MAX_CARLINK_A270S/MXC_A27-PCB4.5-270T/ArkmicroFiles/libcpu-amt630hv100/source/uart.c

1102 lines
29 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#include <stdio.h>
#include <stddef.h>
#include <string.h>
#include "FreeRTOS.h"
#include "chip.h"
#include "board.h"
#include "serial.h"
#include "sysinfo.h"
/* UART Register Offsets. */
#define UART_DR 0x00 /* Data read or written from the interface. */
#define UART_RSR 0x04 /* Receive status register (Read). */
#define UART_FR 0x18 /* Flag register (Read only). */
#define UART_ILPR 0x20 /* IrDA low power counter register. */
#define UART_IBRD 0x24 /* Integer baud rate divisor register. */
#define UART_FBRD 0x28 /* Fractional baud rate divisor register. */
#define UART_LCRH 0x2c /* Line control register. */
#define UART_CR 0x30 /* Control register. */
#define UART_IFLS 0x34 /* Interrupt fifo level select. */
#define UART_IMSC 0x38 /* Interrupt mask. */
#define UART_RIS 0x3c /* Raw interrupt status. */
#define UART_MIS 0x40 /* Masked interrupt status. */
#define UART_ICR 0x44 /* Interrupt clear register. */
#define UART_DMACR 0x48 /* DMA control register. */
#define UART_DR_OE (1 << 11)
#define UART_DR_BE (1 << 10)
#define UART_DR_PE (1 << 9)
#define UART_DR_FE (1 << 8)
#define UART_RSR_OE 0x08
#define UART_RSR_BE 0x04
#define UART_RSR_PE 0x02
#define UART_RSR_FE 0x01
#define UART_FR_RI 0x100
#define UART_FR_TXFE 0x080
#define UART_FR_RXFF 0x040
#define UART_FR_TXFF 0x020
#define UART_FR_RXFE 0x010
#define UART_FR_BUSY 0x008
#define UART_FR_DCD 0x004
#define UART_FR_DSR 0x002
#define UART_FR_CTS 0x001
#define UART_FR_TMSK (UART_FR_TXFF + UART_FR_BUSY)
#define UART_CR_CTSEN 0x8000 /* CTS hardware flow control */
#define UART_CR_RTSEN 0x4000 /* RTS hardware flow control */
#define UART_CR_OUT2 0x2000 /* OUT2 */
#define UART_CR_OUT1 0x1000 /* OUT1 */
#define UART_CR_RTS 0x0800 /* RTS */
#define UART_CR_DTR 0x0400 /* DTR */
#define UART_CR_RXE 0x0200 /* receive enable */
#define UART_CR_TXE 0x0100 /* transmit enable */
#define UART_CR_LBE 0x0080 /* loopback enable */
#define UART_CR_RTIE 0x0040
#define UART_CR_TIE 0x0020
#define UART_CR_RIE 0x0010
#define UART_CR_MSIE 0x0008
#define UART_CR_IIRLP 0x0004 /* SIR low power mode */
#define UART_CR_SIREN 0x0002 /* SIR enable */
#define UART_CR_UARTEN 0x0001 /* UART enable */
#define UART_LCRH_SPS 0x80
#define UART_LCRH_WLEN_8 0x60
#define UART_LCRH_WLEN_7 0x40
#define UART_LCRH_WLEN_6 0x20
#define UART_LCRH_WLEN_5 0x00
#define UART_LCRH_FEN 0x10
#define UART_LCRH_STP2 0x08
#define UART_LCRH_EPS 0x04
#define UART_LCRH_PEN 0x02
#define UART_LCRH_BRK 0x01
#define UART_IFLS_RX1_8 (0 << 3)
#define UART_IFLS_RX2_8 (1 << 3)
#define UART_IFLS_RX4_8 (2 << 3)
#define UART_IFLS_RX6_8 (3 << 3)
#define UART_IFLS_RX7_8 (4 << 3)
#define UART_IFLS_TX1_8 (0 << 0)
#define UART_IFLS_TX2_8 (1 << 0)
#define UART_IFLS_TX4_8 (2 << 0)
#define UART_IFLS_TX6_8 (3 << 0)
#define UART_IFLS_TX7_8 (4 << 0)
#define UART_OEIM (1 << 10) /* overrun error interrupt mask */
#define UART_BEIM (1 << 9) /* break error interrupt mask */
#define UART_PEIM (1 << 8) /* parity error interrupt mask */
#define UART_FEIM (1 << 7) /* framing error interrupt mask */
#define UART_RTIM (1 << 6) /* receive timeout interrupt mask */
#define UART_TXIM (1 << 5) /* transmit interrupt mask */
#define UART_RXIM (1 << 4) /* receive interrupt mask */
#define UART_DSRMIM (1 << 3) /* DSR interrupt mask */
#define UART_DCDMIM (1 << 2) /* DCD interrupt mask */
#define UART_CTSMIM (1 << 1) /* CTS interrupt mask */
#define UART_RIMIM (1 << 0) /* RI interrupt mask */
#define UART_OEIS (1 << 10) /* overrun error interrupt status */
#define UART_BEIS (1 << 9) /* break error interrupt status */
#define UART_PEIS (1 << 8) /* parity error interrupt status */
#define UART_FEIS (1 << 7) /* framing error interrupt status */
#define UART_RTIS (1 << 6) /* receive timeout interrupt status */
#define UART_TXIS (1 << 5) /* transmit interrupt status */
#define UART_RXIS (1 << 4) /* receive interrupt status */
#define UART_DSRMIS (1 << 3) /* DSR interrupt status */
#define UART_DCDMIS (1 << 2) /* DCD interrupt status */
#define UART_CTSMIS (1 << 1) /* CTS interrupt status */
#define UART_RIMIS (1 << 0) /* RI interrupt status */
#define UART485_RBR_THR_DLL 0x000
#define UART485_DLH_IER 0x004
#define UART485_IIR_FCR 0x008
#define UART485_RBR 0x000
#define UART485_THR 0x000
#define UART485_DLL 0x000
#define UART485_DLH 0x004
#define UART485_IER 0x004
#define UART485_IIR 0x008
#define UART485_FCR 0x008
#define UART485_LCR 0x00C
#define UART485_MCR 0x010
#define UART485_LSR 0x014
#define UART485_MSR 0x018
#define UART485_SCR 0x01C
#define UART485_LPDLL 0x020
#define UART485_LPDLH 0x024
#define UART485_RESERVED 0x028
#define UART485_SRBR 0x030
#define UART485_STHR 0x06C
#define UART485_FAR 0x070
#define UART485_TFR 0x074
#define UART485_RFW 0x078
#define UART485_USR 0x07C
#define UART485_TFL 0x080
#define UART485_RFL 0x084
#define UART485_SRR 0x088
#define UART485_SRTS 0x08C
#define UART485_SBCR 0x090
#define UART485_SDMAM 0x094
#define UART485_SFE 0x098
#define UART485_SRT 0x09C
#define UART485_STET 0x0A0
#define UART485_HTX 0x0A4
#define UART485_DMASA 0x0A8
#define UART485_TCR 0x0AC
#define UART485_DE_EN 0x0B0
#define UART485_RE_EN 0x0B4
#define UART485_DET 0x0B8
#define UART485_TAT 0x0BC
#define UART485_DLF 0x0C0
#define UART485_RAR 0x0C4
#define UART485_TAR 0x0C8
#define UART485_LCR_EXT 0x0CC
#define UART485_CPR 0x0F4
#define UART485_UCV 0x0F8
#define UART485_CTR 0x0FC
#define UART485_LSR_RFE (1 << 7)
#define UART485_LSR_TEMT (1 << 6)
#define UART485_LSR_THRE (1 << 5)
#define UART485_LSR_BI (1 << 4)
#define UART485_LSR_FE (1 << 3)
#define UART485_LSR_PE (1 << 2)
#define UART485_LSR_OE (1 << 1)
#define UART485_LSR_DR (1 << 0)
#define UART485_IIR_IID_MASK (0xf << 0)
#define UART485_IIR_IID_MODEM_STATUS 0x0
#define UART485_IIR_IID_NO_INT_PENDING 0x1
#define UART485_IIR_IID_THR_EMPTY 0x2
#define UART485_IIR_IID_REV_DATA_AVAIL 0x4
#define UART485_IIR_IID_REV_LINE_STATUS 0x6
#define UART485_IIR_IID_BUSY_DETECT 0x7
#define UART485_IIR_IID_CHAR_TIMEOUT 0xc
#define CSIZE 0x0003
#define CS8 0x0000
#define CS6 0x0001
#define CS7 0x0002
#define CS5 0x0003
#define CSTOPB 0x0004
#define PARENB 0x0010
#define PARODD 0x0020
#define CMSPAR 0x0100 /* mark or space (stick) parity */
#define CRTSCTS 0x0200 /* flow control */
#define UART_CLK 24000000
#define UART_DEBUG_PORT UART_ID0
#define UART_BUF_SIZE 4096
#define UART_ISR_PASS_LIMIT 16
#define UART_BLOCK_TIMEOUT pdMS_TO_TICKS(100)
#define UART_NO_BLOCK ( ( TickType_t ) 0 )
static uint32_t ulUartBase[UART_NUM] = {REGS_UART0_BASE, REGS_UART1_BASE, REGS_UART2_BASE, REGS_UART3_BASE};
static UartPort_t *pxUartPort[UART_NUM] = {NULL};
#define uart_circ_empty(circ) ((circ)->head == (circ)->tail)
#define uart_circ_clear(circ) ((circ)->head = (circ)->tail = 0)
#define uart_circ_chars_pending(circ) \
(CIRC_CNT((circ)->head, (circ)->tail, UART_XMIT_SIZE))
#define uart_circ_chars_free(circ) \
(CIRC_SPACE((circ)->head, (circ)->tail, UART_XMIT_SIZE))
/* static void vUartSlectPad(uint32_t id)
{
switch (id) {
case UART_ID0:
vSysctlConfigure(SYS_PAD_CTRL02, 12, 0xf, 5);
break;
case UART_ID1:
vSysctlConfigure(SYS_PAD_CTRL02, 16, 0xf, 5);
break;
case UART_ID2:
vSysctlConfigure(SYS_PAD_CTRL02, 20, 0xf, 5);
break;
case UART_ID3:
vSysctlConfigure(SYS_PAD_CTRL02, 24, 0xf, 5);
break;
}
} */
static int iUartRxChars(UartPort_t *uap)
{
uint32_t status;
unsigned int ch, max_count = 256;
int fifotaken = 0;
while (max_count--) {
status = readl(uap->regbase + UART_FR);
if (status & UART_FR_RXFE)
break;
/* Take chars from the FIFO and update status */
ch = readl(uap->regbase + UART_DR);
fifotaken++;
/* discard when rx buf is full */
if (CIRC_SPACE_TO_END(uap->rxbuf.head, uap->rxbuf.tail, UART_BUF_SIZE) > 0) {
*(uap->rxbuf.buf + uap->rxbuf.head) = ch;
uap->rxbuf.head = (uap->rxbuf.head + 1) & (UART_BUF_SIZE - 1);
} else {
;//printf("uart%d rx buf is full, discard a data.\n", uap->id);
}
}
if (fifotaken > 0)
xSemaphoreGiveFromISR(uap->xRev, NULL);
return fifotaken;
}
static void vUartStopTx(UartPort_t *uap)
{
writel(readl(uap->regbase + UART_IMSC) & ~UART_TXIM, uap->regbase + UART_IMSC);
}
static void vUartStartTx(UartPort_t *uap)
{
writel(readl(uap->regbase + UART_IMSC) | UART_TXIM, uap->regbase + UART_IMSC);
}
static BaseType_t xUartTxChar(UartPort_t *uap, unsigned char c, int from_irq)
{
if (!from_irq && (readl(uap->regbase + UART_FR) & UART_FR_TXFF))
return pdFALSE; /* unable to transmit character */
writel(c, uap->regbase + UART_DR);
return pdTRUE;
}
/* Returns true if tx interrupts have to be (kept) enabled */
static BaseType_t xUartTxChars(UartPort_t *uap, int from_irq)
{
struct circ_buf *xmit = &uap->txbuf;
int count = uap->fifosize >> 1;
if (uart_circ_empty(xmit)) {
vUartStopTx(uap);
return pdFALSE;
}
do {
if (from_irq && count-- == 0)
break;
if (!xUartTxChar(uap, xmit->buf[xmit->tail], from_irq))
break;
xmit->tail = (xmit->tail + 1) & (UART_BUF_SIZE - 1);
} while (!uart_circ_empty(xmit));
if (from_irq)
xSemaphoreGiveFromISR(uap->xSend, NULL);
if (uart_circ_empty(xmit)) {
vUartStopTx(uap);
return pdFALSE;
}
return pdTRUE;
}
static void vUartIntHandler(void *param)
{
UartPort_t *uap = param;
uint32_t status;
uint32_t imsc;
uint32_t pass_counter = UART_ISR_PASS_LIMIT;
imsc = readl(uap->regbase + UART_IMSC);
status = readl(uap->regbase + UART_RIS) & imsc;
if (status) {
do {
writel(status & ~(UART_TXIS | UART_RTIS | UART_RXIS),
uap->regbase + UART_ICR);
if (status & (UART_RTIS | UART_RXIS)) {
iUartRxChars(uap);
}
if (status & UART_TXIS)
xUartTxChars(uap, pdTRUE);
if (pass_counter-- == 0)
break;
status = readl(uap->regbase + UART_RIS) & imsc;
} while (status != 0);
}
}
static void vUart485StopTx(UartPort_t *uap)
{
writel(readl(uap->regbase + UART485_IER) & ~(1 << 1), uap->regbase + UART485_IER);
}
static void vUart485StartTx(UartPort_t *uap)
{
writel(readl(uap->regbase + UART485_IER) | (1 << 1), uap->regbase + UART485_IER);
}
static int iUart485RxChars(UartPort_t *uap)
{
uint32_t lsr;
unsigned int ch, max_count = 256;
int fifotaken = 0;
while (max_count--) {
lsr = readl(uap->regbase + UART485_LSR);
if (!(lsr & UART485_LSR_DR))
break;
/* Take chars from the FIFO and update status */
ch = readl(uap->regbase + UART485_RBR);
fifotaken++;
/* discard when rx buf is full */
if (CIRC_SPACE_TO_END(uap->rxbuf.head, uap->rxbuf.tail, UART_BUF_SIZE) > 0) {
*(uap->rxbuf.buf + uap->rxbuf.head) = ch;
uap->rxbuf.head = (uap->rxbuf.head + 1) & (UART_BUF_SIZE - 1);
} else {
//printf("uart%d rx buf is full, discard a data.\n", uap->id);
}
}
if (fifotaken > 0)
xSemaphoreGiveFromISR(uap->xRev, NULL);
return fifotaken;
}
/* Returns true if tx interrupts have to be (kept) enabled */
static BaseType_t xUart485TxChars(UartPort_t *uap, int from_irq)
{
struct circ_buf *xmit = &uap->txbuf;
int count = uap->fifosize >> 1;
if (uart_circ_empty(xmit)) {
vUart485StopTx(uap);
return pdFALSE;
}
do {
if (from_irq && count-- == 0)
break;
writel(xmit->buf[xmit->tail], uap->regbase + UART485_THR);
xmit->tail = (xmit->tail + 1) & (UART_BUF_SIZE - 1);
} while (!uart_circ_empty(xmit));
if (from_irq)
xSemaphoreGiveFromISR(uap->xSend, NULL);
return pdTRUE;
}
static void vUart485IntHandler(void *param)
{
UartPort_t *uap = param;
uint32_t iir;
iir = readl(uap->regbase + UART485_IIR);
switch (iir & UART485_IIR_IID_MASK) {
case UART485_IIR_IID_THR_EMPTY:
xUart485TxChars(uap, 1);
break;
case UART485_IIR_IID_REV_DATA_AVAIL:
case UART485_IIR_IID_REV_LINE_STATUS:
case UART485_IIR_IID_CHAR_TIMEOUT:
iUart485RxChars(uap);
break;
case UART485_IIR_IID_BUSY_DETECT:
iir = readl(uap->regbase + UART485_USR); //clear busy interrupt
break;
}
}
UartPort_t *xUartOpen(uint32_t id)
{
int irq;
if (id >= UART_NUM) {
TRACE_INFO("Wrong input uart id.\n");
return NULL;
}
if (pxUartPort[id] != NULL) {
if (id != UART_DEBUG_PORT)
TRACE_ERROR("Uart %d is already in use.\n", id);
return NULL;
}
UartPort_t *uap = (UartPort_t *)pvPortMalloc(sizeof(UartPort_t));
if (uap == NULL) {
if (id != UART_DEBUG_PORT)
TRACE_ERROR("Out of memory for uart%d.\n", id);
return NULL;
}
memset(uap, 0, sizeof(*uap));
uap->rxbuf.buf = (char*)pvPortMalloc(UART_BUF_SIZE);
if (uap->rxbuf.buf == NULL) {
if (id != UART_DEBUG_PORT)
TRACE_ERROR("Out of memory for uart%d.\n", id);
goto err;
}
uap->txbuf.buf = (char*)pvPortMalloc(UART_BUF_SIZE);
if (uap->txbuf.buf == NULL) {
if (id != UART_DEBUG_PORT)
TRACE_ERROR("Out of memory for uart%d.\n", id);
goto err;
}
uap->xMutex = xSemaphoreCreateRecursiveMutex();
configASSERT(uap->xMutex);
uap->xRev = xSemaphoreCreateBinary();
configASSERT(uap->xRev);
uap->xSend = xSemaphoreCreateBinary();
configASSERT(uap->xSend);
//vUartSlectPad(id);
uap->id = id;
uap->regbase = ulUartBase[id];
if ((uap->id == UART_ID0) || (uap->id == UART_ID2))
uap->fifosize = 16;
else if (uap->id == UART_ID1)
uap->fifosize = 32;
else
uap->fifosize = 128;
irq = UART0_IRQn + id;
if ((uap->id == UART_ID0) || (uap->id == UART_ID2))
request_irq(irq, 0, vUartIntHandler, uap);
else
request_irq(irq, 0, vUart485IntHandler, uap);
return pxUartPort[id] = uap;
err:
if (uap->txbuf.buf)
vPortFree(uap->txbuf.buf);
if (uap->rxbuf.buf)
vPortFree(uap->rxbuf.buf);
vPortFree(uap);
return NULL;
};
void vUartInit(UartPort_t *uap, uint32_t baud, uint32_t flags)
{
unsigned int lcr_h, quot, cr;
int count = 0;
/* soft reset */
sys_soft_reset(softreset_uart0 + uap->id - UART_ID0);
if ((uap->id == UART_ID0) || (uap->id == UART_ID2)) {
if (baud > UART_CLK / 16)
quot = (UART_CLK * 8 + baud / 2) / baud;
else
quot = (UART_CLK * 4 + baud / 2) / baud;
switch (flags & CSIZE) {
case CS5:
lcr_h = UART_LCRH_WLEN_5;
break;
case CS6:
lcr_h = UART_LCRH_WLEN_6;
break;
case CS7:
lcr_h = UART_LCRH_WLEN_7;
break;
default: // CS8
lcr_h = UART_LCRH_WLEN_8;
break;
}
if (flags & CSTOPB)
lcr_h |= UART_LCRH_STP2;
if (flags & PARENB) {
lcr_h |= UART_LCRH_PEN;
if (!(flags & PARODD))
lcr_h |= UART_LCRH_EPS;
if (flags & CMSPAR)
lcr_h |= UART_LCRH_SPS;
}
lcr_h |= UART_LCRH_FEN;
/* Provoke TX FIFO interrupt into asserting */
cr = UART_CR_UARTEN | UART_CR_TXE | UART_CR_LBE;
reconfig:
writel(cr, uap->regbase + UART_CR);
writel(0, uap->regbase + UART_FBRD);
writel(1, uap->regbase + UART_IBRD);
writel(0, uap->regbase + UART_LCRH);
writel(0, uap->regbase + UART_DR);
while (readl(uap->regbase + UART_FR) & UART_FR_BUSY);
if (count++ < 10 && !(readl(uap->regbase + UART_RIS) & UART_TXIS)) {
printf("ERROR! Uart status wrong.\n");
goto reconfig;
}
/* first, disable everything */
writel(0, uap->regbase + UART_CR);
cr = UART_CR_RXE | UART_CR_TXE;
if (flags & CRTSCTS)
cr |= UART_CR_CTSEN | UART_CR_RTSEN;
/* Set baud rate */
writel(quot & 0x3f, uap->regbase + UART_FBRD);
writel(quot >> 6, uap->regbase + UART_IBRD);
writel(UART_RTIM | UART_RXIM, uap->regbase + UART_IMSC);
writel(UART_IFLS_RX4_8 | UART_IFLS_TX4_8, uap->regbase + UART_IFLS);
writel(lcr_h, uap->regbase + UART_LCRH);
writel(cr | UART_CR_UARTEN, uap->regbase + UART_CR);
} else {
//set modem
writel(0, uap->regbase + UART485_MCR);
// baud = clk/(16*U_DLL)
//set baud rate
writel(readl(uap->regbase + UART485_LCR) | (1 << 7), uap->regbase + UART485_LCR);
writel(UART_CLK / (16 * baud), uap->regbase + UART485_DLL);
writel(0, uap->regbase + UART485_DLH);
if ((uap->id == UART_ID1) || (uap->id == UART_ID3)) { //Set fractional baud rate
//Fractional baud divisor = ((uart_clk%(16*baud))/(16*baud)) * 16 = (uart_clk%(16*baud)) * 16 / (16*baud);
u32 divisor = (UART_CLK % (16*baud)) * 16 / (16*baud);
printf("fractional divisor:%d\n", divisor);
writel(divisor, uap->regbase + UART485_DLF);
}
writel(readl(uap->regbase + UART485_LCR) & ~(1 << 7), uap->regbase + UART485_LCR);
cr = readl(uap->regbase + UART485_LCR);
//校验
cr &= ~(7 << 3);
if (flags & PARENB) {
cr |= (1 << 3);
if (!(flags & PARODD))
cr |= (1 << 4);
if (flags & CMSPAR)
cr |= (1 << 5);
}
//停止位
if (flags & CSTOPB)
cr |= (1 << 2);
else
cr &= ~(1 << 2);
//数据位
cr &= ~(3 << 0);
switch (flags & CSIZE) {
case CS5:
break;
case CS6:
cr |= 1;
break;
case CS7:
cr |= 2;
break;
default: // CS8
cr |= 3;
break;
}
writel(cr, uap->regbase + UART485_LCR);
//set fifo
writel((2 << 6) | (3 << 4) | 7, uap->regbase + UART485_FCR);
//enable rx and err interrupt
writel((1 << 4) | 1, uap->regbase + UART485_IER);
//设置通信模式全双工还是半双工
//485mode disable
writel(0, uap->regbase + UART485_TCR);
}
/* 高速串口先初始化再配置pad脚否则在初始化过程中有收到数据会导致串口出错 */
if(uap->id == UART_ID1)
pinctrl_set_group(PGRP_UART1);
else if(uap->id == UART_ID3)
pinctrl_set_group(PGRP_UART3);
}
void vUartClose(UartPort_t *uap)
{
if (uap == NULL) return;
if ((uap->id == UART_ID0) || (uap->id == UART_ID2)) {
writel(0, uap->regbase + UART_IMSC);
writel(0, uap->regbase + UART_CR);
} else {
}
vSemaphoreDelete(uap->xSend);
vSemaphoreDelete(uap->xRev);
vSemaphoreDelete(uap->xMutex);
vPortFree(uap->rxbuf.buf);
uap->rxbuf.tail = uap->rxbuf.head = 0;
vPortFree(uap->txbuf.buf);
uap->rxbuf.tail = uap->rxbuf.head = 0;
vPortFree(uap);
pxUartPort[uap->id] = NULL;
}
int iUartWrite(UartPort_t *uap, uint8_t *buf, size_t len, TickType_t xBlockTime)
{
int c, ret = 0;
TickType_t timeout = xBlockTime;
TickType_t starttime = xTaskGetTickCount();
TickType_t sptime;
while (len) {
xSemaphoreTakeRecursive(uap->xMutex, portMAX_DELAY);
c = CIRC_SPACE_TO_END(uap->txbuf.head, uap->txbuf.tail, UART_BUF_SIZE);
if (len < c)
c = len;
if (c <= 0) {
xSemaphoreGiveRecursive(uap->xMutex);
sptime = xTaskGetTickCount() - starttime;
if (timeout > sptime) {
xSemaphoreTake(uap->xSend, timeout - sptime);
continue;
} else {
break;
}
}
memcpy(uap->txbuf.buf + uap->txbuf.head, buf, c);
uap->txbuf.head = (uap->txbuf.head + c) & (UART_BUF_SIZE - 1);
buf += c;
len -= c;
ret += c;
xSemaphoreGiveRecursive(uap->xMutex);
}
if ((uap->id == UART_ID0) || (uap->id == UART_ID2))
vUartStartTx(uap);
else
vUart485StartTx(uap);
return ret;
}
int iUartReadNoBlock(UartPort_t *uap, uint8_t *buf, size_t len)
{
int c;
xSemaphoreTakeRecursive(uap->xMutex, portMAX_DELAY);
c = CIRC_CNT_TO_END(uap->rxbuf.head, uap->rxbuf.tail, UART_BUF_SIZE);
if (len < c)
c = len;
if (c <= 0) {
xSemaphoreGiveRecursive(uap->xMutex);
}
memcpy(buf, uap->rxbuf.buf + uap->rxbuf.tail, c);
uap->rxbuf.tail = (uap->rxbuf.tail + c) & (UART_BUF_SIZE - 1);
xSemaphoreGiveRecursive(uap->xMutex);
return c;
}
int iUartRead(UartPort_t *uap, uint8_t *buf, size_t len, TickType_t xBlockTime)
{
int c, ret = 0;
TickType_t timeout = xBlockTime;
TickType_t starttime = xTaskGetTickCount();
TickType_t sptime;
while (len) {
xSemaphoreTakeRecursive(uap->xMutex, portMAX_DELAY);
c = CIRC_CNT_TO_END(uap->rxbuf.head, uap->rxbuf.tail, UART_BUF_SIZE);
if (len < c)
c = len;
if (c <= 0) {
xSemaphoreGiveRecursive(uap->xMutex);
sptime = xTaskGetTickCount() - starttime;
if (timeout > sptime) {
xSemaphoreTake(uap->xRev, timeout - sptime);
continue;
} else {
break;
}
}
memcpy(buf, uap->rxbuf.buf + uap->rxbuf.tail, c);
uap->rxbuf.tail = (uap->rxbuf.tail + c) & (UART_BUF_SIZE - 1);
buf += c;
len -= c;
ret += c;
xSemaphoreGiveRecursive(uap->xMutex);
}
return ret;
}
void vDebugConsoleInitialise(void)
{
UartPort_t *uap = xUartOpen(UART_DEBUG_PORT);
if (uap != NULL) {
vUartInit(uap, 115200, 0);
}
}
/* retarget printf function */
int32_t putchar(int32_t ch)
{
while (readl(REGS_UART0_BASE + UART_FR) & UART_FR_TXFF);
writel(ch, REGS_UART0_BASE + UART_DR);
return ch;
}
xComPortHandle xSerialPortInitMinimal( unsigned long ulWantedBaud, unsigned portBASE_TYPE uxQueueLength )
{
return pxUartPort[UART_DEBUG_PORT];
}
signed portBASE_TYPE xSerialPutChar( xComPortHandle pxPort, signed char cOutChar, TickType_t xBlockTime )
{
if (iUartWrite(pxPort, (uint8_t *)&cOutChar, 1, xBlockTime) == 1)
return pdPASS;
return pdFAIL;
}
void vSerialPutString( xComPortHandle pxPort, const signed char * const pcString, unsigned short usStringLength )
{
signed char *pxNext;
/* NOTE: This implementation does not handle the queue being full as no
block time is used! */
/* The port handle is not required as this driver only supports UART0. */
( void ) pxPort;
( void ) usStringLength;
/* Send each character in the string, one at a time. */
pxNext = ( signed char * ) pcString;
while( *pxNext )
{
xSerialPutChar( pxPort, *pxNext, UART_NO_BLOCK );
pxNext++;
}
}
signed portBASE_TYPE xSerialGetChar( xComPortHandle pxPort, signed char *pcRxedChar, TickType_t xBlockTime )
{
if (iUartRead(pxPort, (uint8_t *)pcRxedChar, 1, xBlockTime) == 1)
return pdPASS;
return pdFAIL;
}
#define UUP_PACKET_SIZE 128
#define UUP_MAX_FRAME_LEN (UUP_PACKET_SIZE + 16)
#define UUP_RX_FRAME_NUM 16
static unsigned char uup_rx_buf[UUP_RX_FRAME_NUM][UUP_MAX_FRAME_LEN];
static unsigned char *uup_rx_ptr;
static int uup_rx_rev_len = 0;
static int uup_rx_head = 0;
static int uup_rx_tail = 0;
static int uup_rx_state = 0;
static int uup_rx_data_len = 0;
#ifdef OTA_UPDATE_SUPPORT
#include "ota_update.h"
#include "updatefile.h"
#include "romfile.h"
#include "animation.h"
#include "ff_stdio.h"
#if DEVICE_TYPE_SELECT != EMMC_FLASH
#include "ff_sfdisk.h"
#endif
/*
typedef enum {
UART_FRAME_START,
UART_FRAME_FILEINFO,
UART_FRAME_FILEXFER,
UART_FRAME_FINISH,
} eUartFrameType;
typedef enum {
UUP_STATE_IDLE,
UUP_STATE_START,
UUP_STATE_GET_FILEINFO,
UUP_STATE_FILE_TFR,
UUP_STATE_END,
} eUartUpdateState;
#define UUP_ACK_OK 1
#define UUP_ACK_FAIL 0
#define UUP_MAX_FILE_SIZE 0x1000000
#define UUP_RX_FRAME_NUM 16
#define UUP_MAX_LOADER_SIZE STEPLDR_MAX_SIZE//0x10000
*/
// static int uup_status = UUP_STATE_IDLE;
static int uup_file_type = 0;
static int uup_file_size = 0;
static int uup_packet_num = 0;
static int uup_rev_packet = 0;
static int uup_rev_len = 0;
static char uup_filename[32];
static FF_FILE *uup_file = NULL;
static void uup_send_ack(UartPort_t *uap, int type, int ret)
{
unsigned char buf[7] = {0x55, 0x80, 0xc5, 0x02, 0x00, 0x00, 0x00};
int i;
buf[4] = type;
buf[5] = ret;
for (i = 1; i < 6; i++)
buf[6] ^= buf[i];
iUartWrite(uap, buf, 7, pdMS_TO_TICKS(100));
}
#if 0
void uup_ota_update(UartPort_t *uap, uint8_t *framebuf, size_t len)
{
int frametype = framebuf[0];
uint8_t *buf = framebuf + 1;
unsigned int framelen;
unsigned int packetnum;
SysInfo *sysinfo = GetSysInfo();
switch (frametype) {
case UART_FRAME_START:
uup_send_ack(uap, frametype, UUP_ACK_OK);
uup_status = UUP_STATE_START;
break;
case UART_FRAME_FILEINFO:
if (uup_status != UUP_STATE_START && uup_status != UUP_STATE_GET_FILEINFO) {
uup_send_ack(uap, frametype, UUP_ACK_FAIL);
break;
}
uup_rev_len = 0;
uup_rev_packet = 0;
if (uup_file) {
ff_fclose(uup_file);
uup_file = NULL;
}
uup_file_type = buf[0];
if (uup_file_type > UPFILE_TYPE_LNCHEMMC) {
printf("Rev wrong file type %d.\n", uup_file_type);
uup_send_ack(uap, frametype, UUP_ACK_FAIL);
break;
}
uup_packet_num = (buf[1] << 16) | (buf[2] << 8) | buf[3];
uup_file_size = UUP_PACKET_SIZE * uup_packet_num;
if (uup_file_size > UUP_MAX_FILE_SIZE) {
printf("Rev wrong file size.\n");
uup_send_ack(uap, frametype, UUP_ACK_FAIL);
break;
}
#if DEVICE_TYPE_SELECT != EMMC_FLASH
{
FF_Disk_t *sfdisk = FF_SFDiskInit(SF_MOUNT_PATH);
if (!sfdisk) {
printf("FF_SFDiskInit fail.\n");
uup_send_ack(uap, frametype, UUP_ACK_FAIL);
break;
}
}
#endif
strcpy(uup_filename, OTA_MOUNT_PATH);
strcat(uup_filename, "/");
strcat(uup_filename, g_upfilename[uup_file_type]);
uup_file = ff_fopen(uup_filename, "wb");
if (!uup_file) {
printf("create uup_file %s fail.\n", uup_filename);
uup_send_ack(uap, frametype, UUP_ACK_FAIL);
break;
}
uup_send_ack(uap, frametype, UUP_ACK_OK);
uup_status = UUP_STATE_GET_FILEINFO;
break;
case UART_FRAME_FILEXFER:
if (uup_status != UUP_STATE_GET_FILEINFO && uup_status != UUP_STATE_FILE_TFR) {
uup_send_ack(uap, frametype, UUP_ACK_FAIL);
break;
}
packetnum = buf[0];
printf("uup_rev_packet %d.\n", uup_rev_packet);
if ((uup_rev_packet & 0xff) != packetnum) {
printf("Wrong packet number.\n");
uup_send_ack(uap, frametype, UUP_ACK_FAIL);
break;
}
framelen = len - 2;
/* only last frame size is less than UUP_PACKET_SIZE */
if (framelen > UUP_PACKET_SIZE ||
(framelen < UUP_PACKET_SIZE && uup_rev_packet != uup_packet_num - 1)) {
printf("Wrong packet len.\n");
uup_send_ack(uap, frametype, UUP_ACK_FAIL);
break;
}
uup_rev_len += framelen;
if (uup_file_type >= UPFILE_TYPE_FIRSTLDR && uup_rev_len > UUP_MAX_LOADER_SIZE) {
printf("loader file is too large.\n");
uup_send_ack(uap, frametype, UUP_ACK_FAIL);
break;
}
uup_rev_packet++;
if (uup_file) {
if (ff_fwrite(buf + 1, 1, framelen, uup_file) != framelen) {
printf("write ota data fail.\n");
uup_send_ack(uap, frametype, UUP_ACK_FAIL);
break;
}
} else {
printf("uup_file is not created.\n");
uup_send_ack(uap, frametype, UUP_ACK_FAIL);
break;
}
uup_send_ack(uap, frametype, UUP_ACK_OK);
uup_status = UUP_STATE_FILE_TFR;
break;
case UART_FRAME_FINISH:
if (uup_status != UUP_STATE_FILE_TFR && uup_status != UART_FRAME_FINISH) {
uup_send_ack(uap, frametype, UUP_ACK_FAIL);
break;
}
if (!buf[0]) {
printf("update end with error!\n");
uup_send_ack(uap, frametype, UUP_ACK_FAIL);
uup_status = UUP_STATE_END;
break;
}
if (uup_file) {
ff_fclose(uup_file);
uup_file = NULL;
if (update_from_media(OTA_MOUNT_PATH, uup_file_type)) {
printf("update from ota fail.\n");
uup_send_ack(uap, frametype, UUP_ACK_FAIL);
} else {
printf("update from ota ok.\n");
SaveSysInfo();
uup_send_ack(uap, frametype, UUP_ACK_OK);
}
} else {
printf("uup_file is not created.\n");
uup_send_ack(uap, frametype, UUP_ACK_FAIL);
}
uup_status = UUP_STATE_END;
break;
}
}
#endif
#else
static void uart_tx_demo_thread(void *param)
{
UartPort_t *uap = param;
uint8_t uarttx[32] = "hello, i am amt630h\n";
//printf("### uart_tx_demo_thread\n");
for (;;) {
iUartWrite(uap, uarttx, strlen((char*)uarttx), pdMS_TO_TICKS(100));
vTaskDelay(1000);
}
}
#endif
uint8_t cmdstr[64];
uint16_t cmdlen = 0;
#define CALL_NUM_SIZE 20
extern void uart_test_tx_demo_thread(void *param);
static void uart_rx_demo_thread(void *param)
{
UartPort_t *uap = xUartOpen(UART_MCU_PORT);
uint8_t uartrx[64];
int len;
int i;
if (!uap) {
printf("open uart %d fail.\n", UART_MCU_PORT);
vTaskDelete(NULL);
return;
}
vUartInit(uap, 115200, 0);
#if 0
if (xTaskCreate(uart_tx_demo_thread, "uartsend", configMINIMAL_STACK_SIZE, uap,
configMAX_PRIORITIES / 3, NULL) != pdPASS) {
printf("create uart tx demo task fail.\n");
vTaskDelete(NULL);
return;
}
#endif
if (xTaskCreate(uart_test_tx_demo_thread, "uartsend", configMINIMAL_STACK_SIZE, uap,
configMAX_PRIORITIES / 3, NULL) != pdPASS) {
printf("create uart tx demo task fail.\n");
vTaskDelete(NULL);
return;
}
for (;;) {
len = iUartRead(uap, uartrx, 64, pdMS_TO_TICKS(100));
//打印
if(len!=0){
printf("uart2>>>>>>");
for(uint8_t i=0;i<len;i++){
printf("%c",uartrx[i]);
}
printf("\r\n");
if((0x01 == len) && (0x00 == uartrx[0])) break;
memcpy((cmdstr+cmdlen), uartrx, len);
cmdlen += len;
//收完一条数据标志以\r\r结尾
if((cmdstr[cmdlen-2]=='\r'|| cmdstr[cmdlen-2]=='\n'))
{
parseATCommand(cmdstr,cmdlen);
cmdlen = 0;
memset(cmdstr, 0, sizeof(cmdstr));
}
}
}
}
int uart_rx_demo(void)
{
/* Create a task to process uart rx data */
if (xTaskCreate(uart_rx_demo_thread, "uartdemo", configMINIMAL_STACK_SIZE, NULL,
configMAX_PRIORITIES / 3, NULL) != pdPASS) {
printf("create uart rx demo task fail.\n");
return -1;
}
return 0;
}