busy, we may need to fall back to SW. */
|
|
if (sha->ctx.mode == ESP32_SHA_SW) {
|
|
ret = XTRANSFORM(sha, (const byte*)local);
|
|
}
|
|
else {
|
|
ret = esp_sha_process(sha, (const byte*)local);
|
|
}
|
|
#else
|
|
/*
|
|
** The #if defined(WOLFSSL_USE_ESP32C3_CRYPT_HASH_HW) also falls
|
|
** though here to SW, as it's not yet implemented for HW.
|
|
*/
|
|
ret = XTRANSFORM(sha, (const byte*)local);
|
|
#endif
|
|
if (ret != 0) {
|
|
return ret;
|
|
}
|
|
|
|
sha->buffLen = 0;
|
|
} /* (sha->buffLen > WC_SHA_PAD_SIZE) */
|
|
|
|
XMEMSET(&local[sha->buffLen], 0, WC_SHA_PAD_SIZE - sha->buffLen);
|
|
|
|
#if defined(WOLFSSL_USE_ESP32_CRYPT_HASH_HW)
|
|
if (sha->ctx.mode == ESP32_SHA_INIT) {
|
|
esp_sha_try_hw_lock(&sha->ctx);
|
|
}
|
|
#endif
|
|
|
|
#if defined(LITTLE_ENDIAN_ORDER) && !defined(FREESCALE_MMCAU_SHA)
|
|
#if ( defined(CONFIG_IDF_TARGET_ESP32C2) || \
|
|
defined(CONFIG_IDF_TARGET_ESP8684) || \
|
|
defined(CONFIG_IDF_TARGET_ESP32C3) || \
|
|
defined(CONFIG_IDF_TARGET_ESP32C6) \
|
|
) && \
|
|
defined(WOLFSSL_ESP32_CRYPT) && \
|
|
!defined(NO_WOLFSSL_ESP32_CRYPT_HASH)
|
|
/* For Espressif RISC-V Targets, we *may* need to reverse bytes
|
|
* depending on if HW is active or not. */
|
|
if (esp_sha_need_byte_reversal(&sha->ctx))
|
|
#endif
|
|
{ /* reminder local also points to sha->buffer */
|
|
ByteReverseWords(sha->buffer, sha->buffer, WC_SHA_BLOCK_SIZE);
|
|
}
|
|
#endif
|
|
|
|
/* store lengths */
|
|
/* put lengths in bits */
|
|
sha->hiLen = (sha->loLen >> (8*sizeof(sha->loLen) - 3)) + (sha->hiLen << 3);
|
|
sha->loLen = sha->loLen << 3;
|
|
|
|
/* ! length ordering dependent on digest endian type ! */
|
|
XMEMCPY(&local[WC_SHA_PAD_SIZE], &sha->hiLen, sizeof(word32));
|
|
XMEMCPY(&local[WC_SHA_PAD_SIZE + sizeof(word32)], &sha->loLen, sizeof(word32));
|
|
|
|
#if defined(FREESCALE_MMCAU_SHA)
|
|
/* Kinetis requires only these bytes reversed */
|
|
ByteReverseWords(&sha->buffer[WC_SHA_PAD_SIZE/sizeof(word32)],
|
|
&sha->buffer[WC_SHA_PAD_SIZE/sizeof(word32)],
|
|
2 * sizeof(word32));
|
|
#endif
|
|
|
|
|
|
#if ( defined(CONFIG_IDF_TARGET_ESP32C2) || \
|
|
defined(CONFIG_IDF_TARGET_ESP8684) || \
|
|
defined(CONFIG_IDF_TARGET_ESP32C3) || \
|
|
defined(CONFIG_IDF_TARGET_ESP32C6) \
|
|
) && \
|
|
defined(WOLFSSL_ESP32_CRYPT) && !defined(NO_WOLFSSL_ESP32_CRYPT_HASH)
|
|
if (sha->ctx.mode == ESP32_SHA_HW) {
|
|
#if defined(WOLFSSL_SUPER_VERBOSE_DEBUG)
|
|
{
|
|
ESP_LOGV(TAG, "Start: Reverse PAD SIZE Endianness.");
|
|
}
|
|
#endif
|
|
ByteReverseWords(&sha->buffer[WC_SHA_PAD_SIZE/sizeof(word32)], /* out */
|
|
&sha->buffer[WC_SHA_PAD_SIZE/sizeof(word32)], /* in */
|
|
2 * sizeof(word32) /* byte count to reverse */
|
|
);
|
|
#if defined(WOLFSSL_SUPER_VERBOSE_DEBUG)
|
|
{
|
|
ESP_LOGV(TAG, "End: Reverse PAD SIZE Endianness.");
|
|
}
|
|
#endif
|
|
} /* end if (sha->ctx.mode == ESP32_SHA_HW) */
|
|
#endif
|
|
|
|
#if defined(WOLFSSL_USE_ESP32_CRYPT_HASH_HW)
|
|
if (sha->ctx.mode == ESP32_SHA_SW) {
|
|
ret = XTRANSFORM(sha, (const byte*)local);
|
|
}
|
|
else {
|
|
ret = esp_sha_digest_process(sha, 1);
|
|
}
|
|
/*
|
|
** The #if defined(WOLFSSL_USE_ESP32C3_CRYPT_HASH_HW) also falls
|
|
** though here to SW, as it's not yet implemented for HW.
|
|
*/
|
|
#else
|
|
ret = XTRANSFORM(sha, (const byte*)local);
|
|
#endif
|
|
|
|
#ifdef LITTLE_ENDIAN_ORDER
|
|
#if ( defined(CONFIG_IDF_TARGET_ESP32C2) || \
|
|
defined(CONFIG_IDF_TARGET_ESP8684) || \
|
|
defined(CONFIG_IDF_TARGET_ESP32C3) || \
|
|
defined(CONFIG_IDF_TARGET_ESP32C6) \
|
|
) && \
|
|
defined(WOLFSSL_ESP32_CRYPT) && !defined(NO_WOLFSSL_ESP32_CRYPT_HASH)
|
|
/* For Espressif RISC-V Targets, we *may* need to reverse bytes
|
|
* depending on if HW is active or not. */
|
|
if (esp_sha_need_byte_reversal(&sha->ctx))
|
|
#endif
|
|
{
|
|
ByteReverseWords(sha->digest, sha->digest, WC_SHA_DIGEST_SIZE);
|
|
}
|
|
#endif
|
|
|
|
XMEMCPY(hash, (byte *)&sha->digest[0], WC_SHA_DIGEST_SIZE);
|
|
|
|
/* we'll always reset state upon exit and return the error code from above,
|
|
* which may cause fall back to SW if HW is busy. we do not return result
|
|
* of initSha here */
|
|
(void)InitSha(sha); /* reset state */
|
|
return ret;
|
|
}
|
|
|
|
#if defined(OPENSSL_EXTRA) || defined(HAVE_CURL)
|
|
/* Apply SHA1 transformation to the data */
|
|
/* @param sha a pointer to wc_Sha structure */
|
|
/* @param data data to be applied SHA1 transformation */
|
|
/* @return 0 on successful, otherwise non-zero on failure */
|
|
int wc_ShaTransform(wc_Sha* sha, const unsigned char* data)
|
|
{
|
|
/* sanity check */
|
|
if (sha == NULL || data == NULL) {
|
|
return BAD_FUNC_ARG;
|
|
}
|
|
return (Transform(sha, data));
|
|
}
|
|
#endif
|
|
|
|
#endif /* USE_SHA_SOFTWARE_IMPL */
|
|
|
|
/*
|
|
** This function initializes SHA. This is automatically called by wc_ShaHash.
|
|
*/
|
|
int wc_InitSha(wc_Sha* sha)
|
|
{
|
|
return wc_InitSha_ex(sha, NULL, INVALID_DEVID);
|
|
}
|
|
|
|
|
|
#if !defined(WOLFSSL_HAVE_PSA) || defined(WOLFSSL_PSA_NO_HASH)
|
|
|
|
void wc_ShaFree(wc_Sha* sha)
|
|
{
|
|
if (sha == NULL)
|
|
return;
|
|
|
|
#if defined(WOLFSSL_ESP32) && !defined(NO_WOLFSSL_ESP32_CRYPT_HASH)
|
|
esp_sha_release_unfinished_lock(&sha->ctx);
|
|
#endif
|
|
|
|
#if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_SHA)
|
|
wolfAsync_DevCtxFree(&sha->asyncDev, WOLFSSL_ASYNC_MARKER_SHA);
|
|
#endif /* WOLFSSL_ASYNC_CRYPT */
|
|
|
|
#ifdef WOLFSSL_PIC32MZ_HASH
|
|
wc_ShaPic32Free(sha);
|
|
#endif
|
|
#if defined(WOLFSSL_SE050) && defined(WOLFSSL_SE050_HASH)
|
|
se050_hash_free(&sha->se050Ctx);
|
|
#endif
|
|
#if (defined(WOLFSSL_RENESAS_TSIP_TLS) || \
|
|
defined(WOLFSSL_RENESAS_TSIP_CRYPTONLY)) && \
|
|
!defined(NO_WOLFSSL_RENESAS_TSIP_CRYPT_HASH) || \
|
|
defined(WOLFSSL_RENESAS_RX64_HASH)
|
|
if (sha->msg != NULL) {
|
|
XFREE(sha->msg, sha->heap, DYNAMIC_TYPE_TMP_BUFFER);
|
|
sha->msg = NULL;
|
|
}
|
|
#endif
|
|
#ifdef WOLFSSL_IMXRT_DCP
|
|
DCPShaFree(sha);
|
|
#endif
|
|
}
|
|
|
|
#endif /* !defined(WOLFSSL_HAVE_PSA) || defined(WOLFSSL_PSA_NO_HASH) */
|
|
#endif /* !WOLFSSL_TI_HASH */
|
|
|
|
#if !defined(WOLFSSL_TI_HASH) && !defined(WOLFSSL_IMXRT_DCP)
|
|
|
|
#if ((!defined(WOLFSSL_RENESAS_TSIP_TLS) && \
|
|
!defined(WOLFSSL_RENESAS_TSIP_CRYPTONLY)) || \
|
|
defined(NO_WOLFSSL_RENESAS_TSIP_CRYPT_HASH)) && \
|
|
(!defined(WOLFSSL_RENESAS_RSIP) || \
|
|
defined(NO_WOLFSSL_RENESAS_FSPSM_HASH))
|
|
#if !defined(WOLFSSL_RENESAS_RX64_HASH)
|
|
|
|
#if !defined(WOLFSSL_HAVE_PSA) || defined(WOLFSSL_PSA_NO_HASH)
|
|
|
|
/* wc_ShaGetHash get hash value */
|
|
int wc_ShaGetHash(wc_Sha* sha, byte* hash)
|
|
{
|
|
int ret;
|
|
#ifdef WOLFSSL_SMALL_STACK
|
|
wc_Sha* tmpSha;
|
|
#else
|
|
wc_Sha tmpSha[1];
|
|
#endif
|
|
|
|
if (sha == NULL || hash == NULL) {
|
|
return BAD_FUNC_ARG;
|
|
}
|
|
|
|
#ifdef WOLFSSL_SMALL_STACK
|
|
tmpSha = (wc_Sha*)XMALLOC(sizeof(wc_Sha), NULL,
|
|
DYNAMIC_TYPE_TMP_BUFFER);
|
|
if (tmpSha == NULL) {
|
|
return MEMORY_E;
|
|
}
|
|
#endif
|
|
|
|
ret = wc_ShaCopy(sha, tmpSha);
|
|
if (ret == 0) {
|
|
ret = wc_ShaFinal(tmpSha, hash);
|
|
}
|
|
|
|
#ifdef WOLFSSL_SMALL_STACK
|
|
XFREE(tmpSha, NULL, DYNAMIC_TYPE_TMP_BUFFER);
|
|
#endif
|
|
|
|
return ret;
|
|
}
|
|
|
|
int wc_ShaCopy(wc_Sha* src, wc_Sha* dst)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (src == NULL || dst == NULL)
|
|
return BAD_FUNC_ARG;
|
|
|
|
XMEMCPY(dst, src, sizeof(wc_Sha));
|
|
|
|
#if defined(WOLFSSL_SILABS_SE_ACCEL) && defined(WOLFSSL_SILABS_SE_ACCEL_3)
|
|
dst->silabsCtx.hash_ctx.cmd_ctx = &dst->silabsCtx.cmd_ctx;
|
|
dst->silabsCtx.hash_ctx.hash_type_ctx = &dst->silabsCtx.hash_type_ctx;
|
|
#endif
|
|
|
|
#if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_SHA)
|
|
ret = wolfAsync_DevCopy(&src->asyncDev, &dst->asyncDev);
|
|
#endif
|
|
|
|
#ifdef WOLFSSL_PIC32MZ_HASH
|
|
ret = wc_Pic32HashCopy(&src->cache, &dst->cache);
|
|
#endif
|
|
|
|
#if defined(WOLFSSL_SE050) && defined(WOLFSSL_SE050_HASH)
|
|
ret = se050_hash_copy(&src->se050Ctx, &dst->se050Ctx);
|
|
#endif
|
|
|
|
#if defined(WOLFSSL_USE_ESP32_CRYPT_HASH_HW)
|
|
esp_sha_ctx_copy(src, dst);
|
|
#endif
|
|
|
|
#ifdef WOLFSSL_HASH_FLAGS
|
|
dst->flags |= WC_HASH_FLAG_ISCOPY;
|
|
#endif
|
|
return ret;
|
|
}
|
|
#endif /* WOLFSSL_RENESAS_RX64_HASH */
|
|
#endif /* !defined(WOLFSSL_HAVE_PSA) || defined(WOLFSSL_PSA_NO_HASH) */
|
|
#endif /* !defined(WOLFSSL_RENESAS_TSIP_TLS) && \
|
|
!defined(WOLFSSL_RENESAS_TSIP_CRYPTONLY) ||
|
|
defined(NO_WOLFSSL_RENESAS_TSIP_CRYPT_HASH) */
|
|
#endif /* !defined(WOLFSSL_TI_HASH) && !defined(WOLFSSL_IMXRT_DCP) */
|
|
|
|
#ifdef WOLFSSL_HASH_FLAGS
|
|
int wc_ShaSetFlags(wc_Sha* sha, word32 flags)
|
|
{
|
|
if (sha) {
|
|
sha->flags = flags;
|
|
}
|
|
return 0;
|
|
}
|
|
int wc_ShaGetFlags(wc_Sha* sha, word32* flags)
|
|
{
|
|
if (sha && flags) {
|
|
*flags = sha->flags;
|
|
}
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
#endif /* !NO_SHA */
|