Files
MAX_CARLINK_A270S/MXC_A27-PCB4.5-270S/lib/wolfssl/wolfcrypt/src/wc_port.c
2025-01-21 16:49:37 +08:00

3953 lines
93 KiB
C

/* port.c
*
* Copyright (C) 2006-2023 wolfSSL Inc.
*
* This file is part of wolfSSL.
*
* wolfSSL is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* wolfSSL is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <wolfssl/wolfcrypt/settings.h>
#include <wolfssl/wolfcrypt/types.h>
#include <wolfssl/wolfcrypt/error-crypt.h>
#include <wolfssl/wolfcrypt/logging.h>
#include <wolfssl/wolfcrypt/wc_port.h>
#ifdef HAVE_ECC
#include <wolfssl/wolfcrypt/ecc.h>
#endif
#ifdef WOLFSSL_ASYNC_CRYPT
#include <wolfssl/wolfcrypt/async.h>
#endif
#ifdef FREESCALE_LTC_TFM
#include <wolfssl/wolfcrypt/port/nxp/ksdk_port.h>
#endif
#ifdef WOLFSSL_PSOC6_CRYPTO
#include <wolfssl/wolfcrypt/port/cypress/psoc6_crypto.h>
#endif
#ifdef MAXQ10XX_MODULE_INIT
#include <wolfssl/wolfcrypt/port/maxim/maxq10xx.h>
#endif
#if defined(WOLFSSL_ATMEL) || defined(WOLFSSL_ATECC508A) || \
defined(WOLFSSL_ATECC608A)
#include <wolfssl/wolfcrypt/port/atmel/atmel.h>
#endif
#if defined(WOLFSSL_RENESAS_TSIP)
#include <wolfssl/wolfcrypt/port/Renesas/renesas-tsip-crypt.h>
#endif
#if defined(WOLFSSL_RENESAS_FSPSM)
#include <wolfssl/wolfcrypt/port/Renesas/renesas-fspsm-crypt.h>
#endif
#if defined(WOLFSSL_RENESAS_RX64_HASH)
#include <wolfssl/wolfcrypt/port/Renesas/renesas-rx64-hw-crypt.h>
#endif
#if defined(WOLFSSL_STSAFEA100)
#include <wolfssl/wolfcrypt/port/st/stsafe.h>
#endif
#if (defined(OPENSSL_EXTRA) || defined(HAVE_WEBSERVER)) \
&& !defined(WOLFCRYPT_ONLY)
#include <wolfssl/openssl/evp.h>
#endif
#include <wolfssl/wolfcrypt/memory.h>
#if defined(USE_WOLFSSL_MEMORY) && defined(WOLFSSL_TRACK_MEMORY)
#include <wolfssl/wolfcrypt/mem_track.h>
#endif
#if defined(WOLFSSL_CAAM)
#include <wolfssl/wolfcrypt/port/caam/wolfcaam.h>
#endif
#if defined(HAVE_ARIA)
#include <wolfssl/wolfcrypt/port/aria/aria-cryptocb.h>
#endif
#if defined(WOLFSSL_DEVCRYPTO)
#include <wolfssl/wolfcrypt/port/devcrypto/wc_devcrypto.h>
#endif
#ifdef WOLFSSL_IMXRT_DCP
#include <wolfssl/wolfcrypt/port/nxp/dcp_port.h>
#endif
#ifdef WOLF_CRYPTO_CB
#include <wolfssl/wolfcrypt/cryptocb.h>
#endif
#ifdef HAVE_INTEL_QA_SYNC
#include <wolfssl/wolfcrypt/port/intel/quickassist_sync.h>
#endif
#ifdef HAVE_CAVIUM_OCTEON_SYNC
#include <wolfssl/wolfcrypt/port/cavium/cavium_octeon_sync.h>
#endif
#if defined(WOLFSSL_SE050) && defined(WOLFSSL_SE050_INIT)
#include <wolfssl/wolfcrypt/port/nxp/se050_port.h>
#endif
#ifdef WOLFSSL_SCE
#include "hal_data.h"
#endif
#if defined(WOLFSSL_DSP) && !defined(WOLFSSL_DSP_BUILD)
#include "rpcmem.h"
#endif
#ifdef _MSC_VER
/* 4996 warning to use MS extensions e.g., strcpy_s instead of strncpy */
#pragma warning(disable: 4996)
#endif
#if defined(WOLFSSL_HAVE_PSA)
#include <wolfssl/wolfcrypt/port/psa/psa.h>
#endif
#if defined(HAVE_LIBOQS)
#include <wolfssl/wolfcrypt/port/liboqs/liboqs.h>
#endif
#if defined(FREERTOS) && defined(WOLFSSL_ESPIDF)
#include <freertos/FreeRTOS.h>
#include <freertos/task.h>
/* The Espressif-specific platform include: */
#include <pthread.h>
#endif
/* prevent multiple mutex initializations */
static volatile int initRefCount = 0;
/* Used to initialize state for wolfcrypt
return 0 on success
*/
WOLFSSL_ABI
int wolfCrypt_Init(void)
{
int ret = 0;
if (initRefCount == 0) {
WOLFSSL_ENTER("wolfCrypt_Init");
#ifdef WOLFSSL_CHECK_MEM_ZERO
/* Initialize the mutex for access to the list of memory locations that
* must be freed. */
wc_MemZero_Init();
#endif
#ifdef WOLFSSL_MEM_FAIL_COUNT
wc_MemFailCount_Init();
#endif
#ifdef WOLFSSL_FORCE_MALLOC_FAIL_TEST
{
word32 rngMallocFail;
time_t seed = time(NULL);
srand((word32)seed);
rngMallocFail = rand() % 2000; /* max 2000 */
fprintf(stderr, "\n--- RNG MALLOC FAIL AT %u ---\n", rngMallocFail);
wolfSSL_SetMemFailCount(rngMallocFail);
}
#endif
#ifdef WOLF_CRYPTO_CB
wc_CryptoCb_Init();
#endif
#ifdef WOLFSSL_ASYNC_CRYPT
ret = wolfAsync_HardwareStart();
if (ret != 0) {
WOLFSSL_MSG("Async hardware start failed");
/* don't return failure, allow operation to continue */
}
#endif
#if defined(WOLFSSL_RENESAS_TSIP)
ret = tsip_Open( );
if( ret != TSIP_SUCCESS ) {
WOLFSSL_MSG("RENESAS TSIP Open failed");
/* not return 1 since WOLFSSL_SUCCESS=1*/
ret = -1;/* FATAL ERROR */
return ret;
}
#endif
#if defined(WOLFSSL_RENESAS_RX64_HASH)
ret = rx64_hw_Open();
if( ret != 0 ) {
WOLFSSL_MSG("Renesas RX64 HW Open failed");
/* not return 1 since WOLFSSL_SUCCESS=1*/
ret = -1;/* FATAL ERROR */
return ret;
}
#endif
#if defined(WOLFSSL_RENESAS_FSPSM)
ret = wc_fspsm_Open( );
if( ret != FSP_SUCCESS ) {
WOLFSSL_MSG("RENESAS SCE Open failed");
/* not return 1 since WOLFSSL_SUCCESS=1*/
ret = -1;/* FATAL ERROR */
return ret;
}
#endif
#if defined(WOLFSSL_TRACK_MEMORY) && !defined(WOLFSSL_STATIC_MEMORY)
ret = InitMemoryTracker();
if (ret != 0) {
WOLFSSL_MSG("InitMemoryTracker failed");
return ret;
}
#endif
#ifdef WOLFSSL_LINUXKM_USE_SAVE_VECTOR_REGISTERS
ret = allocate_wolfcrypt_linuxkm_fpu_states();
if (ret != 0) {
WOLFSSL_MSG("allocate_wolfcrypt_linuxkm_fpu_states failed");
return ret;
}
#endif
#if WOLFSSL_CRYPT_HW_MUTEX
/* If crypto hardware mutex protection is enabled, then initialize it */
ret = wolfSSL_CryptHwMutexInit();
if (ret != 0) {
WOLFSSL_MSG("Hw crypt mutex init failed");
return ret;
}
#endif
#if defined(FREESCALE_LTC_TFM) || defined(FREESCALE_LTC_ECC)
ret = ksdk_port_init();
if (ret != 0) {
WOLFSSL_MSG("KSDK port init failed");
return ret;
}
#endif
#if defined(WOLFSSL_ATMEL) || defined(WOLFSSL_ATECC508A) || \
defined(WOLFSSL_ATECC608A)
ret = atmel_init();
if (ret != 0) {
WOLFSSL_MSG("CryptoAuthLib init failed");
return ret;
}
#endif
#if defined(WOLFSSL_CRYPTOCELL)
/* enable and initialize the ARM CryptoCell 3xx runtime library */
ret = cc310_Init();
if (ret != 0) {
WOLFSSL_MSG("CRYPTOCELL init failed");
return ret;
}
#endif
#if defined(WOLFSSL_STSAFEA100)
stsafe_interface_init();
#endif
#if defined(WOLFSSL_PSOC6_CRYPTO)
ret = psoc6_crypto_port_init();
if (ret != 0) {
WOLFSSL_MSG("PSoC6 crypto engine init failed");
return ret;
}
#endif
#ifdef MAXQ10XX_MODULE_INIT
ret = maxq10xx_port_init();
if (ret != 0) {
WOLFSSL_MSG("MAXQ10xx port init failed");
return ret;
}
#endif
#ifdef WOLFSSL_SILABS_SE_ACCEL
/* init handles if it is already initialized */
ret = sl_se_init();
#endif
#if defined(WOLFSSL_SE050) && defined(WOLFSSL_SE050_INIT)
ret = wc_se050_init(NULL);
if (ret != 0) {
WOLFSSL_MSG("SE050 init failed");
return ret;
}
#endif
#ifdef WOLFSSL_ARMASM
WOLFSSL_MSG("Using ARM hardware acceleration");
#endif
#ifdef WOLFSSL_AFALG
WOLFSSL_MSG("Using AF_ALG for crypto acceleration");
#endif
#if !defined(WOLFCRYPT_ONLY) && defined(OPENSSL_EXTRA)
wolfSSL_EVP_init();
#endif
#if defined(OPENSSL_EXTRA) || defined(DEBUG_WOLFSSL_VERBOSE)
if ((ret = wc_LoggingInit()) != 0) {
WOLFSSL_MSG("Error creating logging mutex");
return ret;
}
#endif
#if defined(WOLFSSL_HAVE_PSA)
if ((ret = wc_psa_init()) != 0)
return ret;
#endif
#ifdef HAVE_ENTROPY_MEMUSE
ret = Entropy_Init();
if (ret != 0) {
WOLFSSL_MSG("Error initializing entropy");
return ret;
}
#endif
#ifdef HAVE_ECC
#ifdef FP_ECC
wc_ecc_fp_init();
#endif
#ifdef ECC_CACHE_CURVE
if ((ret = wc_ecc_curve_cache_init()) != 0) {
WOLFSSL_MSG("Error creating curve cache");
return ret;
}
#endif
#endif
#ifdef WOLFSSL_SCE
ret = (int)WOLFSSL_SCE_GSCE_HANDLE.p_api->open(
WOLFSSL_SCE_GSCE_HANDLE.p_ctrl, WOLFSSL_SCE_GSCE_HANDLE.p_cfg);
if (ret == SSP_ERR_CRYPTO_SCE_ALREADY_OPEN) {
WOLFSSL_MSG("SCE already open");
ret = 0;
}
if (ret != SSP_SUCCESS) {
WOLFSSL_MSG("Error opening SCE");
return -1; /* FATAL_ERROR */
}
#endif
#if defined(WOLFSSL_DEVCRYPTO)
if ((ret = wc_DevCryptoInit()) != 0) {
return ret;
}
#endif
#if defined(WOLFSSL_CAAM)
if ((ret = wc_caamInit()) != 0) {
return ret;
}
#endif
#if defined(HAVE_ARIA)
if ((ret = wc_AriaInit()) != 0) {
return ret;
}
#endif
#ifdef WOLFSSL_IMXRT_DCP
if ((ret = wc_dcp_init()) != 0) {
return ret;
}
#endif
#if defined(WOLFSSL_DSP) && !defined(WOLFSSL_DSP_BUILD)
if ((ret = wolfSSL_InitHandle()) != 0) {
return ret;
}
rpcmem_init();
#endif
#if defined(HAVE_LIBOQS)
if ((ret = wolfSSL_liboqsInit()) != 0) {
return ret;
}
#endif
}
initRefCount++;
return ret;
}
#if defined(WOLFSSL_TRACK_MEMORY_VERBOSE) && !defined(WOLFSSL_STATIC_MEMORY)
long wolfCrypt_heap_peakAllocs_checkpoint(void) {
long ret = ourMemStats.peakAllocsTripOdometer;
ourMemStats.peakAllocsTripOdometer = ourMemStats.totalAllocs -
ourMemStats.totalDeallocs;
return ret;
}
long wolfCrypt_heap_peakBytes_checkpoint(void) {
long ret = ourMemStats.peakBytesTripOdometer;
ourMemStats.peakBytesTripOdometer = ourMemStats.currentBytes;
return ret;
}
#endif
/* return success value is the same as wolfCrypt_Init */
WOLFSSL_ABI
int wolfCrypt_Cleanup(void)
{
int ret = 0;
initRefCount--;
if (initRefCount < 0)
initRefCount = 0;
if (initRefCount == 0) {
WOLFSSL_ENTER("wolfCrypt_Cleanup");
#ifdef HAVE_ECC
#ifdef FP_ECC
wc_ecc_fp_free();
#endif
#ifdef ECC_CACHE_CURVE
wc_ecc_curve_cache_free();
#endif
#endif /* HAVE_ECC */
#if defined(OPENSSL_EXTRA) || defined(DEBUG_WOLFSSL_VERBOSE)
ret = wc_LoggingCleanup();
#endif
#if defined(WOLFSSL_TRACK_MEMORY) && !defined(WOLFSSL_STATIC_MEMORY)
ShowMemoryTracker();
#endif
#ifdef WOLFSSL_ASYNC_CRYPT
wolfAsync_HardwareStop();
#endif
#ifdef WOLFSSL_RENESAS_TSIP
tsip_Close();
#endif
#if defined(WOLFSSL_RENESAS_RX64_HASH)
rx64_hw_Close();
#endif
#if defined(WOLFSSL_RENESAS_FSPSM)
wc_fspsm_Close();
#endif
#ifdef WOLFSSL_SCE
WOLFSSL_SCE_GSCE_HANDLE.p_api->close(WOLFSSL_SCE_GSCE_HANDLE.p_ctrl);
#endif
#if defined(WOLFSSL_CAAM)
wc_caamFree();
#endif
#if defined(WOLFSSL_CRYPTOCELL)
cc310_Free();
#endif
#ifdef WOLFSSL_SILABS_SE_ACCEL
ret = sl_se_deinit();
#endif
#if defined(WOLFSSL_RENESAS_TSIP)
tsip_Close();
#endif
#if defined(WOLFSSL_DEVCRYPTO)
wc_DevCryptoCleanup();
#endif
#if defined(WOLFSSL_DSP) && !defined(WOLFSSL_DSP_BUILD)
rpcmem_deinit();
wolfSSL_CleanupHandle();
#endif
#ifdef WOLFSSL_LINUXKM_USE_SAVE_VECTOR_REGISTERS
free_wolfcrypt_linuxkm_fpu_states();
#endif
#ifdef HAVE_ENTROPY_MEMUSE
Entropy_Final();
#endif
#ifdef WOLF_CRYPTO_CB
wc_CryptoCb_Cleanup();
#endif
#if defined(WOLFSSL_MEM_FAIL_COUNT) && defined(WOLFCRYPT_ONLY)
wc_MemFailCount_Free();
#endif
#ifdef WOLFSSL_CHECK_MEM_ZERO
/* Free the mutex for access to the list of memory locations that
* must be freed. */
wc_MemZero_Free();
#endif
}
#if defined(HAVE_LIBOQS)
wolfSSL_liboqsClose();
#endif
return ret;
}
#ifndef NO_FILESYSTEM
/* Helpful function to load file into allocated buffer */
int wc_FileLoad(const char* fname, unsigned char** buf, size_t* bufLen,
void* heap)
{
int ret;
ssize_t fileSz;
XFILE f;
if (fname == NULL || buf == NULL || bufLen == NULL) {
return BAD_FUNC_ARG;
}
/* set defaults */
*buf = NULL;
*bufLen = 0;
/* open file (read-only binary) */
f = XFOPEN(fname, "rb");
if (!f) {
WOLFSSL_MSG("wc_LoadFile file load error");
return BAD_PATH_ERROR;
}
if (XFSEEK(f, 0, XSEEK_END) != 0) {
WOLFSSL_MSG("wc_LoadFile file seek error");
XFCLOSE(f);
return BAD_PATH_ERROR;
}
fileSz = XFTELL(f);
if (fileSz < 0) {
WOLFSSL_MSG("wc_LoadFile ftell error");
XFCLOSE(f);
return BAD_PATH_ERROR;
}
if (XFSEEK(f, 0, XSEEK_SET) != 0) {
WOLFSSL_MSG("wc_LoadFile file seek error");
XFCLOSE(f);
return BAD_PATH_ERROR;
}
if (fileSz > 0) {
*bufLen = (size_t)fileSz;
*buf = (byte*)XMALLOC(*bufLen, heap, DYNAMIC_TYPE_TMP_BUFFER);
if (*buf == NULL) {
WOLFSSL_MSG("wc_LoadFile memory error");
ret = MEMORY_E;
}
else {
size_t readLen = XFREAD(*buf, 1, *bufLen, f);
/* check response code */
ret = (readLen == *bufLen) ? 0 : -1;
}
}
else {
ret = BUFFER_E;
}
XFCLOSE(f);
(void)heap;
return ret;
}
#if !defined(NO_WOLFSSL_DIR) && \
!defined(WOLFSSL_NUCLEUS) && !defined(WOLFSSL_NUCLEUS_1_2)
/* File Handling Helper */
/* returns 0 if file exists, WC_ISFILEEXIST_NOFILE if file doesn't exist */
int wc_FileExists(const char* fname)
{
struct ReadDirCtx ctx;
XMEMSET(&ctx, 0, sizeof(ctx));
if (fname == NULL)
return 0;
if (XSTAT(fname, &ctx.s) != 0) {
WOLFSSL_MSG("stat on name failed");
return BAD_PATH_ERROR;
} else {
#if defined(USE_WINDOWS_API)
if (XS_ISREG(ctx.s.st_mode)) {
return 0;
}
#elif defined(WOLFSSL_ZEPHYR)
if (XS_ISREG(ctx.s.type)) {
return 0;
}
#elif defined(WOLFSSL_TELIT_M2MB)
if (XS_ISREG(ctx.s.st_mode)) {
return 0;
}
#else
if (XS_ISREG(ctx.s.st_mode)) {
return 0;
}
#endif
}
return WC_ISFILEEXIST_NOFILE;
}
/* File Handling Helpers */
/* returns 0 if file found, WC_READDIR_NOFILE if no files or negative error */
int wc_ReadDirFirst(ReadDirCtx* ctx, const char* path, char** name)
{
int ret = WC_READDIR_NOFILE; /* default to no files found */
int pathLen = 0;
if (name)
*name = NULL;
if (ctx == NULL || path == NULL) {
return BAD_FUNC_ARG;
}
XMEMSET(ctx, 0, sizeof(ReadDirCtx));
pathLen = (int)XSTRLEN(path);
#ifdef USE_WINDOWS_API
if (pathLen > MAX_FILENAME_SZ - 3)
return BAD_PATH_ERROR;
XSTRNCPY(ctx->name, path, MAX_FILENAME_SZ - 3);
XSTRNCPY(ctx->name + pathLen, "\\*", (size_t)(MAX_FILENAME_SZ - pathLen));
ctx->hFind = FindFirstFileA(ctx->name, &ctx->FindFileData);
if (ctx->hFind == INVALID_HANDLE_VALUE) {
WOLFSSL_MSG("FindFirstFile for path verify locations failed");
return BAD_PATH_ERROR;
}
do {
if (!(ctx->FindFileData.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY)) {
int dnameLen = (int)XSTRLEN(ctx->FindFileData.cFileName);
if (pathLen + dnameLen + 2 > MAX_FILENAME_SZ) {
return BAD_PATH_ERROR;
}
XSTRNCPY(ctx->name, path, (size_t)pathLen + 1);
ctx->name[pathLen] = '\\';
XSTRNCPY(ctx->name + pathLen + 1,
ctx->FindFileData.cFileName,
(size_t)(MAX_FILENAME_SZ - pathLen - 1));
if (name)
*name = ctx->name;
return 0;
}
} while (FindNextFileA(ctx->hFind, &ctx->FindFileData));
#elif defined(INTIME_RTOS)
if (pathLen > MAX_FILENAME_SZ - 3)
return BAD_PATH_ERROR;
XSTRNCPY(ctx->name, path, MAX_FILENAME_SZ - 3);
XSTRNCPY(ctx->name + pathLen, "\\*", MAX_FILENAME_SZ - pathLen);
if (!IntimeFindFirst(ctx->name, &ctx->FindFileData)) {
WOLFSSL_MSG("FindFirstFile for path verify locations failed");
return BAD_PATH_ERROR;
}
do {
int dnameLen = (int)XSTRLEN(IntimeFilename(ctx));
if (pathLen + dnameLen + 2 > MAX_FILENAME_SZ) {
return BAD_PATH_ERROR;
}
XSTRNCPY(ctx->name, path, pathLen + 1);
ctx->name[pathLen] = '\\';
XSTRNCPY(ctx->name + pathLen + 1,
IntimeFilename(ctx),
MAX_FILENAME_SZ - pathLen - 1);
if (0 == wc_FileExists(ctx->name)) {
if (name)
*name = ctx->name;
return 0;
}
} while (IntimeFindNext(&ctx->FindFileData));
#elif defined(WOLFSSL_ZEPHYR)
if (fs_opendir(&ctx->dir, path) != 0) {
WOLFSSL_MSG("opendir path verify locations failed");
return BAD_PATH_ERROR;
}
ctx->dirp = &ctx->dir;
while ((fs_readdir(&ctx->dir, &ctx->entry)) != 0) {
int dnameLen = (int)XSTRLEN(ctx->entry.name);
if (pathLen + dnameLen + 2 >= MAX_FILENAME_SZ) {
ret = BAD_PATH_ERROR;
break;
}
XSTRNCPY(ctx->name, path, pathLen + 1);
ctx->name[pathLen] = '/';
/* Use dnameLen + 1 for GCC 8 warnings of truncating d_name. Because
* of earlier check it is known that dnameLen is less than
* MAX_FILENAME_SZ - (pathLen + 2) so dnameLen +1 will fit */
XSTRNCPY(ctx->name + pathLen + 1, ctx->entry.name, dnameLen + 1);
if ((ret = wc_FileExists(ctx->name)) == 0) {
if (name)
*name = ctx->name;
return 0;
}
}
#elif defined(WOLFSSL_TELIT_M2MB)
ctx->dir = m2mb_fs_opendir((const CHAR*)path);
if (ctx->dir == NULL) {
WOLFSSL_MSG("opendir path verify locations failed");
return BAD_PATH_ERROR;
}
while ((ctx->entry = m2mb_fs_readdir(ctx->dir)) != NULL) {
int dnameLen = (int)XSTRLEN(ctx->entry->d_name);
if (pathLen + dnameLen + 2 >= MAX_FILENAME_SZ) {
ret = BAD_PATH_ERROR;
break;
}
XSTRNCPY(ctx->name, path, pathLen + 1);
ctx->name[pathLen] = '/';
/* Use dnameLen + 1 for GCC 8 warnings of truncating d_name. Because
* of earlier check it is known that dnameLen is less than
* MAX_FILENAME_SZ - (pathLen + 2) so dnameLen +1 will fit */
XSTRNCPY(ctx->name + pathLen + 1, ctx->entry->d_name, dnameLen + 1);
if ((ret = wc_FileExists(ctx->name)) == 0) {
if (name)
*name = ctx->name;
return 0;
}
}
#else
ctx->dir = opendir(path);
if (ctx->dir == NULL) {
WOLFSSL_MSG("opendir path verify locations failed");
return BAD_PATH_ERROR;
}
while ((ctx->entry = readdir(ctx->dir)) != NULL) {
int dnameLen = (int)XSTRLEN(ctx->entry->d_name);
if (pathLen + dnameLen + 2 >= MAX_FILENAME_SZ) {
ret = BAD_PATH_ERROR;
break;
}
XSTRNCPY(ctx->name, path, (size_t)pathLen + 1);
ctx->name[pathLen] = '/';
/* Use dnameLen + 1 for GCC 8 warnings of truncating d_name. Because
* of earlier check it is known that dnameLen is less than
* MAX_FILENAME_SZ - (pathLen + 2) so dnameLen +1 will fit */
XSTRNCPY(ctx->name + pathLen + 1, ctx->entry->d_name, (size_t)dnameLen + 1);
if ((ret = wc_FileExists(ctx->name)) == 0) {
if (name)
*name = ctx->name;
return 0;
}
}
#endif
wc_ReadDirClose(ctx);
return ret;
}
/* returns 0 if file found, WC_READDIR_NOFILE if no more files */
int wc_ReadDirNext(ReadDirCtx* ctx, const char* path, char** name)
{
int ret = WC_READDIR_NOFILE; /* default to no file found */
int pathLen = 0;
if (name)
*name = NULL;
if (ctx == NULL || path == NULL) {
return BAD_FUNC_ARG;
}
XMEMSET(ctx->name, 0, MAX_FILENAME_SZ);
pathLen = (int)XSTRLEN(path);
#ifdef USE_WINDOWS_API
while (FindNextFileA(ctx->hFind, &ctx->FindFileData)) {
if (!(ctx->FindFileData.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY)) {
int dnameLen = (int)XSTRLEN(ctx->FindFileData.cFileName);
if (pathLen + dnameLen + 2 > MAX_FILENAME_SZ) {
return BAD_PATH_ERROR;
}
XSTRNCPY(ctx->name, path, (size_t)pathLen + 1);
ctx->name[pathLen] = '\\';
XSTRNCPY(ctx->name + pathLen + 1,
ctx->FindFileData.cFileName,
(size_t)(MAX_FILENAME_SZ - pathLen - 1));
if (name)
*name = ctx->name;
return 0;
}
}
#elif defined(INTIME_RTOS)
while (IntimeFindNext(&ctx->FindFileData)) {
int dnameLen = (int)XSTRLEN(IntimeFilename(ctx));
if (pathLen + dnameLen + 2 > MAX_FILENAME_SZ) {
return BAD_PATH_ERROR;
}
XSTRNCPY(ctx->name, path, pathLen + 1);
ctx->name[pathLen] = '\\';
XSTRNCPY(ctx->name + pathLen + 1,
IntimeFilename(ctx),
MAX_FILENAME_SZ - pathLen - 1);
if (0 == wc_FileExists(ctx->name)) {
if (name)
*name = ctx->name;
return 0;
}
}
#elif defined(WOLFSSL_ZEPHYR)
while ((fs_readdir(&ctx->dir, &ctx->entry)) != 0) {
int dnameLen = (int)XSTRLEN(ctx->entry.name);
if (pathLen + dnameLen + 2 >= MAX_FILENAME_SZ) {
ret = BAD_PATH_ERROR;
break;
}
XSTRNCPY(ctx->name, path, pathLen + 1);
ctx->name[pathLen] = '/';
/* Use dnameLen + 1 for GCC 8 warnings of truncating d_name. Because
* of earlier check it is known that dnameLen is less than
* MAX_FILENAME_SZ - (pathLen + 2) so that dnameLen +1 will fit */
XSTRNCPY(ctx->name + pathLen + 1, ctx->entry.name, dnameLen + 1);
if ((ret = wc_FileExists(ctx->name)) == 0) {
if (name)
*name = ctx->name;
return 0;
}
}
#elif defined(WOLFSSL_TELIT_M2MB)
while ((ctx->entry = m2mb_fs_readdir(ctx->dir)) != NULL) {
int dnameLen = (int)XSTRLEN(ctx->entry->d_name);
if (pathLen + dnameLen + 2 >= MAX_FILENAME_SZ) {
ret = BAD_PATH_ERROR;
break;
}
XSTRNCPY(ctx->name, path, pathLen + 1);
ctx->name[pathLen] = '/';
/* Use dnameLen + 1 for GCC 8 warnings of truncating d_name. Because
* of earlier check it is known that dnameLen is less than
* MAX_FILENAME_SZ - (pathLen + 2) so dnameLen +1 will fit */
XSTRNCPY(ctx->name + pathLen + 1, ctx->entry->d_name, dnameLen + 1);
if ((ret = wc_FileExists(ctx->name)) == 0) {
if (name)
*name = ctx->name;
return 0;
}
}
#else
while ((ctx->entry = readdir(ctx->dir)) != NULL) {
int dnameLen = (int)XSTRLEN(ctx->entry->d_name);
if (pathLen + dnameLen + 2 >= MAX_FILENAME_SZ) {
ret = BAD_PATH_ERROR;
break;
}
XSTRNCPY(ctx->name, path, (size_t)pathLen + 1);
ctx->name[pathLen] = '/';
/* Use dnameLen + 1 for GCC 8 warnings of truncating d_name. Because
* of earlier check it is known that dnameLen is less than
* MAX_FILENAME_SZ - (pathLen + 2) so that dnameLen +1 will fit */
XSTRNCPY(ctx->name + pathLen + 1, ctx->entry->d_name, (size_t)dnameLen + 1);
if ((ret = wc_FileExists(ctx->name)) == 0) {
if (name)
*name = ctx->name;
return 0;
}
}
#endif
wc_ReadDirClose(ctx);
return ret;
}
void wc_ReadDirClose(ReadDirCtx* ctx)
{
if (ctx == NULL) {
return;
}
#ifdef USE_WINDOWS_API
if (ctx->hFind != INVALID_HANDLE_VALUE) {
FindClose(ctx->hFind);
ctx->hFind = INVALID_HANDLE_VALUE;
}
#elif defined(INTIME_RTOS)
IntimeFindClose(&ctx->FindFileData);
#elif defined(WOLFSSL_ZEPHYR)
if (ctx->dirp) {
fs_closedir(ctx->dirp);
ctx->dirp = NULL;
}
#elif defined(WOLFSSL_TELIT_M2MB)
if (ctx->dir) {
m2mb_fs_closedir(ctx->dir);
ctx->dir = NULL;
}
#else
if (ctx->dir) {
if (closedir(ctx->dir) < 0)
WOLFSSL_MSG("closedir() failed");
ctx->dir = NULL;
}
#endif
}
#endif /* !NO_WOLFSSL_DIR */
#endif /* !NO_FILESYSTEM */
#if !defined(NO_FILESYSTEM) && defined(WOLFSSL_ZEPHYR)
XFILE z_fs_open(const char* filename, const char* mode)
{
XFILE file;
fs_mode_t flags = 0;
if (mode == NULL)
return NULL;
/* Parse mode */
switch (*mode++) {
case 'r':
flags |= FS_O_READ;
break;
case 'w':
flags |= FS_O_WRITE|FS_O_CREATE;
break;
case 'a':
flags |= FS_O_APPEND|FS_O_CREATE;
break;
default:
return NULL;
}
/* Ignore binary flag */
if (*mode == 'b')
mode++;
if (*mode == '+') {
flags |= FS_O_READ;
/* Don't add write flag if already appending */
if (!(flags & FS_O_APPEND))
flags |= FS_O_RDWR;
}
/* Ignore binary flag */
if (*mode == 'b')
mode++;
/* Incorrect mode string */
if (*mode != '\0')
return NULL;
file = (XFILE)XMALLOC(sizeof(*file), NULL, DYNAMIC_TYPE_FILE);
if (file != NULL) {
fs_file_t_init(file);
if (fs_open(file, filename, flags) != 0) {
XFREE(file, NULL, DYNAMIC_TYPE_FILE);
file = NULL;
}
}
return file;
}
int z_fs_close(XFILE file)
{
int ret;
if (file == NULL)
return -1;
ret = (fs_close(file) == 0) ? 0 : -1;
XFREE(file, NULL, DYNAMIC_TYPE_FILE);
return ret;
}
#endif /* !NO_FILESYSTEM && !WOLFSSL_ZEPHYR */
#if !defined(WOLFSSL_USER_MUTEX)
wolfSSL_Mutex* wc_InitAndAllocMutex(void)
{
wolfSSL_Mutex* m = (wolfSSL_Mutex*) XMALLOC(sizeof(wolfSSL_Mutex), NULL,
DYNAMIC_TYPE_MUTEX);
if (m != NULL) {
if (wc_InitMutex(m) != 0) {
WOLFSSL_MSG("Init Mutex failed");
XFREE(m, NULL, DYNAMIC_TYPE_MUTEX);
m = NULL;
}
}
else {
WOLFSSL_MSG("Memory error with Mutex allocation");
}
return m;
}
#endif
#ifdef USE_WOLF_STRTOK
/* String token (delim) search. If str is null use nextp. */
char* wc_strtok(char *str, const char *delim, char **nextp)
{
char* ret;
int i, j;
/* Use next if str is NULL */
if (str == NULL && nextp)
str = *nextp;
/* verify str input */
if (str == NULL || *str == '\0')
return NULL;
/* match on entire delim */
for (i = 0; str[i]; i++) {
for (j = 0; delim[j]; j++) {
if (delim[j] == str[i])
break;
}
if (!delim[j])
break;
}
str += i;
/* if end of string, not found so return NULL */
if (*str == '\0')
return NULL;
ret = str;
/* match on first delim */
for (i = 0; str[i]; i++) {
for (j = 0; delim[j]; j++) {
if (delim[j] == str[i])
break;
}
if (delim[j] == str[i])
break;
}
str += i;
/* null terminate found string */
if (*str)
*str++ = '\0';
/* return pointer to next */
if (nextp)
*nextp = str;
return ret;
}
#endif /* USE_WOLF_STRTOK */
#ifdef USE_WOLF_STRSEP
char* wc_strsep(char **stringp, const char *delim)
{
char *s, *tok;
const char *spanp;
/* null check */
if (stringp == NULL || *stringp == NULL)
return NULL;
s = *stringp;
for (tok = s; *tok; ++tok) {
for (spanp = delim; *spanp; ++spanp) {
/* found delimiter */
if (*tok == *spanp) {
*tok = '\0'; /* replace delim with null term */
*stringp = tok + 1; /* return past delim */
return s;
}
}
}
*stringp = NULL;
return s;
}
#endif /* USE_WOLF_STRSEP */
#ifdef USE_WOLF_STRLCPY
size_t wc_strlcpy(char *dst, const char *src, size_t dstSize)
{
size_t i;
if (!dstSize)
return 0;
/* Always have to leave a space for NULL */
for (i = 0; i < (dstSize - 1) && *src != '\0'; i++) {
*dst++ = *src++;
}
*dst = '\0';
return i; /* return length without NULL */
}
#endif /* USE_WOLF_STRLCPY */
#ifdef USE_WOLF_STRLCAT
size_t wc_strlcat(char *dst, const char *src, size_t dstSize)
{
size_t dstLen;
if (!dstSize)
return 0;
dstLen = XSTRLEN(dst);
if (dstSize < dstLen)
return dstLen + XSTRLEN(src);
return dstLen + wc_strlcpy(dst + dstLen, src, dstSize - dstLen);
}
#endif /* USE_WOLF_STRLCAT */
#ifdef USE_WOLF_STRCASECMP
int wc_strcasecmp(const char *s1, const char *s2)
{
char c1, c2;
for (;;++s1, ++s2) {
c1 = *s1;
if ((c1 >= 'a') && (c1 <= 'z'))
c1 -= ('a' - 'A');
c2 = *s2;
if ((c2 >= 'a') && (c2 <= 'z'))
c2 -= ('a' - 'A');
if ((c1 != c2) || (c1 == 0))
break;
}
return (c1 - c2);
}
#endif /* USE_WOLF_STRCASECMP */
#ifdef USE_WOLF_STRNCASECMP
int wc_strncasecmp(const char *s1, const char *s2, size_t n)
{
char c1, c2;
for (c1 = 0, c2 = 0; n > 0; --n, ++s1, ++s2) {
c1 = *s1;
if ((c1 >= 'a') && (c1 <= 'z'))
c1 -= ('a' - 'A');
c2 = *s2;
if ((c2 >= 'a') && (c2 <= 'z'))
c2 -= ('a' - 'A');
if ((c1 != c2) || (c1 == 0))
break;
}
return (c1 - c2);
}
#endif /* USE_WOLF_STRNCASECMP */
#ifdef WOLFSSL_ATOMIC_OPS
#ifdef HAVE_C___ATOMIC
/* Atomic ops using standard C lib */
#ifdef __cplusplus
/* C++ using direct calls to compiler built-in functions */
void wolfSSL_Atomic_Int_Init(wolfSSL_Atomic_Int* c, int i)
{
*c = i;
}
int wolfSSL_Atomic_Int_FetchAdd(wolfSSL_Atomic_Int* c, int i)
{
return __atomic_fetch_add(c, i, __ATOMIC_RELAXED);
}
int wolfSSL_Atomic_Int_FetchSub(wolfSSL_Atomic_Int* c, int i)
{
return __atomic_fetch_sub(c, i, __ATOMIC_RELAXED);
}
#else
/* Default C Implementation */
void wolfSSL_Atomic_Int_Init(wolfSSL_Atomic_Int* c, int i)
{
atomic_init(c, i);
}
int wolfSSL_Atomic_Int_FetchAdd(wolfSSL_Atomic_Int* c, int i)
{
return atomic_fetch_add_explicit(c, i, memory_order_relaxed);
}
int wolfSSL_Atomic_Int_FetchSub(wolfSSL_Atomic_Int* c, int i)
{
return atomic_fetch_sub_explicit(c, i, memory_order_relaxed);
}
#endif /* __cplusplus */
#elif defined(_MSC_VER)
/* Default C Implementation */
void wolfSSL_Atomic_Int_Init(wolfSSL_Atomic_Int* c, int i)
{
*c = i;
}
int wolfSSL_Atomic_Int_FetchAdd(wolfSSL_Atomic_Int* c, int i)
{
return (int)_InterlockedExchangeAdd(c, (long)i);
}
int wolfSSL_Atomic_Int_FetchSub(wolfSSL_Atomic_Int* c, int i)
{
return (int)_InterlockedExchangeAdd(c, (long)-i);
}
#endif
#endif /* WOLFSSL_ATOMIC_OPS */
#if !defined(SINGLE_THREADED) && !defined(WOLFSSL_ATOMIC_OPS)
void wolfSSL_RefInit(wolfSSL_Ref* ref, int* err)
{
int ret = wc_InitMutex(&ref->mutex);
if (ret != 0) {
WOLFSSL_MSG("Failed to create mutex for reference counting!");
}
ref->count = 1;
*err = ret;
}
void wolfSSL_RefFree(wolfSSL_Ref* ref)
{
if (wc_FreeMutex(&ref->mutex) != 0) {
WOLFSSL_MSG("Failed to free mutex of reference counting!");
}
}
void wolfSSL_RefInc(wolfSSL_Ref* ref, int* err)
{
int ret = wc_LockMutex(&ref->mutex);
if (ret != 0) {
WOLFSSL_MSG("Failed to lock mutex for reference increment!");
}
else {
ref->count++;
wc_UnLockMutex(&ref->mutex);
}
*err = ret;
}
void wolfSSL_RefDec(wolfSSL_Ref* ref, int* isZero, int* err)
{
int ret = wc_LockMutex(&ref->mutex);
if (ret != 0) {
WOLFSSL_MSG("Failed to lock mutex for reference decrement!");
/* Can't say count is zero. */
*isZero = 0;
}
else {
if (ref->count > 0) {
ref->count--;
}
*isZero = (ref->count == 0);
wc_UnLockMutex(&ref->mutex);
}
*err = ret;
}
#endif
#if WOLFSSL_CRYPT_HW_MUTEX
/* Mutex for protection of cryptography hardware */
static wolfSSL_Mutex wcCryptHwMutex WOLFSSL_MUTEX_INITIALIZER_CLAUSE(wcCryptHwMutex);
#ifndef WOLFSSL_MUTEX_INITIALIZER
static int wcCryptHwMutexInit = 0;
#endif
int wolfSSL_CryptHwMutexInit(void)
{
int ret = 0;
#ifndef WOLFSSL_MUTEX_INITIALIZER
if (wcCryptHwMutexInit == 0) {
ret = wc_InitMutex(&wcCryptHwMutex);
if (ret == 0) {
wcCryptHwMutexInit = 1;
}
}
#endif
return ret;
}
int wolfSSL_CryptHwMutexLock(void)
{
/* Make sure HW Mutex has been initialized */
int ret = wolfSSL_CryptHwMutexInit();
if (ret == 0) {
ret = wc_LockMutex(&wcCryptHwMutex);
}
return ret;
}
int wolfSSL_CryptHwMutexUnLock(void)
{
if (wcCryptHwMutexInit) {
return wc_UnLockMutex(&wcCryptHwMutex);
}
else {
return BAD_MUTEX_E;
}
}
#endif /* WOLFSSL_CRYPT_HW_MUTEX */
/* ---------------------------------------------------------------------------*/
/* Mutex Ports */
/* ---------------------------------------------------------------------------*/
#if defined(OPENSSL_EXTRA) || defined(HAVE_WEBSERVER)
static mutex_cb* compat_mutex_cb = NULL;
/* Function that locks or unlocks a mutex based on the flag passed in.
*
* flag lock or unlock i.e. CRYPTO_LOCK
* type the type of lock to unlock or lock
* file name of the file calling
* line the line number from file calling
*/
int wc_LockMutex_ex(int flag, int type, const char* file, int line)
{
if (compat_mutex_cb != NULL) {
compat_mutex_cb(flag, type, file, line);
return 0;
}
else {
WOLFSSL_MSG("Mutex call back function not set. Call wc_SetMutexCb");
return BAD_STATE_E;
}
}
/* Set the callback function to use for locking/unlocking mutex
*
* cb callback function to use
*/
int wc_SetMutexCb(mutex_cb* cb)
{
compat_mutex_cb = cb;
return 0;
}
/* Gets the current callback function in use for locking/unlocking mutex
*
*/
mutex_cb* wc_GetMutexCb(void)
{
return compat_mutex_cb;
}
#endif /* defined(OPENSSL_EXTRA) || defined(HAVE_WEBSERVER) */
#ifdef SINGLE_THREADED
int wc_InitMutex(wolfSSL_Mutex* m)
{
(void)m;
return 0;
}
int wc_FreeMutex(wolfSSL_Mutex *m)
{
(void)m;
return 0;
}
int wc_LockMutex(wolfSSL_Mutex *m)
{
(void)m;
return 0;
}
int wc_UnLockMutex(wolfSSL_Mutex *m)
{
(void)m;
return 0;
}
#elif defined(FREERTOS) || defined(FREERTOS_TCP) || \
defined(FREESCALE_FREE_RTOS)
int wc_InitMutex(wolfSSL_Mutex* m)
{
int iReturn;
*m = ( wolfSSL_Mutex ) xSemaphoreCreateMutex();
if( *m != NULL )
iReturn = 0;
else
iReturn = BAD_MUTEX_E;
return iReturn;
}
int wc_FreeMutex(wolfSSL_Mutex* m)
{
vSemaphoreDelete( *m );
return 0;
}
int wc_LockMutex(wolfSSL_Mutex* m)
{
/* Assume an infinite block, or should there be zero block? */
xSemaphoreTake( *m, portMAX_DELAY );
return 0;
}
int wc_UnLockMutex(wolfSSL_Mutex* m)
{
xSemaphoreGive( *m );
return 0;
}
#elif defined(RTTHREAD)
int wc_InitMutex(wolfSSL_Mutex* m)
{
int iReturn;
*m = ( wolfSSL_Mutex ) rt_mutex_create("mutex",RT_IPC_FLAG_FIFO);
if( *m != NULL )
iReturn = 0;
else
iReturn = BAD_MUTEX_E;
return iReturn;
}
int wc_FreeMutex(wolfSSL_Mutex* m)
{
rt_mutex_delete( *m );
return 0;
}
int wc_LockMutex(wolfSSL_Mutex* m)
{
/* Assume an infinite block, or should there be zero block? */
return rt_mutex_take( *m, RT_WAITING_FOREVER );
}
int wc_UnLockMutex(wolfSSL_Mutex* m)
{
return rt_mutex_release( *m );
}
#elif defined(WOLFSSL_SAFERTOS)
int wc_InitMutex(wolfSSL_Mutex* m)
{
vSemaphoreCreateBinary(m->mutexBuffer, m->mutex);
if (m->mutex == NULL)
return BAD_MUTEX_E;
return 0;
}
int wc_FreeMutex(wolfSSL_Mutex* m)
{
(void)m;
return 0;
}
int wc_LockMutex(wolfSSL_Mutex* m)
{
/* Assume an infinite block */
xSemaphoreTake(m->mutex, portMAX_DELAY);
return 0;
}
int wc_UnLockMutex(wolfSSL_Mutex* m)
{
xSemaphoreGive(m->mutex);
return 0;
}
#elif defined(USE_WINDOWS_API) && !defined(WOLFSSL_PTHREADS)
int wc_InitMutex(wolfSSL_Mutex* m)
{
InitializeCriticalSection(m);
return 0;
}
int wc_FreeMutex(wolfSSL_Mutex* m)
{
DeleteCriticalSection(m);
return 0;
}
int wc_LockMutex(wolfSSL_Mutex* m)
{
EnterCriticalSection(m);
return 0;
}
int wc_UnLockMutex(wolfSSL_Mutex* m)
{
LeaveCriticalSection(m);
return 0;
}
#elif defined(MAXQ10XX_MUTEX)
static pthread_mutex_t *wcCryptHwSharedMutexPtr;
static pthread_once_t key_once_own_hw_mutex = PTHREAD_ONCE_INIT;
static pthread_key_t key_own_hw_mutex;
static void destruct_key(void *buf)
{
if (buf != NULL) {
free(buf);
}
}
static void make_key_own_hw_mutex(void)
{
(void)pthread_key_create(&key_own_hw_mutex, destruct_key);
}
int wc_InitMutex(wolfSSL_Mutex* m)
{
int created = 0;
void *addr = NULL;
if (m != &wcCryptHwMutex) {
if (pthread_mutex_init(m, 0) == 0) {
return 0;
}
return BAD_MUTEX_E;
}
/* try to open mutex memory */
int shm_fd = shm_open("/maxq-mutex", O_RDWR, 0666);
if (shm_fd < 0) {
/* create mutex memory */
shm_fd = shm_open("/maxq-mutex", O_RDWR | O_CREAT | O_EXCL, 0666);
created = 1;
}
if (shm_fd < 0) {
WOLFSSL_MSG("wc_InitMutex: shm_open() failed");
return BAD_MUTEX_E;
}
if (ftruncate(shm_fd, sizeof(pthread_mutex_t))) {
WOLFSSL_MSG("wc_InitMutex: ftruncate() failed");
return BAD_MUTEX_E;
}
addr = mmap(NULL, sizeof(pthread_mutex_t), PROT_READ | PROT_WRITE,
MAP_SHARED, shm_fd, 0);
if (addr == MAP_FAILED) {
WOLFSSL_MSG("wc_InitMutex: mmap() failed");
return BAD_MUTEX_E;
}
wcCryptHwSharedMutexPtr = (pthread_mutex_t *)addr;
if (close(shm_fd)) {
WOLFSSL_MSG("wc_InitMutex: close() failed");
return BAD_MUTEX_E;
}
if (created) {
/* initialize mutex */
pthread_mutexattr_t attr;
if (pthread_mutexattr_init(&attr)) {
WOLFSSL_MSG("wc_InitMutex: pthread_mutexattr_init() failed");
return BAD_MUTEX_E;
}
if (pthread_mutexattr_setpshared(&attr,
PTHREAD_PROCESS_SHARED)) {
WOLFSSL_MSG(
"wc_InitMutex: pthread_mutexattr_setpshared() failed");
return BAD_MUTEX_E;
}
if (pthread_mutex_init(wcCryptHwSharedMutexPtr, &attr)) {
WOLFSSL_MSG("wc_InitMutex: pthread_mutex_init() failed");
return BAD_MUTEX_E;
}
}
if (pthread_once(&key_once_own_hw_mutex, make_key_own_hw_mutex)) {
WOLFSSL_MSG("wc_InitMutex: pthread_once() failed");
return BAD_MUTEX_E;
}
return 0;
}
int wc_FreeMutex(wolfSSL_Mutex* m)
{
void *key_ptr = NULL;
if (m != &wcCryptHwMutex) {
if (pthread_mutex_destroy(m) == 0) {
return 0;
}
return BAD_MUTEX_E;
}
if (wcCryptHwSharedMutexPtr) {
if (munmap((void *)wcCryptHwSharedMutexPtr,
sizeof(pthread_mutex_t))) {
WOLFSSL_MSG("wc_FreeMutex: munmap() failed");
return BAD_MUTEX_E;
}
wcCryptHwSharedMutexPtr = NULL;
}
key_ptr = pthread_getspecific(key_own_hw_mutex);
if (key_ptr) {
*((int *)key_ptr) = 0;
}
return 0;
}
static int maxq_LockMutex(wolfSSL_Mutex* m, int trylock)
{
void *key_ptr = NULL;
int ret = 0;
if (m != &wcCryptHwMutex) {
if (pthread_mutex_lock(m) == 0) {
return 0;
}
return BAD_MUTEX_E;
}
if (wcCryptHwSharedMutexPtr == NULL) {
return BAD_MUTEX_E;
}
key_ptr = pthread_getspecific(key_own_hw_mutex);
if (key_ptr == NULL) {
key_ptr = malloc(sizeof(int));
if (key_ptr == NULL) {
return MEMORY_E;
}
memset(key_ptr, 0, sizeof(int));
if (pthread_setspecific(key_own_hw_mutex, key_ptr)) {
return THREAD_STORE_SET_E;
}
}
else {
if ((trylock == 0) && (*((int *)key_ptr) > 0)) {
*((int *)key_ptr) = *((int *)key_ptr) + 1;
return 0;
}
}
if (trylock) {
ret = pthread_mutex_trylock(wcCryptHwSharedMutexPtr);
}
else {
ret = pthread_mutex_lock(wcCryptHwSharedMutexPtr);
}
if (ret != 0) {
return BAD_MUTEX_E;
}
*((int *)key_ptr) = 1;
return 0;
}
int wc_LockMutex(wolfSSL_Mutex* m)
{
return maxq_LockMutex(m, 0);
}
int maxq_CryptHwMutexTryLock()
{
/* Make sure HW Mutex has been initialized */
int ret = wolfSSL_CryptHwMutexInit();
if (ret == 0) {
ret = maxq_LockMutex(&wcCryptHwMutex, 1);
}
return ret;
}
int wc_UnLockMutex(wolfSSL_Mutex* m)
{
void *key_ptr = NULL;
if (m != &wcCryptHwMutex) {
if (pthread_mutex_unlock(m) == 0) {
return 0;
}
return BAD_MUTEX_E;
}
if (wcCryptHwSharedMutexPtr == NULL) {
return BAD_MUTEX_E;
}
key_ptr = pthread_getspecific(key_own_hw_mutex);
if (key_ptr) {
if (*((int *)key_ptr) > 0) {
*((int *)key_ptr) = *((int *)key_ptr) - 1;
if (*((int *)key_ptr) > 0) {
return 0;
}
}
}
if (pthread_mutex_unlock(wcCryptHwSharedMutexPtr) != 0) {
return BAD_MUTEX_E;
}
return 0;
}
#elif defined(WOLFSSL_PTHREADS)
#ifdef WOLFSSL_USE_RWLOCK
int wc_InitRwLock(wolfSSL_RwLock* m)
{
if (pthread_rwlock_init(m, NULL) == 0)
return 0;
else
return BAD_MUTEX_E;
}
int wc_FreeRwLock(wolfSSL_RwLock* m)
{
if (pthread_rwlock_destroy(m) == 0)
return 0;
else
return BAD_MUTEX_E;
}
int wc_LockRwLock_Wr(wolfSSL_RwLock* m)
{
if (pthread_rwlock_wrlock(m) == 0)
return 0;
else
return BAD_MUTEX_E;
}
int wc_LockRwLock_Rd(wolfSSL_RwLock* m)
{
if (pthread_rwlock_rdlock(m) == 0)
return 0;
else
return BAD_MUTEX_E;
}
int wc_UnLockRwLock(wolfSSL_RwLock* m)
{
if (pthread_rwlock_unlock(m) == 0)
return 0;
else
return BAD_MUTEX_E;
}
#endif
int wc_InitMutex(wolfSSL_Mutex* m)
{
if (pthread_mutex_init(m, NULL) == 0)
return 0;
else
return BAD_MUTEX_E;
}
int wc_FreeMutex(wolfSSL_Mutex* m)
{
if (pthread_mutex_destroy(m) == 0)
return 0;
else
return BAD_MUTEX_E;
}
int wc_LockMutex(wolfSSL_Mutex* m)
{
if (pthread_mutex_lock(m) == 0)
return 0;
else
return BAD_MUTEX_E;
}
int wc_UnLockMutex(wolfSSL_Mutex* m)
{
if (pthread_mutex_unlock(m) == 0)
return 0;
else
return BAD_MUTEX_E;
}
#elif defined(WOLFSSL_LINUXKM)
/* Linux kernel mutex routines are voids, alas. */
int wc_InitMutex(wolfSSL_Mutex* m)
{
mutex_init(m);
return 0;
}
int wc_FreeMutex(wolfSSL_Mutex* m)
{
mutex_destroy(m);
return 0;
}
int wc_LockMutex(wolfSSL_Mutex* m)
{
mutex_lock(m);
return 0;
}
int wc_UnLockMutex(wolfSSL_Mutex* m)
{
mutex_unlock(m);
return 0;
}
#elif defined(WOLFSSL_VXWORKS)
int wc_InitMutex(wolfSSL_Mutex* m)
{
if (m) {
if ((*m = semMCreate(0)) != SEM_ID_NULL)
return 0;
}
return BAD_MUTEX_E;
}
int wc_FreeMutex(wolfSSL_Mutex* m)
{
if (m) {
if (semDelete(*m) == OK)
return 0;
}
return BAD_MUTEX_E;
}
int wc_LockMutex(wolfSSL_Mutex* m)
{
if (m) {
if (semTake(*m, WAIT_FOREVER) == OK)
return 0;
}
return BAD_MUTEX_E;
}
int wc_UnLockMutex(wolfSSL_Mutex* m)
{
if (m) {
if (semGive(*m) == OK)
return 0;
}
return BAD_MUTEX_E;
}
#elif defined(THREADX)
int wc_InitMutex(wolfSSL_Mutex* m)
{
if (tx_mutex_create(m, "wolfSSL Mutex", TX_NO_INHERIT) == 0)
return 0;
else
return BAD_MUTEX_E;
}
int wc_FreeMutex(wolfSSL_Mutex* m)
{
if (tx_mutex_delete(m) == 0)
return 0;
else
return BAD_MUTEX_E;
}
int wc_LockMutex(wolfSSL_Mutex* m)
{
if (tx_mutex_get(m, TX_WAIT_FOREVER) == 0)
return 0;
else
return BAD_MUTEX_E;
}
int wc_UnLockMutex(wolfSSL_Mutex* m)
{
if (tx_mutex_put(m) == 0)
return 0;
else
return BAD_MUTEX_E;
}
#elif defined(WOLFSSL_DEOS)
int wc_InitMutex(wolfSSL_Mutex* m)
{
mutexStatus mutStat;
/*
The empty string "" denotes an anonymous mutex, so objects do not cause name collisions.
`protectWolfSSLTemp` in an XML configuration element template describing a mutex.
*/
if (m) {
mutStat = createMutex("", "protectWolfSSLTemp", m);
if (mutStat == mutexSuccess)
return 0;
else{
WOLFSSL_MSG("wc_InitMutex failed");
return mutStat;
}
}
return BAD_MUTEX_E;
}
int wc_FreeMutex(wolfSSL_Mutex* m)
{
mutexStatus mutStat;
if (m) {
mutStat = deleteMutex(*m);
if (mutStat == mutexSuccess)
return 0;
else{
WOLFSSL_MSG("wc_FreeMutex failed");
return mutStat;
}
}
return BAD_MUTEX_E;
}
int wc_LockMutex(wolfSSL_Mutex* m)
{
mutexStatus mutStat;
if (m) {
mutStat = lockMutex(*m);
if (mutStat == mutexSuccess)
return 0;
else{
WOLFSSL_MSG("wc_LockMutex failed");
return mutStat;
}
}
return BAD_MUTEX_E;
}
int wc_UnLockMutex(wolfSSL_Mutex* m)
{
mutexStatus mutStat;
if (m) {
mutStat = unlockMutex(*m);
if (mutStat== mutexSuccess)
return 0;
else{
WOLFSSL_MSG("wc_UnLockMutex failed");
return mutStat;
}
}
return BAD_MUTEX_E;
}
#elif defined(MICRIUM)
#if (OS_VERSION < 50000)
#define MICRIUM_ERR_TYPE OS_ERR
#define MICRIUM_ERR_NONE OS_ERR_NONE
#define MICRIUM_ERR_CODE(err) err
#else
#define MICRIUM_ERR_TYPE RTOS_ERR
#define MICRIUM_ERR_NONE RTOS_ERR_NONE
#define MICRIUM_ERR_CODE(err) RTOS_ERR_CODE_GET(err)
#endif
int wc_InitMutex(wolfSSL_Mutex* m)
{
MICRIUM_ERR_TYPE err;
OSMutexCreate(m, "wolfSSL Mutex", &err);
if (MICRIUM_ERR_CODE(err) == MICRIUM_ERR_NONE)
return 0;
else
return BAD_MUTEX_E;
}
int wc_FreeMutex(wolfSSL_Mutex* m)
{
#if (OS_CFG_MUTEX_DEL_EN == DEF_ENABLED)
MICRIUM_ERR_TYPE err;
OSMutexDel(m, OS_OPT_DEL_ALWAYS, &err);
if (MICRIUM_ERR_CODE(err) == MICRIUM_ERR_NONE)
return 0;
else
return BAD_MUTEX_E;
#else
(void)m;
return 0;
#endif
}
int wc_LockMutex(wolfSSL_Mutex* m)
{
MICRIUM_ERR_TYPE err;
OSMutexPend(m, 0, OS_OPT_PEND_BLOCKING, NULL, &err);
if (MICRIUM_ERR_CODE(err) == MICRIUM_ERR_NONE)
return 0;
else
return BAD_MUTEX_E;
}
int wc_UnLockMutex(wolfSSL_Mutex* m)
{
MICRIUM_ERR_TYPE err;
OSMutexPost(m, OS_OPT_POST_NONE, &err);
if (MICRIUM_ERR_CODE(err) == MICRIUM_ERR_NONE)
return 0;
else
return BAD_MUTEX_E;
}
#elif defined(EBSNET)
#if (defined(RTPLATFORM) && (RTPLATFORM != 0))
int wc_InitMutex(wolfSSL_Mutex* m)
{
if (rtp_sig_mutex_alloc(m, "wolfSSL Mutex") == -1)
return BAD_MUTEX_E;
else
return 0;
}
int wc_FreeMutex(wolfSSL_Mutex* m)
{
rtp_sig_mutex_free(*m);
return 0;
}
int wc_LockMutex(wolfSSL_Mutex* m)
{
if (rtp_sig_mutex_claim_timed(*m, RTIP_INF) == 0)
return 0;
else
return BAD_MUTEX_E;
}
int wc_UnLockMutex(wolfSSL_Mutex* m)
{
rtp_sig_mutex_release(*m);
return 0;
}
int ebsnet_fseek(int a, long b, int c)
{
int retval;
retval = vf_lseek(a, b, c);
if (retval > 0)
retval = 0;
else
retval = -1;
return(retval);
}
#else
static int rtip_semaphore_build(wolfSSL_Mutex *m)
{
KS_SEMAPHORE_BUILD(m)
return(RTP_TRUE);
}
int wc_InitMutex(wolfSSL_Mutex* m)
{
if (rtip_semaphore_build(m) == RTP_FALSE)
return BAD_MUTEX_E;
else
return 0;
}
int wc_FreeMutex(wolfSSL_Mutex* m)
{
KS_SEMAPHORE_FREE(*m);
return 0;
}
int wc_LockMutex(wolfSSL_Mutex* m)
{
if (KS_SEMAPHORE_GET(*m))
return 0;
else
return BAD_MUTEX_E;
}
int wc_UnLockMutex(wolfSSL_Mutex* m)
{
KS_SEMAPHORE_GIVE(*m);
return 0;
}
#endif
int ebsnet_fseek(int a, long b, int c)
{
int retval;
retval = (int)vf_lseek(a, b, c);
if (retval > 0)
retval = 0;
else
retval = -1;
return(retval);
}
int strcasecmp(const char *s1, const char *s2)
{
while (rtp_tolower(*s1) == rtp_tolower(*s2)) {
if (*s1 == '\0' || *s2 == '\0')
break;
s1++;
s2++;
}
return rtp_tolower(*(unsigned char *) s1) -
rtp_tolower(*(unsigned char *) s2);
}
#elif defined(FREESCALE_MQX) || defined(FREESCALE_KSDK_MQX)
int wc_InitMutex(wolfSSL_Mutex* m)
{
if (_mutex_init(m, NULL) == MQX_EOK)
return 0;
else
return BAD_MUTEX_E;
}
int wc_FreeMutex(wolfSSL_Mutex* m)
{
if (_mutex_destroy(m) == MQX_EOK)
return 0;
else
return BAD_MUTEX_E;
}
int wc_LockMutex(wolfSSL_Mutex* m)
{
if (_mutex_lock(m) == MQX_EOK)
return 0;
else
return BAD_MUTEX_E;
}
int wc_UnLockMutex(wolfSSL_Mutex* m)
{
if (_mutex_unlock(m) == MQX_EOK)
return 0;
else
return BAD_MUTEX_E;
}
#elif defined(WOLFSSL_TIRTOS)
#include <xdc/runtime/Error.h>
int wc_InitMutex(wolfSSL_Mutex* m)
{
Semaphore_Params params;
Error_Block eb;
Error_init(&eb);
Semaphore_Params_init(&params);
params.mode = Semaphore_Mode_BINARY;
*m = Semaphore_create(1, &params, &eb);
if (Error_check(&eb)) {
Error_raise(&eb, Error_E_generic, "Failed to Create the semaphore.",
NULL);
return BAD_MUTEX_E;
}
else
return 0;
}
int wc_FreeMutex(wolfSSL_Mutex* m)
{
Semaphore_delete(m);
return 0;
}
int wc_LockMutex(wolfSSL_Mutex* m)
{
Semaphore_pend(*m, BIOS_WAIT_FOREVER);
return 0;
}
int wc_UnLockMutex(wolfSSL_Mutex* m)
{
Semaphore_post(*m);
return 0;
}
#elif defined(WOLFSSL_uITRON4)
int wc_InitMutex(wolfSSL_Mutex* m)
{
int iReturn;
m->sem.sematr = TA_TFIFO;
m->sem.isemcnt = 1;
m->sem.maxsem = 1;
m->sem.name = NULL;
m->id = acre_sem(&m->sem);
if( m->id != E_OK )
iReturn = 0;
else
iReturn = BAD_MUTEX_E;
return iReturn;
}
int wc_FreeMutex(wolfSSL_Mutex* m)
{
del_sem( m->id );
return 0;
}
int wc_LockMutex(wolfSSL_Mutex* m)
{
wai_sem(m->id);
return 0;
}
int wc_UnLockMutex(wolfSSL_Mutex* m)
{
sig_sem(m->id);
return 0;
}
/**** uITRON malloc/free ***/
static ID ID_wolfssl_MPOOL = 0;
static T_CMPL wolfssl_MPOOL = {TA_TFIFO, 0, NULL, "wolfSSL_MPOOL"};
int uITRON4_minit(size_t poolsz) {
ER ercd;
wolfssl_MPOOL.mplsz = poolsz;
ercd = acre_mpl(&wolfssl_MPOOL);
if (ercd > 0) {
ID_wolfssl_MPOOL = ercd;
return 0;
} else {
return -1;
}
}
void *uITRON4_malloc(size_t sz) {
ER ercd;
void *p = NULL;
ercd = get_mpl(ID_wolfssl_MPOOL, sz, (VP)&p);
if (ercd == E_OK) {
return p;
} else {
return 0;
}
}
void *uITRON4_realloc(void *p, size_t sz) {
ER ercd;
void *newp = NULL;
if(p) {
ercd = get_mpl(ID_wolfssl_MPOOL, sz, (VP)&newp);
if ((ercd == E_OK) && (newp != NULL)) {
XMEMCPY(newp, p, sz);
ercd = rel_mpl(ID_wolfssl_MPOOL, (VP)p);
if (ercd == E_OK) {
return newp;
}
}
}
return 0;
}
void uITRON4_free(void *p) {
ER ercd;
ercd = rel_mpl(ID_wolfssl_MPOOL, (VP)p);
if (ercd == E_OK) {
return;
} else {
return;
}
}
#elif defined(WOLFSSL_uTKERNEL2)
int wc_InitMutex(wolfSSL_Mutex* m)
{
int iReturn;
m->sem.sematr = TA_TFIFO;
m->sem.isemcnt = 1;
m->sem.maxsem = 1;
m->id = tk_cre_sem(&m->sem);
if( m->id != NULL )
iReturn = 0;
else
iReturn = BAD_MUTEX_E;
return iReturn;
}
int wc_FreeMutex(wolfSSL_Mutex* m)
{
tk_del_sem(m->id);
return 0;
}
int wc_LockMutex(wolfSSL_Mutex* m)
{
tk_wai_sem(m->id, 1, TMO_FEVR);
return 0;
}
int wc_UnLockMutex(wolfSSL_Mutex* m)
{
tk_sig_sem(m->id, 1);
return 0;
}
/**** uT-Kernel malloc/free ***/
static ID ID_wolfssl_MPOOL = 0;
static T_CMPL wolfssl_MPOOL = {
NULL, /* Extended information */
TA_TFIFO, /* Memory pool attribute */
0, /* Size of whole memory pool (byte) */
"wolfSSL" /* Object name (max 8-char) */
};
int uTKernel_init_mpool(unsigned int sz) {
ER ercd;
wolfssl_MPOOL.mplsz = sz;
ercd = tk_cre_mpl(&wolfssl_MPOOL);
if (ercd > 0) {
ID_wolfssl_MPOOL = ercd;
return 0;
} else {
return (int)ercd;
}
}
void *uTKernel_malloc(unsigned int sz) {
ER ercd;
void *p = NULL;
ercd = tk_get_mpl(ID_wolfssl_MPOOL, sz, (VP)&p, TMO_FEVR);
if (ercd == E_OK) {
return p;
} else {
return 0;
}
}
void *uTKernel_realloc(void *p, unsigned int sz) {
ER ercd;
void *newp = NULL;
if (p) {
ercd = tk_get_mpl(ID_wolfssl_MPOOL, sz, (VP)&newp, TMO_FEVR);
if ((ercd == E_OK) && (newp != NULL)) {
XMEMCPY(newp, p, sz);
ercd = tk_rel_mpl(ID_wolfssl_MPOOL, (VP)p);
if (ercd == E_OK) {
return newp;
}
}
}
return 0;
}
void uTKernel_free(void *p) {
ER ercd;
ercd = tk_rel_mpl(ID_wolfssl_MPOOL, (VP)p);
if (ercd == E_OK) {
return;
} else {
return;
}
}
#elif defined (WOLFSSL_FROSTED)
int wc_InitMutex(wolfSSL_Mutex* m)
{
*m = mutex_init();
if (*m)
return 0;
else
return -1;
}
int wc_FreeMutex(wolfSSL_Mutex* m)
{
mutex_destroy(*m);
return(0);
}
int wc_LockMutex(wolfSSL_Mutex* m)
{
mutex_lock(*m);
return 0;
}
int wc_UnLockMutex(wolfSSL_Mutex* m)
{
mutex_unlock(*m);
return 0;
}
#elif defined(WOLFSSL_CMSIS_RTOS)
#define CMSIS_NMUTEX 10
osMutexDef(wolfSSL_mt0); osMutexDef(wolfSSL_mt1); osMutexDef(wolfSSL_mt2);
osMutexDef(wolfSSL_mt3); osMutexDef(wolfSSL_mt4); osMutexDef(wolfSSL_mt5);
osMutexDef(wolfSSL_mt6); osMutexDef(wolfSSL_mt7); osMutexDef(wolfSSL_mt8);
osMutexDef(wolfSSL_mt9);
static const osMutexDef_t *CMSIS_mutex[] = { osMutex(wolfSSL_mt0),
osMutex(wolfSSL_mt1), osMutex(wolfSSL_mt2), osMutex(wolfSSL_mt3),
osMutex(wolfSSL_mt4), osMutex(wolfSSL_mt5), osMutex(wolfSSL_mt6),
osMutex(wolfSSL_mt7), osMutex(wolfSSL_mt8), osMutex(wolfSSL_mt9) };
static osMutexId CMSIS_mutexID[CMSIS_NMUTEX] = {0};
int wc_InitMutex(wolfSSL_Mutex* m)
{
int i;
for (i=0; i<CMSIS_NMUTEX; i++) {
if(CMSIS_mutexID[i] == 0) {
CMSIS_mutexID[i] = osMutexCreate(CMSIS_mutex[i]);
(*m) = CMSIS_mutexID[i];
return 0;
}
}
return -1;
}
int wc_FreeMutex(wolfSSL_Mutex* m)
{
int i;
osMutexDelete (*m);
for (i=0; i<CMSIS_NMUTEX; i++) {
if(CMSIS_mutexID[i] == (*m)) {
CMSIS_mutexID[i] = 0;
return(0);
}
}
return(-1);
}
int wc_LockMutex(wolfSSL_Mutex* m)
{
osMutexWait(*m, osWaitForever);
return(0);
}
int wc_UnLockMutex(wolfSSL_Mutex* m)
{
osMutexRelease (*m);
return 0;
}
#elif defined(WOLFSSL_CMSIS_RTOSv2)
int wc_InitMutex(wolfSSL_Mutex *m)
{
static const osMutexAttr_t attr = {
"wolfSSL_mutex", osMutexRecursive, NULL, 0};
if ((*m = osMutexNew(&attr)) != NULL)
return 0;
else
return BAD_MUTEX_E;
}
int wc_FreeMutex(wolfSSL_Mutex *m)
{
if (osMutexDelete(*m) == osOK)
return 0;
else
return BAD_MUTEX_E;
}
int wc_LockMutex(wolfSSL_Mutex *m)
{
if (osMutexAcquire(*m, osWaitForever) == osOK)
return 0;
else
return BAD_MUTEX_E;
}
int wc_UnLockMutex(wolfSSL_Mutex *m)
{
if (osMutexRelease(*m) == osOK)
return 0;
else
return BAD_MUTEX_E;
}
#elif defined(WOLFSSL_MDK_ARM)
int wc_InitMutex(wolfSSL_Mutex* m)
{
os_mut_init (m);
return 0;
}
int wc_FreeMutex(wolfSSL_Mutex* m)
{
return(0);
}
int wc_LockMutex(wolfSSL_Mutex* m)
{
os_mut_wait (m, 0xffff);
return(0);
}
int wc_UnLockMutex(wolfSSL_Mutex* m)
{
os_mut_release (m);
return 0;
}
#elif defined(INTIME_RTOS)
int wc_InitMutex(wolfSSL_Mutex* m)
{
int ret = 0;
if (m == NULL)
return BAD_FUNC_ARG;
*m = CreateRtSemaphore(
1, /* initial unit count */
1, /* maximum unit count */
PRIORITY_QUEUING /* creation flags: FIFO_QUEUING or PRIORITY_QUEUING */
);
if (*m == BAD_RTHANDLE) {
ret = GetLastRtError();
if (ret != E_OK)
ret = BAD_MUTEX_E;
}
return ret;
}
int wc_FreeMutex(wolfSSL_Mutex* m)
{
int ret = 0;
BOOLEAN del;
if (m == NULL)
return BAD_FUNC_ARG;
del = DeleteRtSemaphore(
*m /* handle for RT semaphore */
);
if (del != TRUE)
ret = BAD_MUTEX_E;
return ret;
}
int wc_LockMutex(wolfSSL_Mutex* m)
{
int ret = 0;
DWORD lck;
if (m == NULL)
return BAD_FUNC_ARG;
lck = WaitForRtSemaphore(
*m, /* handle for RT semaphore */
1, /* number of units to wait for */
WAIT_FOREVER /* number of milliseconds to wait for units */
);
if (lck == WAIT_FAILED) {
ret = GetLastRtError();
if (ret != E_OK)
ret = BAD_MUTEX_E;
}
return ret;
}
int wc_UnLockMutex(wolfSSL_Mutex* m)
{
int ret = 0;
BOOLEAN rel;
if (m == NULL)
return BAD_FUNC_ARG;
rel = ReleaseRtSemaphore(
*m, /* handle for RT semaphore */
1 /* number of units to release to semaphore */
);
if (rel != TRUE)
ret = BAD_MUTEX_E;
return ret;
}
#elif defined(WOLFSSL_NUCLEUS_1_2)
int wc_InitMutex(wolfSSL_Mutex* m)
{
/* Call the Nucleus function to create the semaphore */
if (NU_Create_Semaphore(m, "WOLFSSL_MTX", 1,
NU_PRIORITY) == NU_SUCCESS) {
return 0;
}
return BAD_MUTEX_E;
}
int wc_FreeMutex(wolfSSL_Mutex* m)
{
if (NU_Delete_Semaphore(m) == NU_SUCCESS)
return 0;
return BAD_MUTEX_E;
}
int wc_LockMutex(wolfSSL_Mutex* m)
{
/* passing suspend task option */
if (NU_Obtain_Semaphore(m, NU_SUSPEND) == NU_SUCCESS)
return 0;
return BAD_MUTEX_E;
}
int wc_UnLockMutex(wolfSSL_Mutex* m)
{
if (NU_Release_Semaphore(m) == NU_SUCCESS)
return 0;
return BAD_MUTEX_E;
}
#elif defined(WOLFSSL_ZEPHYR)
int wc_InitMutex(wolfSSL_Mutex* m)
{
k_mutex_init(m);
return 0;
}
int wc_FreeMutex(wolfSSL_Mutex* m)
{
return 0;
}
int wc_LockMutex(wolfSSL_Mutex* m)
{
int ret = 0;
if (k_mutex_lock(m, K_FOREVER) != 0)
ret = BAD_MUTEX_E;
return ret;
}
int wc_UnLockMutex(wolfSSL_Mutex* m)
{
k_mutex_unlock(m);
return 0;
}
#elif defined(WOLFSSL_TELIT_M2MB)
int wc_InitMutex(wolfSSL_Mutex* m)
{
M2MB_OS_RESULT_E osRes;
M2MB_OS_MTX_ATTR_HANDLE mtxAttrHandle;
UINT32 inheritVal = 1;
osRes = m2mb_os_mtx_setAttrItem(&mtxAttrHandle,
CMDS_ARGS(
M2MB_OS_MTX_SEL_CMD_CREATE_ATTR, NULL,
M2MB_OS_MTX_SEL_CMD_NAME, "wolfMtx",
M2MB_OS_MTX_SEL_CMD_INHERIT, inheritVal
)
);
if (osRes != M2MB_OS_SUCCESS) {
return BAD_MUTEX_E;
}
osRes = m2mb_os_mtx_init(m, &mtxAttrHandle);
if (osRes != M2MB_OS_SUCCESS) {
return BAD_MUTEX_E;
}
return 0;
}
int wc_FreeMutex(wolfSSL_Mutex* m)
{
M2MB_OS_RESULT_E osRes;
if (m == NULL)
return BAD_MUTEX_E;
osRes = m2mb_os_mtx_deinit(*m);
if (osRes != M2MB_OS_SUCCESS) {
return BAD_MUTEX_E;
}
return 0;
}
int wc_LockMutex(wolfSSL_Mutex* m)
{
M2MB_OS_RESULT_E osRes;
if (m == NULL)
return BAD_MUTEX_E;
osRes = m2mb_os_mtx_get(*m, M2MB_OS_WAIT_FOREVER);
if (osRes != M2MB_OS_SUCCESS) {
return BAD_MUTEX_E;
}
return 0;
}
int wc_UnLockMutex(wolfSSL_Mutex* m)
{
M2MB_OS_RESULT_E osRes;
if (m == NULL)
return BAD_MUTEX_E;
osRes = m2mb_os_mtx_put(*m);
if (osRes != M2MB_OS_SUCCESS) {
return BAD_MUTEX_E;
}
return 0;
}
#elif defined(WOLFSSL_EMBOS)
int wc_InitMutex(wolfSSL_Mutex* m)
{
int ret;
OS_MUTEX_Create((OS_MUTEX*) m);
if (m != NULL)
ret = 0;
else
ret = BAD_MUTEX_E;
return ret;
}
int wc_FreeMutex(wolfSSL_Mutex* m)
{
OS_MUTEX_Delete((OS_MUTEX*) m);
return 0;
}
int wc_LockMutex(wolfSSL_Mutex* m)
{
OS_MUTEX_LockBlocked((OS_MUTEX*) m);
return 0;
}
int wc_UnLockMutex(wolfSSL_Mutex* m)
{
OS_MUTEX_Unlock((OS_MUTEX*) m);
return 0;
}
#elif defined(NETOS)
int wc_InitMutex(wolfSSL_Mutex* m)
{
if (tx_mutex_create(&ready->mutex, "wolfSSL Lock", TX_INHERIT)
== TX_SUCCESS)
return 0;
else
return BAD_MUTEX_E;
}
int wc_FreeMutex(wolfSSL_Mutex* m)
{
if (tx_mutex_delete(&ready->mutex) == TX_SUCCESS)
return 0;
else
return BAD_MUTEX_E;
}
int wc_LockMutex(wolfSSL_Mutex* m)
{
}
int wc_UnLockMutex(wolfSSL_Mutex* m)
{
}
#elif defined(WOLFSSL_USER_MUTEX)
/* Use user own mutex */
/*
int wc_InitMutex(wolfSSL_Mutex* m) { ... }
int wc_FreeMutex(wolfSSL_Mutex *m) { ... }
int wc_LockMutex(wolfSSL_Mutex *m) { ... }
int wc_UnLockMutex(wolfSSL_Mutex *m) { ... }
*/
#else
#warning No mutex handling defined
#endif
#if !defined(WOLFSSL_USE_RWLOCK) || defined(SINGLE_THREADED)
int wc_InitRwLock(wolfSSL_RwLock* m)
{
return wc_InitMutex(m);
}
int wc_FreeRwLock(wolfSSL_RwLock* m)
{
return wc_FreeMutex(m);
}
int wc_LockRwLock_Wr(wolfSSL_RwLock* m)
{
return wc_LockMutex(m);
}
int wc_LockRwLock_Rd(wolfSSL_RwLock* m)
{
return wc_LockMutex(m);
}
int wc_UnLockRwLock(wolfSSL_RwLock* m)
{
return wc_UnLockMutex(m);
}
#endif
#ifndef NO_ASN_TIME
#if defined(_WIN32_WCE)
time_t windows_time(time_t* timer)
{
SYSTEMTIME sysTime;
FILETIME fTime;
ULARGE_INTEGER intTime;
GetSystemTime(&sysTime);
SystemTimeToFileTime(&sysTime, &fTime);
XMEMCPY(&intTime, &fTime, sizeof(FILETIME));
/* subtract EPOCH */
intTime.QuadPart -= 0x19db1ded53e8000;
/* to secs */
intTime.QuadPart /= 10000000;
if (timer != NULL)
*timer = (time_t)intTime.QuadPart;
return (time_t)intTime.QuadPart;
}
#endif /* _WIN32_WCE */
#if defined(WOLFSSL_APACHE_MYNEWT)
#include "os/os_time.h"
time_t mynewt_time(time_t* timer)
{
time_t now;
struct os_timeval tv;
os_gettimeofday(&tv, NULL);
now = (time_t)tv.tv_sec;
if(timer != NULL) {
*timer = now;
}
return now;
}
#endif /* WOLFSSL_APACHE_MYNEWT */
#if defined(WOLFSSL_GMTIME)
struct tm* gmtime_r(const time_t* timer, struct tm *ret)
{
#define YEAR0 1900
#define EPOCH_YEAR 1970
#define SECS_DAY (24L * 60L * 60L)
#define LEAPYEAR(year) (!((year) % 4) && (((year) % 100) || !((year) %400)))
#define YEARSIZE(year) (LEAPYEAR(year) ? 366 : 365)
static const int _ytab[2][12] =
{
{31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},
{31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}
};
time_t secs = *timer;
unsigned long dayclock, dayno;
int year = EPOCH_YEAR;
dayclock = (unsigned long)secs % SECS_DAY;
dayno = (unsigned long)secs / SECS_DAY;
ret->tm_sec = (int) dayclock % 60;
ret->tm_min = (int)(dayclock % 3600) / 60;
ret->tm_hour = (int) dayclock / 3600;
ret->tm_wday = (int) (dayno + 4) % 7; /* day 0 a Thursday */
while(dayno >= (unsigned long)YEARSIZE(year)) {
dayno -= YEARSIZE(year);
year++;
}
ret->tm_year = year - YEAR0;
ret->tm_yday = (int)dayno;
ret->tm_mon = 0;
while(dayno >= (unsigned long)_ytab[LEAPYEAR(year)][ret->tm_mon]) {
dayno -= _ytab[LEAPYEAR(year)][ret->tm_mon];
ret->tm_mon++;
}
ret->tm_mday = (int)++dayno;
#ifndef WOLFSSL_LINUXKM
ret->tm_isdst = 0;
#endif
return ret;
}
struct tm* gmtime(const time_t* timer) {
static struct tm st_time;
return gmtime_r(timer, &st_time);
}
#endif /* WOLFSSL_GMTIME */
#if defined(HAVE_RTP_SYS)
#define YEAR0 1900
struct tm* rtpsys_gmtime(const time_t* timer) /* has a gmtime() but hangs */
{
static struct tm st_time;
struct tm* ret = &st_time;
DC_RTC_CALENDAR cal;
dc_rtc_time_get(&cal, TRUE);
ret->tm_year = cal.year - YEAR0; /* gm starts at 1900 */
ret->tm_mon = cal.month - 1; /* gm starts at 0 */
ret->tm_mday = cal.day;
ret->tm_hour = cal.hour;
ret->tm_min = cal.minute;
ret->tm_sec = cal.second;
return ret;
}
#endif /* HAVE_RTP_SYS */
#if defined(MICROCHIP_TCPIP_V5) || defined(MICROCHIP_TCPIP)
/*
* time() is just a stub in Microchip libraries. We need our own
* implementation. Use SNTP client to get seconds since epoch.
*/
time_t pic32_time(time_t* timer)
{
#ifdef MICROCHIP_TCPIP_V5
DWORD sec = 0;
#else
word32 sec = 0;
#endif
#ifdef MICROCHIP_MPLAB_HARMONY
sec = TCPIP_SNTP_UTCSecondsGet();
#else
sec = SNTPGetUTCSeconds();
#endif
if (timer != NULL)
*timer = (time_t)sec;
return (time_t)sec;
}
#endif /* MICROCHIP_TCPIP || MICROCHIP_TCPIP_V5 */
#if defined(WOLFSSL_DEOS) || defined(WOLFSSL_DEOS_RTEMS)
time_t deos_time(time_t* timer)
{
const word32 systemTickTimeInHz = 1000000 / systemTickInMicroseconds();
const volatile word32 *systemTickPtr = systemTickPointer();
if (timer != NULL)
*timer = *systemTickPtr/systemTickTimeInHz;
#if defined(CURRENT_UNIX_TIMESTAMP)
/* CURRENT_UNIX_TIMESTAMP is seconds since Jan 01 1970. (UTC) */
return (time_t) (*systemTickPtr/systemTickTimeInHz) + CURRENT_UNIX_TIMESTAMP;
#else
return (time_t) *systemTickPtr/systemTickTimeInHz;
#endif
}
#endif /* WOLFSSL_DEOS || WOLFSSL_DEOS_RTEMS */
#if defined(FREESCALE_RTC)
#include "fsl_rtc.h"
time_t fsl_time(time_t* t)
{
*t = RTC_GetSecondsTimerCount(RTC);
return *t;
}
#endif
#if defined(FREESCALE_SNVS_RTC)
time_t fsl_time(time_t* t)
{
struct tm tm_time;
time_t ret;
snvs_hp_rtc_datetime_t rtcDate;
snvs_hp_rtc_config_t snvsRtcConfig;
SNVS_HP_RTC_GetDefaultConfig(&snvsRtcConfig);
SNVS_HP_RTC_Init(SNVS, &snvsRtcConfig);
SNVS_HP_RTC_GetDatetime(SNVS, &rtcDate);
tm_time.tm_year = rtcDate.year;
tm_time.tm_mon = rtcDate.month;
tm_time.tm_mday = rtcDate.day;
tm_time.tm_hour = rtcDate.hour;
tm_time.tm_min = rtcDate.minute;
tm_time.tm_sec = rtcDate.second;
ret = mktime(&tm_time);
if (t != NULL)
*t = ret;
return ret;
}
#endif
#if defined(MICRIUM)
time_t micrium_time(time_t* timer)
{
CLK_TS_SEC sec;
Clk_GetTS_Unix(&sec);
if (timer != NULL)
*timer = sec;
return (time_t) sec;
}
#endif /* MICRIUM */
#if defined(FREESCALE_MQX) || defined(FREESCALE_KSDK_MQX)
time_t mqx_time(time_t* timer)
{
TIME_STRUCT time_s;
_time_get(&time_s);
if (timer != NULL)
*timer = (time_t)time_s.SECONDS;
return (time_t)time_s.SECONDS;
}
#endif /* FREESCALE_MQX || FREESCALE_KSDK_MQX */
#if defined(WOLFSSL_TIRTOS) && defined(USER_TIME)
time_t XTIME(time_t * timer)
{
time_t sec = 0;
sec = (time_t) Seconds_get();
if (timer != NULL)
*timer = sec;
return sec;
}
#endif /* WOLFSSL_TIRTOS */
#if defined(WOLFSSL_XILINX)
#include "xrtcpsu.h"
time_t xilinx_time(time_t * timer)
{
time_t sec = 0;
XRtcPsu_Config* con;
XRtcPsu rtc;
con = XRtcPsu_LookupConfig(XPAR_XRTCPSU_0_DEVICE_ID);
if (con != NULL) {
if (XRtcPsu_CfgInitialize(&rtc, con, con->BaseAddr) == XST_SUCCESS) {
sec = (time_t)XRtcPsu_GetCurrentTime(&rtc);
}
else {
WOLFSSL_MSG("Unable to initialize RTC");
}
}
if (timer != NULL)
*timer = sec;
return sec;
}
#endif /* WOLFSSL_XILINX */
#if defined(WOLFSSL_ZEPHYR)
time_t z_time(time_t * timer)
{
struct timespec ts;
#if defined(CONFIG_RTC) && \
(defined(CONFIG_PICOLIBC) || defined(CONFIG_NEWLIB_LIBC))
/* Try to obtain the actual time from an RTC */
static const struct device *rtc = DEVICE_DT_GET(DT_NODELABEL(rtc));
if (device_is_ready(rtc)) {
struct rtc_time rtc_time;
struct tm *tm_time = rtc_time_to_tm(&rtc_time);
int ret = rtc_get_time(rtc, &rtc_time);
if (ret == 0) {
time_t epochTime = mktime(tm_time);
if (timer != NULL)
*timer = epochTime;
return epochTime;
}
}
#endif
/* Fallback to uptime since boot. This works for relative times, but
* not for ASN.1 date validation */
if (clock_gettime(CLOCK_REALTIME, &ts) == 0)
if (timer != NULL)
*timer = ts.tv_sec;
return ts.tv_sec;
}
#endif /* WOLFSSL_ZEPHYR */
#if defined(WOLFSSL_WICED)
#ifndef WOLFSSL_WICED_PSEUDO_UNIX_EPOCH_TIME
#error Please define WOLFSSL_WICED_PSEUDO_UNIX_EPOCH_TIME at build time.
#endif /* WOLFSSL_WICED_PSEUDO_UNIX_EPOCH_TIME */
time_t wiced_pseudo_unix_epoch_time(time_t * timer)
{
time_t epoch_time;
/* The time() function return uptime on WICED platform. */
epoch_time = time(NULL) + WOLFSSL_WICED_PSEUDO_UNIX_EPOCH_TIME;
if (timer != NULL) {
*timer = epoch_time;
}
return epoch_time;
}
#endif /* WOLFSSL_WICED */
#ifdef WOLFSSL_TELIT_M2MB
time_t m2mb_xtime(time_t * timer)
{
time_t myTime = 0;
INT32 fd = m2mb_rtc_open("/dev/rtc0", 0);
if (fd != -1) {
M2MB_RTC_TIMEVAL_T timeval;
m2mb_rtc_ioctl(fd, M2MB_RTC_IOCTL_GET_TIMEVAL, &timeval);
myTime = timeval.sec;
m2mb_rtc_close(fd);
}
return myTime;
}
#ifdef WOLFSSL_TLS13
time_t m2mb_xtime_ms(time_t * timer)
{
time_t myTime = 0;
INT32 fd = m2mb_rtc_open("/dev/rtc0", 0);
if (fd != -1) {
M2MB_RTC_TIMEVAL_T timeval;
m2mb_rtc_ioctl(fd, M2MB_RTC_IOCTL_GET_TIMEVAL, &timeval);
myTime = timeval.sec + timeval.msec;
m2mb_rtc_close(fd);
}
return myTime;
}
#endif /* WOLFSSL_TLS13 */
#ifndef NO_CRYPT_BENCHMARK
double m2mb_xtime_bench(int reset)
{
double myTime = 0;
INT32 fd = m2mb_rtc_open("/dev/rtc0", 0);
if (fd != -1) {
M2MB_RTC_TIMEVAL_T timeval;
m2mb_rtc_ioctl(fd, M2MB_RTC_IOCTL_GET_TIMEVAL, &timeval);
myTime = (double)timeval.sec + ((double)timeval.msec / 1000);
m2mb_rtc_close(fd);
}
return myTime;
}
#endif /* !NO_CRYPT_BENCHMARK */
#endif /* WOLFSSL_TELIT_M2MB */
#if defined(WOLFSSL_LINUXKM)
time_t time(time_t * timer)
{
time_t ret;
#if LINUX_VERSION_CODE < KERNEL_VERSION(4, 0, 0)
struct timespec ts;
getnstimeofday(&ts);
ret = ts.tv_sec;
#else
struct timespec64 ts;
#if LINUX_VERSION_CODE < KERNEL_VERSION(5, 0, 0)
ts = current_kernel_time64();
#else
ktime_get_coarse_real_ts64(&ts);
#endif
ret = ts.tv_sec;
#endif
if (timer)
*timer = ret;
return ret;
}
#endif /* WOLFSSL_LINUXKM */
#ifdef HAL_RTC_MODULE_ENABLED
extern RTC_HandleTypeDef hrtc;
time_t stm32_hal_time(time_t *t1)
{
struct tm tm_time;
time_t ret;
RTC_TimeTypeDef time;
RTC_DateTypeDef date;
XMEMSET(&tm_time, 0, sizeof(struct tm));
/* order of GetTime followed by GetDate required here due to STM32 HW
* requirement */
HAL_RTC_GetTime(&hrtc, &time, FORMAT_BIN);
HAL_RTC_GetDate(&hrtc, &date, FORMAT_BIN);
/* RTC year is 0-99 and "struct tm" is 1900+, so assume after year 2000 */
tm_time.tm_year = date.Year + 100;
/* RTC month is 1-12 and "struct tm" is 0-12, so subtract 1 */
tm_time.tm_mon = date.Month - 1;
tm_time.tm_mday = date.Date;
tm_time.tm_hour = time.Hours;
tm_time.tm_min = time.Minutes;
tm_time.tm_sec = time.Seconds;
ret = mktime(&tm_time);
if (t1 != NULL)
*t1 = ret;
return ret;
}
#endif /* HAL_RTC_MODULE_ENABLED */
#endif /* !NO_ASN_TIME */
#if !defined(WOLFSSL_LEANPSK) && !defined(STRING_USER)
char* mystrnstr(const char* s1, const char* s2, unsigned int n)
{
unsigned int s2_len = (unsigned int)XSTRLEN(s2);
if (s2_len == 0)
return (char*)s1;
while (n >= s2_len && s1[0]) {
if (s1[0] == s2[0])
if (XMEMCMP(s1, s2, s2_len) == 0)
return (char*)s1;
s1++;
n--;
}
return NULL;
}
#endif
/* custom memory wrappers */
#ifdef WOLFSSL_NUCLEUS_1_2
/* system memory pool */
extern NU_MEMORY_POOL System_Memory;
void* nucleus_malloc(unsigned long size, void* heap, int type)
{
STATUS status;
void* stack_ptr;
status = NU_Allocate_Memory(&System_Memory, &stack_ptr, size,
NU_NO_SUSPEND);
if (status == NU_SUCCESS) {
return 0;
} else {
return stack_ptr;
}
}
void* nucleus_realloc(void* ptr, unsigned long size, void* heap, int type)
{
DM_HEADER* old_header;
word32 old_size, copy_size;
void* new_mem;
/* if ptr is NULL, behave like malloc */
new_mem = nucleus_malloc(size, NULL, 0);
if (new_mem == 0 || ptr == 0) {
return new_mem;
}
/* calculate old memory block size */
/* mem pointers stored in block headers (ref dm_defs.h) */
old_header = (DM_HEADER*) ((byte*)ptr - DM_OVERHEAD);
old_size = (byte*)old_header->dm_next_memory - (byte*)ptr;
/* copy old to new */
if (old_size < size) {
copy_size = old_size;
} else {
copy_size = size;
}
XMEMCPY(new_mem, ptr, copy_size);
/* free old */
nucleus_free(ptr, NULL, 0);
return new_mem;
}
void nucleus_free(void* ptr, void* heap, int type)
{
if (ptr != NULL)
NU_Deallocate_Memory(ptr);
}
#endif /* WOLFSSL_NUCLEUS_1_2 */
#if defined(WOLFSSL_TI_CRYPT) || defined(WOLFSSL_TI_HASH)
#include <wolfcrypt/src/port/ti/ti-ccm.c> /* initialize and Mutex for TI Crypt Engine */
#include <wolfcrypt/src/port/ti/ti-hash.c> /* md5, sha1, sha224, sha256 */
#endif
#if defined(WOLFSSL_CRYPTOCELL)
#define WOLFSSL_CRYPTOCELL_C
#include <wolfcrypt/src/port/arm/cryptoCell.c> /* CC310, RTC and RNG */
#if !defined(NO_SHA256)
#define WOLFSSL_CRYPTOCELL_HASH_C
#include <wolfcrypt/src/port/arm/cryptoCellHash.c> /* sha256 */
#endif
#endif
#ifndef SINGLE_THREADED
/* Environment-specific multi-thread implementation check */
#if defined(USE_WINDOWS_API) && !defined(WOLFSSL_PTHREADS)
int wolfSSL_NewThread(THREAD_TYPE* thread,
THREAD_CB cb, void* arg)
{
if (thread == NULL || cb == NULL)
return BAD_FUNC_ARG;
/* Use _beginthreadex instead of _beginthread because of:
* _beginthreadex is safer to use than _beginthread. If the thread
* that's generated by _beginthread exits quickly, the handle that's
* returned to the caller of _beginthread might be invalid or point
* to another thread. However, the handle that's returned by
* _beginthreadex has to be closed by the caller of _beginthreadex,
* so it's guaranteed to be a valid handle if _beginthreadex didn't
* return an error.*/
*thread = _beginthreadex(NULL, 0, cb, arg, 0, NULL);
if (*thread == 0) {
*thread = INVALID_THREAD_VAL;
return MEMORY_E;
}
return 0;
}
#ifdef WOLFSSL_THREAD_NO_JOIN
int wolfSSL_NewThreadNoJoin(THREAD_CB_NOJOIN cb, void* arg)
{
THREAD_TYPE thread;
if (cb == NULL)
return BAD_FUNC_ARG;
thread = _beginthread(cb, 0, arg);
if (thread == -1L) {
return MEMORY_E;
}
return 0;
}
#endif
int wolfSSL_JoinThread(THREAD_TYPE thread)
{
int ret = 0;
if (thread == INVALID_THREAD_VAL)
return BAD_FUNC_ARG;
/* We still want to attempt to close the thread handle even on error */
if (WaitForSingleObject((HANDLE)thread, INFINITE) == WAIT_FAILED)
ret = MEMORY_E;
if (CloseHandle((HANDLE)thread) == 0)
ret = MEMORY_E;
return ret;
}
#ifdef WOLFSSL_COND
int wolfSSL_CondInit(COND_TYPE* cond)
{
if (cond == NULL)
return BAD_FUNC_ARG;
cond->cond = CreateEventA(NULL, FALSE, FALSE, NULL);
if (cond->cond == NULL)
return MEMORY_E;
if (wc_InitMutex(&cond->mutex) != 0) {
if (CloseHandle(cond->cond) == 0)
return MEMORY_E;
return MEMORY_E;
}
return 0;
}
int wolfSSL_CondFree(COND_TYPE* cond)
{
if (cond == NULL)
return BAD_FUNC_ARG;
if (CloseHandle(cond->cond) == 0)
return MEMORY_E;
return 0;
}
int wolfSSL_CondStart(COND_TYPE* cond)
{
if (cond == NULL)
return BAD_FUNC_ARG;
if (wc_LockMutex(&cond->mutex) != 0)
return BAD_MUTEX_E;
return 0;
}
int wolfSSL_CondSignal(COND_TYPE* cond)
{
if (cond == NULL)
return BAD_FUNC_ARG;
if (wc_UnLockMutex(&cond->mutex) != 0)
return BAD_MUTEX_E;
if (SetEvent(cond->cond) == 0)
return MEMORY_E;
if (wc_LockMutex(&cond->mutex) != 0)
return BAD_MUTEX_E;
return 0;
}
int wolfSSL_CondWait(COND_TYPE* cond)
{
if (cond == NULL)
return BAD_FUNC_ARG;
if (wc_UnLockMutex(&cond->mutex) != 0)
return BAD_MUTEX_E;
if (WaitForSingleObject(cond->cond, INFINITE) == WAIT_FAILED)
return MEMORY_E;
if (wc_LockMutex(&cond->mutex) != 0)
return BAD_MUTEX_E;
return 0;
}
int wolfSSL_CondEnd(COND_TYPE* cond)
{
if (cond == NULL)
return BAD_FUNC_ARG;
if (wc_UnLockMutex(&cond->mutex) != 0)
return BAD_MUTEX_E;
return 0;
}
#endif /* WOLFSSL_COND */
#elif defined(WOLFSSL_TIRTOS)
int wolfSSL_NewThread(THREAD_TYPE* thread,
THREAD_CB cb, void* arg)
{
/* Initialize the defaults and set the parameters. */
Task_Params taskParams;
Task_Params_init(&taskParams);
taskParams.arg0 = (UArg)arg;
taskParams.stackSize = 65535;
*thread = Task_create((Task_FuncPtr)cb, &taskParams, NULL);
if (*thread == NULL) {
return MEMORY_E;
}
Task_yield();
return 0;
}
int wolfSSL_JoinThread(THREAD_TYPE thread)
{
while(1) {
if (Task_getMode(thread) == Task_Mode_TERMINATED) {
Task_sleep(5);
break;
}
Task_yield();
}
return 0;
}
#elif defined(NETOS)
int wolfSSL_NewThread(THREAD_TYPE* thread,
THREAD_CB cb, void* arg)
{
/* For backwards compatibility allow using this declaration as well. */
#ifdef TESTSUITE_THREAD_STACK_SZ
#define WOLFSSL_NETOS_STACK_SZ TESTSUITE_THREAD_STACK_SZ
#endif
/* This can be adjusted by defining in user_settings.h, will default to
* 65k in the event it is undefined */
#ifndef WOLFSSL_NETOS_STACK_SZ
#define WOLFSSL_NETOS_STACK_SZ 65535
#endif
int result;
if (thread == NULL || cb == NULL)
return BAD_FUNC_ARG;
XMEMSET(thread, 0, sizeof(*thread));
thread->threadStack = (void *)XMALLOC(WOLFSSL_NETOS_STACK_SZ, NULL,
DYNAMIC_TYPE_TMP_BUFFER);
if (thread->threadStack == NULL)
return MEMORY_E;
/* first create the idle thread:
* ARGS:
* Param1: pointer to thread
* Param2: name
* Param3 and 4: entry function and input
* Param5: pointer to thread stack
* Param6: stack size
* Param7 and 8: priority level and preempt threshold
* Param9 and 10: time slice and auto-start indicator */
result = tx_thread_create(&thread->tid,
"wolfSSL thread",
(entry_functionType)cb, (ULONG)arg,
thread->threadStack,
TESTSUITE_THREAD_STACK_SZ,
2, 2,
1, TX_AUTO_START);
if (result != TX_SUCCESS) {
free(thread->threadStack);
thread->threadStack = NULL;
return MEMORY_E;
}
return 0;
}
int wolfSSL_JoinThread(THREAD_TYPE thread)
{
/* TODO: maybe have to use tx_thread_delete? */
free(thread.threadStack);
thread.threadStack = NULL;
return 0;
}
#elif defined(WOLFSSL_ZEPHYR)
void* wolfsslThreadHeapHint = NULL;
int wolfSSL_NewThread(THREAD_TYPE* thread,
THREAD_CB cb, void* arg)
{
#ifndef WOLFSSL_ZEPHYR_STACK_SZ
#define WOLFSSL_ZEPHYR_STACK_SZ (48*1024)
#endif
if (thread == NULL || cb == NULL)
return BAD_FUNC_ARG;
XMEMSET(thread, 0, sizeof(*thread));
/* TODO: Use the following once k_thread_stack_alloc makes it into a
* release.
* thread->threadStack = k_thread_stack_alloc(WOLFSSL_ZEPHYR_STACK_SZ,
* 0);
*/
thread->threadStack = (void*)XMALLOC(
Z_KERNEL_STACK_SIZE_ADJUST(WOLFSSL_ZEPHYR_STACK_SZ),
wolfsslThreadHeapHint, DYNAMIC_TYPE_TMP_BUFFER);
if (thread->threadStack == NULL) {
WOLFSSL_MSG("error: XMALLOC failed");
return MEMORY_E;
}
/* k_thread_create does not return any error codes */
/* Casting to k_thread_entry_t should be fine since we just ignore the
* extra arguments being passed in */
k_thread_create(&thread->tid, thread->threadStack,
WOLFSSL_ZEPHYR_STACK_SZ, (k_thread_entry_t)cb, arg, NULL, NULL,
5, 0, K_NO_WAIT);
return 0;
}
int wolfSSL_JoinThread(THREAD_TYPE thread)
{
int ret = 0;
int err;
err = k_thread_join(&thread.tid, K_FOREVER);
if (err != 0)
ret = MEMORY_E;
/* TODO: Use the following once k_thread_stack_free makes it into a
* release.
* err = k_thread_stack_free(thread.threadStack);
* if (err != 0)
* ret = MEMORY_E;
*/
XFREE(thread.threadStack, wolfsslThreadHeapHint,
DYNAMIC_TYPE_TMP_BUFFER);
thread.threadStack = NULL;
/* No thread resources to free. Everything is stored in thread.tid */
return ret;
}
#ifdef WOLFSSL_COND
/* Use the pthreads translation layer for signaling */
#endif /* WOLFSSL_COND */
#elif defined(WOLFSSL_PTHREADS) || \
(defined(FREERTOS) && defined(WOLFSSL_ESPIDF))
int wolfSSL_NewThread(THREAD_TYPE* thread,
THREAD_CB cb, void* arg)
{
if (thread == NULL || cb == NULL)
return BAD_FUNC_ARG;
if (pthread_create(thread, NULL, cb, arg) != 0)
return MEMORY_E;
return 0;
}
#ifdef WOLFSSL_THREAD_NO_JOIN
int wolfSSL_NewThreadNoJoin(THREAD_CB_NOJOIN cb, void* arg)
{
THREAD_TYPE thread;
int ret;
XMEMSET(&thread, 0, sizeof(thread));
ret = wolfSSL_NewThread(&thread, cb, arg);
if (ret == 0)
ret = pthread_detach(thread);
return ret;
}
#endif
int wolfSSL_JoinThread(THREAD_TYPE thread)
{
if (thread == INVALID_THREAD_VAL)
return BAD_FUNC_ARG;
if (pthread_join(thread, NULL) != 0)
return MEMORY_E;
return 0;
}
#ifdef WOLFSSL_COND
#ifndef __MACH__
/* Generic POSIX conditional */
int wolfSSL_CondInit(COND_TYPE* cond)
{
if (cond == NULL)
return BAD_FUNC_ARG;
if (pthread_mutex_init(&cond->mutex, NULL) != 0)
return MEMORY_E;
if (pthread_cond_init(&cond->cond, NULL) != 0) {
/* Keep compilers happy that we are using the return code */
if (pthread_mutex_destroy(&cond->mutex) != 0)
return MEMORY_E;
return MEMORY_E;
}
return 0;
}
int wolfSSL_CondFree(COND_TYPE* cond)
{
int ret = 0;
if (cond == NULL)
return BAD_FUNC_ARG;
if (pthread_mutex_destroy(&cond->mutex) != 0)
ret = MEMORY_E;
if (pthread_cond_destroy(&cond->cond) != 0)
ret = MEMORY_E;
return ret;
}
int wolfSSL_CondStart(COND_TYPE* cond)
{
if (cond == NULL)
return BAD_FUNC_ARG;
if (pthread_mutex_lock(&cond->mutex) != 0)
return BAD_MUTEX_E;
return 0;
}
int wolfSSL_CondSignal(COND_TYPE* cond)
{
if (cond == NULL)
return BAD_FUNC_ARG;
if (pthread_cond_signal(&cond->cond) != 0)
return MEMORY_E;
return 0;
}
int wolfSSL_CondWait(COND_TYPE* cond)
{
if (cond == NULL)
return BAD_FUNC_ARG;
if (pthread_cond_wait(&cond->cond, &cond->mutex) != 0)
return MEMORY_E;
return 0;
}
int wolfSSL_CondEnd(COND_TYPE* cond)
{
if (cond == NULL)
return BAD_FUNC_ARG;
if (pthread_mutex_unlock(&cond->mutex) != 0)
return BAD_MUTEX_E;
return 0;
}
#else /* __MACH__ */
/* Apple style dispatch semaphore */
int wolfSSL_CondInit(COND_TYPE* cond)
{
if (cond == NULL)
return BAD_FUNC_ARG;
/* dispatch_release() fails hard, with Trace/BPT trap signal, if the
* sem's internal count is less than the value passed in with
* dispatch_semaphore_create(). work around this by initing
* with 0, then incrementing it afterwards.
*/
cond->cond = dispatch_semaphore_create(0);
if (cond->cond == NULL)
return MEMORY_E;
if (wc_InitMutex(&cond->mutex) != 0) {
dispatch_release(cond->cond);
return MEMORY_E;
}
return 0;
}
int wolfSSL_CondFree(COND_TYPE* cond)
{
if (cond == NULL)
return BAD_FUNC_ARG;
dispatch_release(cond->cond);
cond->cond = NULL;
if (wc_FreeMutex(&cond->mutex) != 0) {
return MEMORY_E;
}
return 0;
}
int wolfSSL_CondStart(COND_TYPE* cond)
{
if (cond == NULL)
return BAD_FUNC_ARG;
if (wc_LockMutex(&cond->mutex) != 0)
return BAD_MUTEX_E;
return 0;
}
int wolfSSL_CondSignal(COND_TYPE* cond)
{
if (cond == NULL)
return BAD_FUNC_ARG;
if (wc_UnLockMutex(&cond->mutex) != 0)
return BAD_MUTEX_E;
dispatch_semaphore_signal(cond->cond);
if (wc_LockMutex(&cond->mutex) != 0)
return BAD_MUTEX_E;
return 0;
}
int wolfSSL_CondWait(COND_TYPE* cond)
{
if (cond == NULL)
return BAD_FUNC_ARG;
if (wc_UnLockMutex(&cond->mutex) != 0)
return BAD_MUTEX_E;
dispatch_semaphore_wait(cond->cond, DISPATCH_TIME_FOREVER);
if (wc_LockMutex(&cond->mutex) != 0)
return BAD_MUTEX_E;
return 0;
}
int wolfSSL_CondEnd(COND_TYPE* cond)
{
if (cond == NULL)
return BAD_FUNC_ARG;
if (wc_UnLockMutex(&cond->mutex) != 0)
return BAD_MUTEX_E;
return 0;
}
#endif /* __MACH__ */
#endif /* WOLFSSL_COND */
#endif /* Environment check */
#endif /* not SINGLE_THREADED */