Files
MAX_CARLINK_A270S/MXC_A27-PCB4.5-270T/lib/wolfssl/wolfcrypt/src/aes.c
2025-01-21 16:49:37 +08:00

14354 lines
451 KiB
C

/* aes.c
*
* Copyright (C) 2006-2023 wolfSSL Inc.
*
* This file is part of wolfSSL.
*
* wolfSSL is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* wolfSSL is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA
*/
/*
DESCRIPTION
This library provides the interfaces to the Advanced Encryption Standard (AES)
for encrypting and decrypting data. AES is the standard known for a symmetric
block cipher mechanism that uses n-bit binary string parameter key with 128-bits,
192-bits, and 256-bits of key sizes.
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <wolfssl/wolfcrypt/settings.h>
#include <wolfssl/wolfcrypt/error-crypt.h>
#if !defined(NO_AES)
/* Tip: Locate the software cipher modes by searching for "Software AES" */
#if FIPS_VERSION3_GE(2,0,0)
/* set NO_WRAPPERS before headers, use direct internal f()s not wrappers */
#define FIPS_NO_WRAPPERS
#ifdef USE_WINDOWS_API
#pragma code_seg(".fipsA$b")
#pragma const_seg(".fipsB$b")
#endif
#endif
#include <wolfssl/wolfcrypt/aes.h>
#ifdef WOLFSSL_AESNI
#include <wmmintrin.h>
#include <emmintrin.h>
#include <smmintrin.h>
#endif /* WOLFSSL_AESNI */
#include <wolfssl/wolfcrypt/cpuid.h>
#ifdef WOLF_CRYPTO_CB
#include <wolfssl/wolfcrypt/cryptocb.h>
#endif
#ifdef WOLFSSL_SECO_CAAM
#include <wolfssl/wolfcrypt/port/caam/wolfcaam.h>
#endif
#ifdef WOLFSSL_IMXRT_DCP
#include <wolfssl/wolfcrypt/port/nxp/dcp_port.h>
#endif
#if defined(WOLFSSL_SE050) && defined(WOLFSSL_SE050_CRYPT)
#include <wolfssl/wolfcrypt/port/nxp/se050_port.h>
#endif
#if defined(WOLFSSL_AES_SIV)
#include <wolfssl/wolfcrypt/cmac.h>
#endif /* WOLFSSL_AES_SIV */
#if defined(WOLFSSL_HAVE_PSA) && !defined(WOLFSSL_PSA_NO_AES)
#include <wolfssl/wolfcrypt/port/psa/psa.h>
#endif
#if defined(WOLFSSL_TI_CRYPT)
#include <wolfcrypt/src/port/ti/ti-aes.c>
#else
#include <wolfssl/wolfcrypt/logging.h>
#ifdef NO_INLINE
#include <wolfssl/wolfcrypt/misc.h>
#else
#define WOLFSSL_MISC_INCLUDED
#include <wolfcrypt/src/misc.c>
#endif
#if !defined(WOLFSSL_ARMASM) && !defined(WOLFSSL_RISCV_ASM)
#ifdef WOLFSSL_IMX6_CAAM_BLOB
/* case of possibly not using hardware acceleration for AES but using key
blobs */
#include <wolfssl/wolfcrypt/port/caam/wolfcaam.h>
#endif
#ifdef DEBUG_AESNI
#include <stdio.h>
#endif
#ifdef _MSC_VER
/* 4127 warning constant while(1) */
#pragma warning(disable: 4127)
#endif
#if FIPS_VERSION3_GE(6,0,0)
const unsigned int wolfCrypt_FIPS_aes_ro_sanity[2] =
{ 0x1a2b3c4d, 0x00000002 };
int wolfCrypt_FIPS_AES_sanity(void)
{
return 0;
}
#endif
/* Define AES implementation includes and functions */
#if defined(STM32_CRYPTO)
/* STM32F2/F4/F7/L4/L5/H7/WB55 hardware AES support for ECB, CBC, CTR and GCM modes */
#if defined(WOLFSSL_AES_DIRECT) || defined(HAVE_AESGCM) || defined(HAVE_AESCCM)
static WARN_UNUSED_RESULT int wc_AesEncrypt(
Aes* aes, const byte* inBlock, byte* outBlock)
{
int ret = 0;
#ifdef WOLFSSL_STM32_CUBEMX
CRYP_HandleTypeDef hcryp;
#else
CRYP_InitTypeDef cryptInit;
CRYP_KeyInitTypeDef keyInit;
#endif
#ifdef WC_DEBUG_CIPHER_LIFECYCLE
ret = wc_debug_CipherLifecycleCheck(aes->CipherLifecycleTag, 0);
if (ret < 0)
return ret;
#endif
#ifdef WOLFSSL_STM32_CUBEMX
ret = wc_Stm32_Aes_Init(aes, &hcryp);
if (ret != 0)
return ret;
ret = wolfSSL_CryptHwMutexLock();
if (ret != 0)
return ret;
#if defined(STM32_HAL_V2)
hcryp.Init.Algorithm = CRYP_AES_ECB;
#elif defined(STM32_CRYPTO_AES_ONLY)
hcryp.Init.OperatingMode = CRYP_ALGOMODE_ENCRYPT;
hcryp.Init.ChainingMode = CRYP_CHAINMODE_AES_ECB;
hcryp.Init.KeyWriteFlag = CRYP_KEY_WRITE_ENABLE;
#endif
HAL_CRYP_Init(&hcryp);
#if defined(STM32_HAL_V2)
ret = HAL_CRYP_Encrypt(&hcryp, (uint32_t*)inBlock, AES_BLOCK_SIZE,
(uint32_t*)outBlock, STM32_HAL_TIMEOUT);
#elif defined(STM32_CRYPTO_AES_ONLY)
ret = HAL_CRYPEx_AES(&hcryp, (uint8_t*)inBlock, AES_BLOCK_SIZE,
outBlock, STM32_HAL_TIMEOUT);
#else
ret = HAL_CRYP_AESECB_Encrypt(&hcryp, (uint8_t*)inBlock, AES_BLOCK_SIZE,
outBlock, STM32_HAL_TIMEOUT);
#endif
if (ret != HAL_OK) {
ret = WC_TIMEOUT_E;
}
HAL_CRYP_DeInit(&hcryp);
#else /* Standard Peripheral Library */
ret = wc_Stm32_Aes_Init(aes, &cryptInit, &keyInit);
if (ret != 0)
return ret;
ret = wolfSSL_CryptHwMutexLock();
if (ret != 0)
return ret;
/* reset registers to their default values */
CRYP_DeInit();
/* setup key */
CRYP_KeyInit(&keyInit);
/* set direction and mode */
cryptInit.CRYP_AlgoDir = CRYP_AlgoDir_Encrypt;
cryptInit.CRYP_AlgoMode = CRYP_AlgoMode_AES_ECB;
CRYP_Init(&cryptInit);
/* enable crypto processor */
CRYP_Cmd(ENABLE);
/* flush IN/OUT FIFOs */
CRYP_FIFOFlush();
CRYP_DataIn(*(uint32_t*)&inBlock[0]);
CRYP_DataIn(*(uint32_t*)&inBlock[4]);
CRYP_DataIn(*(uint32_t*)&inBlock[8]);
CRYP_DataIn(*(uint32_t*)&inBlock[12]);
/* wait until the complete message has been processed */
while (CRYP_GetFlagStatus(CRYP_FLAG_BUSY) != RESET) {}
*(uint32_t*)&outBlock[0] = CRYP_DataOut();
*(uint32_t*)&outBlock[4] = CRYP_DataOut();
*(uint32_t*)&outBlock[8] = CRYP_DataOut();
*(uint32_t*)&outBlock[12] = CRYP_DataOut();
/* disable crypto processor */
CRYP_Cmd(DISABLE);
#endif /* WOLFSSL_STM32_CUBEMX */
wolfSSL_CryptHwMutexUnLock();
wc_Stm32_Aes_Cleanup();
return ret;
}
#endif /* WOLFSSL_AES_DIRECT || HAVE_AESGCM || HAVE_AESCCM */
#ifdef HAVE_AES_DECRYPT
#if defined(WOLFSSL_AES_DIRECT) || defined(HAVE_AESCCM)
static WARN_UNUSED_RESULT int wc_AesDecrypt(
Aes* aes, const byte* inBlock, byte* outBlock)
{
int ret = 0;
#ifdef WOLFSSL_STM32_CUBEMX
CRYP_HandleTypeDef hcryp;
#else
CRYP_InitTypeDef cryptInit;
CRYP_KeyInitTypeDef keyInit;
#endif
#ifdef WC_DEBUG_CIPHER_LIFECYCLE
ret = wc_debug_CipherLifecycleCheck(aes->CipherLifecycleTag, 0);
if (ret < 0)
return ret;
#endif
#ifdef WOLFSSL_STM32_CUBEMX
ret = wc_Stm32_Aes_Init(aes, &hcryp);
if (ret != 0)
return ret;
ret = wolfSSL_CryptHwMutexLock();
if (ret != 0)
return ret;
#if defined(STM32_HAL_V2)
hcryp.Init.Algorithm = CRYP_AES_ECB;
#elif defined(STM32_CRYPTO_AES_ONLY)
hcryp.Init.OperatingMode = CRYP_ALGOMODE_KEYDERIVATION_DECRYPT;
hcryp.Init.ChainingMode = CRYP_CHAINMODE_AES_ECB;
hcryp.Init.KeyWriteFlag = CRYP_KEY_WRITE_ENABLE;
#endif
HAL_CRYP_Init(&hcryp);
#if defined(STM32_HAL_V2)
ret = HAL_CRYP_Decrypt(&hcryp, (uint32_t*)inBlock, AES_BLOCK_SIZE,
(uint32_t*)outBlock, STM32_HAL_TIMEOUT);
#elif defined(STM32_CRYPTO_AES_ONLY)
ret = HAL_CRYPEx_AES(&hcryp, (uint8_t*)inBlock, AES_BLOCK_SIZE,
outBlock, STM32_HAL_TIMEOUT);
#else
ret = HAL_CRYP_AESECB_Decrypt(&hcryp, (uint8_t*)inBlock, AES_BLOCK_SIZE,
outBlock, STM32_HAL_TIMEOUT);
#endif
if (ret != HAL_OK) {
ret = WC_TIMEOUT_E;
}
HAL_CRYP_DeInit(&hcryp);
#else /* Standard Peripheral Library */
ret = wc_Stm32_Aes_Init(aes, &cryptInit, &keyInit);
if (ret != 0)
return ret;
ret = wolfSSL_CryptHwMutexLock();
if (ret != 0)
return ret;
/* reset registers to their default values */
CRYP_DeInit();
/* set direction and key */
CRYP_KeyInit(&keyInit);
cryptInit.CRYP_AlgoDir = CRYP_AlgoDir_Decrypt;
cryptInit.CRYP_AlgoMode = CRYP_AlgoMode_AES_Key;
CRYP_Init(&cryptInit);
/* enable crypto processor */
CRYP_Cmd(ENABLE);
/* wait until decrypt key has been initialized */
while (CRYP_GetFlagStatus(CRYP_FLAG_BUSY) != RESET) {}
/* set direction and mode */
cryptInit.CRYP_AlgoDir = CRYP_AlgoDir_Decrypt;
cryptInit.CRYP_AlgoMode = CRYP_AlgoMode_AES_ECB;
CRYP_Init(&cryptInit);
/* enable crypto processor */
CRYP_Cmd(ENABLE);
/* flush IN/OUT FIFOs */
CRYP_FIFOFlush();
CRYP_DataIn(*(uint32_t*)&inBlock[0]);
CRYP_DataIn(*(uint32_t*)&inBlock[4]);
CRYP_DataIn(*(uint32_t*)&inBlock[8]);
CRYP_DataIn(*(uint32_t*)&inBlock[12]);
/* wait until the complete message has been processed */
while (CRYP_GetFlagStatus(CRYP_FLAG_BUSY) != RESET) {}
*(uint32_t*)&outBlock[0] = CRYP_DataOut();
*(uint32_t*)&outBlock[4] = CRYP_DataOut();
*(uint32_t*)&outBlock[8] = CRYP_DataOut();
*(uint32_t*)&outBlock[12] = CRYP_DataOut();
/* disable crypto processor */
CRYP_Cmd(DISABLE);
#endif /* WOLFSSL_STM32_CUBEMX */
wolfSSL_CryptHwMutexUnLock();
wc_Stm32_Aes_Cleanup();
return ret;
}
#endif /* WOLFSSL_AES_DIRECT || HAVE_AESCCM */
#endif /* HAVE_AES_DECRYPT */
#elif defined(HAVE_COLDFIRE_SEC)
/* Freescale Coldfire SEC support for CBC mode.
* NOTE: no support for AES-CTR/GCM/CCM/Direct */
#include <wolfssl/wolfcrypt/types.h>
#include "sec.h"
#include "mcf5475_sec.h"
#include "mcf5475_siu.h"
#elif defined(FREESCALE_LTC)
#include "fsl_ltc.h"
#if defined(FREESCALE_LTC_AES_GCM)
#undef NEED_AES_TABLES
#undef GCM_TABLE
#endif
/* if LTC doesn't have GCM, use software with LTC AES ECB mode */
static WARN_UNUSED_RESULT int wc_AesEncrypt(
Aes* aes, const byte* inBlock, byte* outBlock)
{
word32 keySize = 0;
byte* key = (byte*)aes->key;
int ret = wc_AesGetKeySize(aes, &keySize);
if (ret != 0)
return ret;
#ifdef WC_DEBUG_CIPHER_LIFECYCLE
ret = wc_debug_CipherLifecycleCheck(aes->CipherLifecycleTag, 0);
if (ret < 0)
return ret;
#endif
if (wolfSSL_CryptHwMutexLock() == 0) {
LTC_AES_EncryptEcb(LTC_BASE, inBlock, outBlock, AES_BLOCK_SIZE,
key, keySize);
wolfSSL_CryptHwMutexUnLock();
}
return 0;
}
#ifdef HAVE_AES_DECRYPT
static WARN_UNUSED_RESULT int wc_AesDecrypt(
Aes* aes, const byte* inBlock, byte* outBlock)
{
word32 keySize = 0;
byte* key = (byte*)aes->key;
int ret = wc_AesGetKeySize(aes, &keySize);
if (ret != 0)
return ret;
#ifdef WC_DEBUG_CIPHER_LIFECYCLE
ret = wc_debug_CipherLifecycleCheck(aes->CipherLifecycleTag, 0);
if (ret < 0)
return ret;
#endif
if (wolfSSL_CryptHwMutexLock() == 0) {
LTC_AES_DecryptEcb(LTC_BASE, inBlock, outBlock, AES_BLOCK_SIZE,
key, keySize, kLTC_EncryptKey);
wolfSSL_CryptHwMutexUnLock();
}
return 0;
}
#endif
#elif defined(FREESCALE_MMCAU)
/* Freescale mmCAU hardware AES support for Direct, CBC, CCM, GCM modes
* through the CAU/mmCAU library. Documentation located in
* ColdFire/ColdFire+ CAU and Kinetis mmCAU Software Library User
* Guide (See note in README). */
#ifdef FREESCALE_MMCAU_CLASSIC
/* MMCAU 1.4 library used with non-KSDK / classic MQX builds */
#include "cau_api.h"
#else
#include "fsl_mmcau.h"
#endif
static WARN_UNUSED_RESULT int wc_AesEncrypt(
Aes* aes, const byte* inBlock, byte* outBlock)
{
#ifdef WC_DEBUG_CIPHER_LIFECYCLE
{
int ret = wc_debug_CipherLifecycleCheck(aes->CipherLifecycleTag, 0);
if (ret < 0)
return ret;
}
#endif
if (wolfSSL_CryptHwMutexLock() == 0) {
#ifdef FREESCALE_MMCAU_CLASSIC
if ((wc_ptr_t)outBlock % WOLFSSL_MMCAU_ALIGNMENT) {
WOLFSSL_MSG("Bad cau_aes_encrypt alignment");
return BAD_ALIGN_E;
}
cau_aes_encrypt(inBlock, (byte*)aes->key, aes->rounds, outBlock);
#else
MMCAU_AES_EncryptEcb(inBlock, (byte*)aes->key, aes->rounds,
outBlock);
#endif
wolfSSL_CryptHwMutexUnLock();
}
return 0;
}
#ifdef HAVE_AES_DECRYPT
static WARN_UNUSED_RESULT int wc_AesDecrypt(
Aes* aes, const byte* inBlock, byte* outBlock)
{
#ifdef WC_DEBUG_CIPHER_LIFECYCLE
{
int ret = wc_debug_CipherLifecycleCheck(aes->CipherLifecycleTag, 0);
if (ret < 0)
return ret;
}
#endif
if (wolfSSL_CryptHwMutexLock() == 0) {
#ifdef FREESCALE_MMCAU_CLASSIC
if ((wc_ptr_t)outBlock % WOLFSSL_MMCAU_ALIGNMENT) {
WOLFSSL_MSG("Bad cau_aes_decrypt alignment");
return BAD_ALIGN_E;
}
cau_aes_decrypt(inBlock, (byte*)aes->key, aes->rounds, outBlock);
#else
MMCAU_AES_DecryptEcb(inBlock, (byte*)aes->key, aes->rounds,
outBlock);
#endif
wolfSSL_CryptHwMutexUnLock();
}
return 0;
}
#endif /* HAVE_AES_DECRYPT */
#elif defined(WOLFSSL_PIC32MZ_CRYPT)
#include <wolfssl/wolfcrypt/port/pic32/pic32mz-crypt.h>
#if defined(HAVE_AESGCM) || defined(WOLFSSL_AES_DIRECT)
static WARN_UNUSED_RESULT int wc_AesEncrypt(
Aes* aes, const byte* inBlock, byte* outBlock)
{
#ifdef WC_DEBUG_CIPHER_LIFECYCLE
{
int ret = wc_debug_CipherLifecycleCheck(aes->CipherLifecycleTag, 0);
if (ret < 0)
return ret;
}
#endif
/* Thread mutex protection handled in Pic32Crypto */
return wc_Pic32AesCrypt(aes->key, aes->keylen, NULL, 0,
outBlock, inBlock, AES_BLOCK_SIZE,
PIC32_ENCRYPTION, PIC32_ALGO_AES, PIC32_CRYPTOALGO_RECB);
}
#endif
#if defined(HAVE_AES_DECRYPT) && defined(WOLFSSL_AES_DIRECT)
static WARN_UNUSED_RESULT int wc_AesDecrypt(
Aes* aes, const byte* inBlock, byte* outBlock)
{
#ifdef WC_DEBUG_CIPHER_LIFECYCLE
{
int ret = wc_debug_CipherLifecycleCheck(aes->CipherLifecycleTag, 0);
if (ret < 0)
return ret;
}
#endif
/* Thread mutex protection handled in Pic32Crypto */
return wc_Pic32AesCrypt(aes->key, aes->keylen, NULL, 0,
outBlock, inBlock, AES_BLOCK_SIZE,
PIC32_DECRYPTION, PIC32_ALGO_AES, PIC32_CRYPTOALGO_RECB);
}
#endif
#elif defined(WOLFSSL_NRF51_AES)
/* Use built-in AES hardware - AES 128 ECB Encrypt Only */
#include "wolfssl/wolfcrypt/port/nrf51.h"
static WARN_UNUSED_RESULT int wc_AesEncrypt(
Aes* aes, const byte* inBlock, byte* outBlock)
{
int ret;
#ifdef WC_DEBUG_CIPHER_LIFECYCLE
ret = wc_debug_CipherLifecycleCheck(aes->CipherLifecycleTag, 0);
if (ret < 0)
return ret;
#endif
ret = wolfSSL_CryptHwMutexLock();
if (ret == 0) {
ret = nrf51_aes_encrypt(inBlock, (byte*)aes->key, aes->rounds,
outBlock);
wolfSSL_CryptHwMutexUnLock();
}
return ret;
}
#ifdef HAVE_AES_DECRYPT
#error nRF51 AES Hardware does not support decrypt
#endif /* HAVE_AES_DECRYPT */
#elif defined(WOLFSSL_ESP32_CRYPT) && \
!defined(NO_WOLFSSL_ESP32_CRYPT_AES)
#include <esp_log.h>
#include <wolfssl/wolfcrypt/port/Espressif/esp32-crypt.h>
#define TAG "aes"
/* We'll use SW for fallback:
* unsupported key lengths. (e.g. ESP32-S3)
* chipsets not implemented.
* hardware busy. */
#define NEED_AES_TABLES
#define NEED_AES_HW_FALLBACK
#define NEED_SOFTWARE_AES_SETKEY
#undef WOLFSSL_AES_DIRECT
#define WOLFSSL_AES_DIRECT
/* Encrypt: If we choose to never have a fallback to SW: */
#if !defined(NEED_AES_HW_FALLBACK) && (defined(HAVE_AESGCM) || defined(WOLFSSL_AES_DIRECT))
static WARN_UNUSED_RESULT int wc_AesEncrypt( /* calling this one when NO_AES_192 is defined */
Aes* aes, const byte* inBlock, byte* outBlock)
{
int ret;
#ifdef WC_DEBUG_CIPHER_LIFECYCLE
ret = wc_debug_CipherLifecycleCheck(aes->CipherLifecycleTag, 0);
if (ret < 0)
return ret;
#endif
/* Thread mutex protection handled in esp_aes_hw_InUse */
#ifdef NEED_AES_HW_FALLBACK
if (wc_esp32AesSupportedKeyLen(aes)) {
ret = wc_esp32AesEncrypt(aes, inBlock, outBlock);
}
#else
ret = wc_esp32AesEncrypt(aes, inBlock, outBlock);
#endif
return ret;
}
#endif
/* Decrypt: If we choose to never have a fallback to SW: */
#if !defined(NEED_AES_HW_FALLBACK) && (defined(HAVE_AES_DECRYPT) && defined(WOLFSSL_AES_DIRECT))
static WARN_UNUSED_RESULT int wc_AesDecrypt(
Aes* aes, const byte* inBlock, byte* outBlock)
{
int ret = 0;
#ifdef WC_DEBUG_CIPHER_LIFECYCLE
ret = wc_debug_CipherLifecycleCheck(aes->CipherLifecycleTag, 0);
if (ret < 0)
return ret;
#endif
/* Thread mutex protection handled in esp_aes_hw_InUse */
#ifdef NEED_AES_HW_FALLBACK
if (wc_esp32AesSupportedKeyLen(aes)) {
ret = wc_esp32AesDecrypt(aes, inBlock, outBlock);
}
else {
ret = wc_AesDecrypt_SW(aes, inBlock, outBlock);
}
#else
/* if we don't need fallback, always use HW */
ret = wc_esp32AesDecrypt(aes, inBlock, outBlock);
#endif
return ret;
}
#endif
#elif defined(WOLFSSL_AESNI)
#define NEED_AES_TABLES
/* Each platform needs to query info type 1 from cpuid to see if aesni is
* supported. Also, let's setup a macro for proper linkage w/o ABI conflicts
*/
#ifndef AESNI_ALIGN
#define AESNI_ALIGN 16
#endif
static int checkedAESNI = 0;
static int haveAESNI = 0;
static word32 intel_flags = 0;
static WARN_UNUSED_RESULT int Check_CPU_support_AES(void)
{
intel_flags = cpuid_get_flags();
return IS_INTEL_AESNI(intel_flags) != 0;
}
/* tell C compiler these are asm functions in case any mix up of ABI underscore
prefix between clang/gcc/llvm etc */
#ifdef HAVE_AES_CBC
void AES_CBC_encrypt_AESNI(const unsigned char* in, unsigned char* out,
unsigned char* ivec, unsigned long length,
const unsigned char* KS, int nr)
XASM_LINK("AES_CBC_encrypt_AESNI");
#ifdef HAVE_AES_DECRYPT
#if defined(WOLFSSL_AESNI_BY4) || defined(WOLFSSL_X86_BUILD)
void AES_CBC_decrypt_AESNI_by4(const unsigned char* in, unsigned char* out,
unsigned char* ivec, unsigned long length,
const unsigned char* KS, int nr)
XASM_LINK("AES_CBC_decrypt_AESNI_by4");
#elif defined(WOLFSSL_AESNI_BY6)
void AES_CBC_decrypt_AESNI_by6(const unsigned char* in, unsigned char* out,
unsigned char* ivec, unsigned long length,
const unsigned char* KS, int nr)
XASM_LINK("AES_CBC_decrypt_AESNI_by6");
#else /* WOLFSSL_AESNI_BYx */
void AES_CBC_decrypt_AESNI_by8(const unsigned char* in, unsigned char* out,
unsigned char* ivec, unsigned long length,
const unsigned char* KS, int nr)
XASM_LINK("AES_CBC_decrypt_AESNI_by8");
#endif /* WOLFSSL_AESNI_BYx */
#endif /* HAVE_AES_DECRYPT */
#endif /* HAVE_AES_CBC */
void AES_ECB_encrypt_AESNI(const unsigned char* in, unsigned char* out,
unsigned long length, const unsigned char* KS, int nr)
XASM_LINK("AES_ECB_encrypt_AESNI");
#ifdef HAVE_AES_DECRYPT
void AES_ECB_decrypt_AESNI(const unsigned char* in, unsigned char* out,
unsigned long length, const unsigned char* KS, int nr)
XASM_LINK("AES_ECB_decrypt_AESNI");
#endif
void AES_128_Key_Expansion_AESNI(const unsigned char* userkey,
unsigned char* key_schedule)
XASM_LINK("AES_128_Key_Expansion_AESNI");
void AES_192_Key_Expansion_AESNI(const unsigned char* userkey,
unsigned char* key_schedule)
XASM_LINK("AES_192_Key_Expansion_AESNI");
void AES_256_Key_Expansion_AESNI(const unsigned char* userkey,
unsigned char* key_schedule)
XASM_LINK("AES_256_Key_Expansion_AESNI");
static WARN_UNUSED_RESULT int AES_set_encrypt_key_AESNI(
const unsigned char *userKey, const int bits, Aes* aes)
{
int ret;
ASSERT_SAVED_VECTOR_REGISTERS();
if (!userKey || !aes)
return BAD_FUNC_ARG;
switch (bits) {
case 128:
AES_128_Key_Expansion_AESNI (userKey,(byte*)aes->key); aes->rounds = 10;
return 0;
case 192:
AES_192_Key_Expansion_AESNI (userKey,(byte*)aes->key); aes->rounds = 12;
return 0;
case 256:
AES_256_Key_Expansion_AESNI (userKey,(byte*)aes->key); aes->rounds = 14;
return 0;
default:
ret = BAD_FUNC_ARG;
}
return ret;
}
#ifdef HAVE_AES_DECRYPT
static WARN_UNUSED_RESULT int AES_set_decrypt_key_AESNI(
const unsigned char* userKey, const int bits, Aes* aes)
{
word32 nr;
#ifdef WOLFSSL_SMALL_STACK
Aes *temp_key;
#else
Aes temp_key[1];
#endif
__m128i *Key_Schedule;
__m128i *Temp_Key_Schedule;
ASSERT_SAVED_VECTOR_REGISTERS();
if (!userKey || !aes)
return BAD_FUNC_ARG;
#ifdef WOLFSSL_SMALL_STACK
if ((temp_key = (Aes *)XMALLOC(sizeof *aes, aes->heap,
DYNAMIC_TYPE_AES)) == NULL)
return MEMORY_E;
#endif
if (AES_set_encrypt_key_AESNI(userKey,bits,temp_key)
== WC_NO_ERR_TRACE(BAD_FUNC_ARG)) {
#ifdef WOLFSSL_SMALL_STACK
XFREE(temp_key, aes->heap, DYNAMIC_TYPE_AES);
#endif
return BAD_FUNC_ARG;
}
Key_Schedule = (__m128i*)aes->key;
Temp_Key_Schedule = (__m128i*)temp_key->key;
nr = temp_key->rounds;
aes->rounds = nr;
Key_Schedule[nr] = Temp_Key_Schedule[0];
Key_Schedule[nr-1] = _mm_aesimc_si128(Temp_Key_Schedule[1]);
Key_Schedule[nr-2] = _mm_aesimc_si128(Temp_Key_Schedule[2]);
Key_Schedule[nr-3] = _mm_aesimc_si128(Temp_Key_Schedule[3]);
Key_Schedule[nr-4] = _mm_aesimc_si128(Temp_Key_Schedule[4]);
Key_Schedule[nr-5] = _mm_aesimc_si128(Temp_Key_Schedule[5]);
Key_Schedule[nr-6] = _mm_aesimc_si128(Temp_Key_Schedule[6]);
Key_Schedule[nr-7] = _mm_aesimc_si128(Temp_Key_Schedule[7]);
Key_Schedule[nr-8] = _mm_aesimc_si128(Temp_Key_Schedule[8]);
Key_Schedule[nr-9] = _mm_aesimc_si128(Temp_Key_Schedule[9]);
if (nr>10) {
Key_Schedule[nr-10] = _mm_aesimc_si128(Temp_Key_Schedule[10]);
Key_Schedule[nr-11] = _mm_aesimc_si128(Temp_Key_Schedule[11]);
}
if (nr>12) {
Key_Schedule[nr-12] = _mm_aesimc_si128(Temp_Key_Schedule[12]);
Key_Schedule[nr-13] = _mm_aesimc_si128(Temp_Key_Schedule[13]);
}
Key_Schedule[0] = Temp_Key_Schedule[nr];
#ifdef WOLFSSL_SMALL_STACK
XFREE(temp_key, aes->heap, DYNAMIC_TYPE_AES);
#endif
return 0;
}
#endif /* HAVE_AES_DECRYPT */
#elif (defined(WOLFSSL_IMX6_CAAM) && !defined(NO_IMX6_CAAM_AES) \
&& !defined(WOLFSSL_QNX_CAAM)) || \
((defined(WOLFSSL_AFALG) || defined(WOLFSSL_DEVCRYPTO_AES)) && \
defined(HAVE_AESCCM))
static WARN_UNUSED_RESULT int wc_AesEncrypt(
Aes* aes, const byte* inBlock, byte* outBlock)
{
#ifdef WC_DEBUG_CIPHER_LIFECYCLE
{
int ret =
wc_debug_CipherLifecycleCheck(aes->CipherLifecycleTag, 0);
if (ret < 0)
return ret;
}
#endif
return wc_AesEncryptDirect(aes, outBlock, inBlock);
}
#elif defined(WOLFSSL_AFALG)
/* implemented in wolfcrypt/src/port/af_alg/afalg_aes.c */
#elif defined(WOLFSSL_DEVCRYPTO_AES)
/* implemented in wolfcrypt/src/port/devcrypto/devcrypto_aes.c */
#elif defined(WOLFSSL_SCE) && !defined(WOLFSSL_SCE_NO_AES)
#include "hal_data.h"
#ifndef WOLFSSL_SCE_AES256_HANDLE
#define WOLFSSL_SCE_AES256_HANDLE g_sce_aes_256
#endif
#ifndef WOLFSSL_SCE_AES192_HANDLE
#define WOLFSSL_SCE_AES192_HANDLE g_sce_aes_192
#endif
#ifndef WOLFSSL_SCE_AES128_HANDLE
#define WOLFSSL_SCE_AES128_HANDLE g_sce_aes_128
#endif
static WARN_UNUSED_RESULT int AES_ECB_encrypt(
Aes* aes, const byte* inBlock, byte* outBlock, int sz)
{
word32 ret;
if (WOLFSSL_SCE_GSCE_HANDLE.p_cfg->endian_flag ==
CRYPTO_WORD_ENDIAN_BIG) {
ByteReverseWords((word32*)inBlock, (word32*)inBlock, sz);
}
switch (aes->keylen) {
#ifdef WOLFSSL_AES_128
case AES_128_KEY_SIZE:
ret = WOLFSSL_SCE_AES128_HANDLE.p_api->encrypt(
WOLFSSL_SCE_AES128_HANDLE.p_ctrl, aes->key,
NULL, (sz / sizeof(word32)), (word32*)inBlock,
(word32*)outBlock);
break;
#endif
#ifdef WOLFSSL_AES_192
case AES_192_KEY_SIZE:
ret = WOLFSSL_SCE_AES192_HANDLE.p_api->encrypt(
WOLFSSL_SCE_AES192_HANDLE.p_ctrl, aes->key,
NULL, (sz / sizeof(word32)), (word32*)inBlock,
(word32*)outBlock);
break;
#endif
#ifdef WOLFSSL_AES_256
case AES_256_KEY_SIZE:
ret = WOLFSSL_SCE_AES256_HANDLE.p_api->encrypt(
WOLFSSL_SCE_AES256_HANDLE.p_ctrl, aes->key,
NULL, (sz / sizeof(word32)), (word32*)inBlock,
(word32*)outBlock);
break;
#endif
default:
WOLFSSL_MSG("Unknown key size");
return BAD_FUNC_ARG;
}
if (ret != SSP_SUCCESS) {
/* revert input */
ByteReverseWords((word32*)inBlock, (word32*)inBlock, sz);
return WC_HW_E;
}
if (WOLFSSL_SCE_GSCE_HANDLE.p_cfg->endian_flag ==
CRYPTO_WORD_ENDIAN_BIG) {
ByteReverseWords((word32*)outBlock, (word32*)outBlock, sz);
if (inBlock != outBlock) {
/* revert input */
ByteReverseWords((word32*)inBlock, (word32*)inBlock, sz);
}
}
return 0;
}
#if defined(HAVE_AES_DECRYPT)
static WARN_UNUSED_RESULT int AES_ECB_decrypt(
Aes* aes, const byte* inBlock, byte* outBlock, int sz)
{
word32 ret;
if (WOLFSSL_SCE_GSCE_HANDLE.p_cfg->endian_flag ==
CRYPTO_WORD_ENDIAN_BIG) {
ByteReverseWords((word32*)inBlock, (word32*)inBlock, sz);
}
switch (aes->keylen) {
#ifdef WOLFSSL_AES_128
case AES_128_KEY_SIZE:
ret = WOLFSSL_SCE_AES128_HANDLE.p_api->decrypt(
WOLFSSL_SCE_AES128_HANDLE.p_ctrl, aes->key, aes->reg,
(sz / sizeof(word32)), (word32*)inBlock,
(word32*)outBlock);
break;
#endif
#ifdef WOLFSSL_AES_192
case AES_192_KEY_SIZE:
ret = WOLFSSL_SCE_AES192_HANDLE.p_api->decrypt(
WOLFSSL_SCE_AES192_HANDLE.p_ctrl, aes->key, aes->reg,
(sz / sizeof(word32)), (word32*)inBlock,
(word32*)outBlock);
break;
#endif
#ifdef WOLFSSL_AES_256
case AES_256_KEY_SIZE:
ret = WOLFSSL_SCE_AES256_HANDLE.p_api->decrypt(
WOLFSSL_SCE_AES256_HANDLE.p_ctrl, aes->key, aes->reg,
(sz / sizeof(word32)), (word32*)inBlock,
(word32*)outBlock);
break;
#endif
default:
WOLFSSL_MSG("Unknown key size");
return BAD_FUNC_ARG;
}
if (ret != SSP_SUCCESS) {
return WC_HW_E;
}
if (WOLFSSL_SCE_GSCE_HANDLE.p_cfg->endian_flag ==
CRYPTO_WORD_ENDIAN_BIG) {
ByteReverseWords((word32*)outBlock, (word32*)outBlock, sz);
if (inBlock != outBlock) {
/* revert input */
ByteReverseWords((word32*)inBlock, (word32*)inBlock, sz);
}
}
return 0;
}
#endif /* HAVE_AES_DECRYPT */
#if defined(HAVE_AESGCM) || defined(WOLFSSL_AES_DIRECT)
static WARN_UNUSED_RESULT int wc_AesEncrypt(
Aes* aes, const byte* inBlock, byte* outBlock)
{
#ifdef WC_DEBUG_CIPHER_LIFECYCLE
{
int ret = wc_debug_CipherLifecycleCheck(aes->CipherLifecycleTag, 0);
if (ret < 0)
return ret;
}
#endif
return AES_ECB_encrypt(aes, inBlock, outBlock, AES_BLOCK_SIZE);
}
#endif
#if defined(HAVE_AES_DECRYPT) && defined(WOLFSSL_AES_DIRECT)
static WARN_UNUSED_RESULT int wc_AesDecrypt(
Aes* aes, const byte* inBlock, byte* outBlock)
{
#ifdef WC_DEBUG_CIPHER_LIFECYCLE
{
int ret = wc_debug_CipherLifecycleCheck(aes->CipherLifecycleTag, 0);
if (ret < 0)
return ret;
}
#endif
return AES_ECB_decrypt(aes, inBlock, outBlock, AES_BLOCK_SIZE);
}
#endif
#elif defined(WOLFSSL_KCAPI_AES)
/* Only CBC and GCM are in wolfcrypt/src/port/kcapi/kcapi_aes.c */
#if defined(WOLFSSL_AES_COUNTER) || defined(HAVE_AESCCM) || \
defined(WOLFSSL_CMAC) || defined(WOLFSSL_AES_OFB) || \
defined(WOLFSSL_AES_CFB) || defined(HAVE_AES_ECB) || \
defined(WOLFSSL_AES_DIRECT) || defined(WOLFSSL_AES_XTS) || \
(defined(HAVE_AES_CBC) && defined(WOLFSSL_NO_KCAPI_AES_CBC))
#define NEED_AES_TABLES
#endif
#elif defined(WOLFSSL_HAVE_PSA) && !defined(WOLFSSL_PSA_NO_AES)
/* implemented in wolfcrypt/src/port/psa/psa_aes.c */
#elif defined(WOLFSSL_RISCV_ASM)
/* implemented in wolfcrypt/src/port/risc-v/riscv-64-aes.c */
#else
/* using wolfCrypt software implementation */
#define NEED_AES_TABLES
#endif
#if defined(WC_AES_BITSLICED) && !defined(HAVE_AES_ECB)
#error "When WC_AES_BITSLICED is defined, HAVE_AES_ECB is needed."
#endif
#ifdef NEED_AES_TABLES
#ifndef WC_AES_BITSLICED
#if !defined(WOLFSSL_SILABS_SE_ACCEL) || \
defined(NO_ESP32_CRYPT) || defined(NO_WOLFSSL_ESP32_CRYPT_AES) || \
defined(NEED_AES_HW_FALLBACK)
static const FLASH_QUALIFIER word32 rcon[] = {
0x01000000, 0x02000000, 0x04000000, 0x08000000,
0x10000000, 0x20000000, 0x40000000, 0x80000000,
0x1B000000, 0x36000000,
/* for 128-bit blocks, Rijndael never uses more than 10 rcon values */
};
#endif
#ifndef WOLFSSL_AES_SMALL_TABLES
static const FLASH_QUALIFIER word32 Te[4][256] = {
{
0xc66363a5U, 0xf87c7c84U, 0xee777799U, 0xf67b7b8dU,
0xfff2f20dU, 0xd66b6bbdU, 0xde6f6fb1U, 0x91c5c554U,
0x60303050U, 0x02010103U, 0xce6767a9U, 0x562b2b7dU,
0xe7fefe19U, 0xb5d7d762U, 0x4dababe6U, 0xec76769aU,
0x8fcaca45U, 0x1f82829dU, 0x89c9c940U, 0xfa7d7d87U,
0xeffafa15U, 0xb25959ebU, 0x8e4747c9U, 0xfbf0f00bU,
0x41adadecU, 0xb3d4d467U, 0x5fa2a2fdU, 0x45afafeaU,
0x239c9cbfU, 0x53a4a4f7U, 0xe4727296U, 0x9bc0c05bU,
0x75b7b7c2U, 0xe1fdfd1cU, 0x3d9393aeU, 0x4c26266aU,
0x6c36365aU, 0x7e3f3f41U, 0xf5f7f702U, 0x83cccc4fU,
0x6834345cU, 0x51a5a5f4U, 0xd1e5e534U, 0xf9f1f108U,
0xe2717193U, 0xabd8d873U, 0x62313153U, 0x2a15153fU,
0x0804040cU, 0x95c7c752U, 0x46232365U, 0x9dc3c35eU,
0x30181828U, 0x379696a1U, 0x0a05050fU, 0x2f9a9ab5U,
0x0e070709U, 0x24121236U, 0x1b80809bU, 0xdfe2e23dU,
0xcdebeb26U, 0x4e272769U, 0x7fb2b2cdU, 0xea75759fU,
0x1209091bU, 0x1d83839eU, 0x582c2c74U, 0x341a1a2eU,
0x361b1b2dU, 0xdc6e6eb2U, 0xb45a5aeeU, 0x5ba0a0fbU,
0xa45252f6U, 0x763b3b4dU, 0xb7d6d661U, 0x7db3b3ceU,
0x5229297bU, 0xdde3e33eU, 0x5e2f2f71U, 0x13848497U,
0xa65353f5U, 0xb9d1d168U, 0x00000000U, 0xc1eded2cU,
0x40202060U, 0xe3fcfc1fU, 0x79b1b1c8U, 0xb65b5bedU,
0xd46a6abeU, 0x8dcbcb46U, 0x67bebed9U, 0x7239394bU,
0x944a4adeU, 0x984c4cd4U, 0xb05858e8U, 0x85cfcf4aU,
0xbbd0d06bU, 0xc5efef2aU, 0x4faaaae5U, 0xedfbfb16U,
0x864343c5U, 0x9a4d4dd7U, 0x66333355U, 0x11858594U,
0x8a4545cfU, 0xe9f9f910U, 0x04020206U, 0xfe7f7f81U,
0xa05050f0U, 0x783c3c44U, 0x259f9fbaU, 0x4ba8a8e3U,
0xa25151f3U, 0x5da3a3feU, 0x804040c0U, 0x058f8f8aU,
0x3f9292adU, 0x219d9dbcU, 0x70383848U, 0xf1f5f504U,
0x63bcbcdfU, 0x77b6b6c1U, 0xafdada75U, 0x42212163U,
0x20101030U, 0xe5ffff1aU, 0xfdf3f30eU, 0xbfd2d26dU,
0x81cdcd4cU, 0x180c0c14U, 0x26131335U, 0xc3ecec2fU,
0xbe5f5fe1U, 0x359797a2U, 0x884444ccU, 0x2e171739U,
0x93c4c457U, 0x55a7a7f2U, 0xfc7e7e82U, 0x7a3d3d47U,
0xc86464acU, 0xba5d5de7U, 0x3219192bU, 0xe6737395U,
0xc06060a0U, 0x19818198U, 0x9e4f4fd1U, 0xa3dcdc7fU,
0x44222266U, 0x542a2a7eU, 0x3b9090abU, 0x0b888883U,
0x8c4646caU, 0xc7eeee29U, 0x6bb8b8d3U, 0x2814143cU,
0xa7dede79U, 0xbc5e5ee2U, 0x160b0b1dU, 0xaddbdb76U,
0xdbe0e03bU, 0x64323256U, 0x743a3a4eU, 0x140a0a1eU,
0x924949dbU, 0x0c06060aU, 0x4824246cU, 0xb85c5ce4U,
0x9fc2c25dU, 0xbdd3d36eU, 0x43acacefU, 0xc46262a6U,
0x399191a8U, 0x319595a4U, 0xd3e4e437U, 0xf279798bU,
0xd5e7e732U, 0x8bc8c843U, 0x6e373759U, 0xda6d6db7U,
0x018d8d8cU, 0xb1d5d564U, 0x9c4e4ed2U, 0x49a9a9e0U,
0xd86c6cb4U, 0xac5656faU, 0xf3f4f407U, 0xcfeaea25U,
0xca6565afU, 0xf47a7a8eU, 0x47aeaee9U, 0x10080818U,
0x6fbabad5U, 0xf0787888U, 0x4a25256fU, 0x5c2e2e72U,
0x381c1c24U, 0x57a6a6f1U, 0x73b4b4c7U, 0x97c6c651U,
0xcbe8e823U, 0xa1dddd7cU, 0xe874749cU, 0x3e1f1f21U,
0x964b4bddU, 0x61bdbddcU, 0x0d8b8b86U, 0x0f8a8a85U,
0xe0707090U, 0x7c3e3e42U, 0x71b5b5c4U, 0xcc6666aaU,
0x904848d8U, 0x06030305U, 0xf7f6f601U, 0x1c0e0e12U,
0xc26161a3U, 0x6a35355fU, 0xae5757f9U, 0x69b9b9d0U,
0x17868691U, 0x99c1c158U, 0x3a1d1d27U, 0x279e9eb9U,
0xd9e1e138U, 0xebf8f813U, 0x2b9898b3U, 0x22111133U,
0xd26969bbU, 0xa9d9d970U, 0x078e8e89U, 0x339494a7U,
0x2d9b9bb6U, 0x3c1e1e22U, 0x15878792U, 0xc9e9e920U,
0x87cece49U, 0xaa5555ffU, 0x50282878U, 0xa5dfdf7aU,
0x038c8c8fU, 0x59a1a1f8U, 0x09898980U, 0x1a0d0d17U,
0x65bfbfdaU, 0xd7e6e631U, 0x844242c6U, 0xd06868b8U,
0x824141c3U, 0x299999b0U, 0x5a2d2d77U, 0x1e0f0f11U,
0x7bb0b0cbU, 0xa85454fcU, 0x6dbbbbd6U, 0x2c16163aU,
},
{
0xa5c66363U, 0x84f87c7cU, 0x99ee7777U, 0x8df67b7bU,
0x0dfff2f2U, 0xbdd66b6bU, 0xb1de6f6fU, 0x5491c5c5U,
0x50603030U, 0x03020101U, 0xa9ce6767U, 0x7d562b2bU,
0x19e7fefeU, 0x62b5d7d7U, 0xe64dababU, 0x9aec7676U,
0x458fcacaU, 0x9d1f8282U, 0x4089c9c9U, 0x87fa7d7dU,
0x15effafaU, 0xebb25959U, 0xc98e4747U, 0x0bfbf0f0U,
0xec41adadU, 0x67b3d4d4U, 0xfd5fa2a2U, 0xea45afafU,
0xbf239c9cU, 0xf753a4a4U, 0x96e47272U, 0x5b9bc0c0U,
0xc275b7b7U, 0x1ce1fdfdU, 0xae3d9393U, 0x6a4c2626U,
0x5a6c3636U, 0x417e3f3fU, 0x02f5f7f7U, 0x4f83ccccU,
0x5c683434U, 0xf451a5a5U, 0x34d1e5e5U, 0x08f9f1f1U,
0x93e27171U, 0x73abd8d8U, 0x53623131U, 0x3f2a1515U,
0x0c080404U, 0x5295c7c7U, 0x65462323U, 0x5e9dc3c3U,
0x28301818U, 0xa1379696U, 0x0f0a0505U, 0xb52f9a9aU,
0x090e0707U, 0x36241212U, 0x9b1b8080U, 0x3ddfe2e2U,
0x26cdebebU, 0x694e2727U, 0xcd7fb2b2U, 0x9fea7575U,
0x1b120909U, 0x9e1d8383U, 0x74582c2cU, 0x2e341a1aU,
0x2d361b1bU, 0xb2dc6e6eU, 0xeeb45a5aU, 0xfb5ba0a0U,
0xf6a45252U, 0x4d763b3bU, 0x61b7d6d6U, 0xce7db3b3U,
0x7b522929U, 0x3edde3e3U, 0x715e2f2fU, 0x97138484U,
0xf5a65353U, 0x68b9d1d1U, 0x00000000U, 0x2cc1ededU,
0x60402020U, 0x1fe3fcfcU, 0xc879b1b1U, 0xedb65b5bU,
0xbed46a6aU, 0x468dcbcbU, 0xd967bebeU, 0x4b723939U,
0xde944a4aU, 0xd4984c4cU, 0xe8b05858U, 0x4a85cfcfU,
0x6bbbd0d0U, 0x2ac5efefU, 0xe54faaaaU, 0x16edfbfbU,
0xc5864343U, 0xd79a4d4dU, 0x55663333U, 0x94118585U,
0xcf8a4545U, 0x10e9f9f9U, 0x06040202U, 0x81fe7f7fU,
0xf0a05050U, 0x44783c3cU, 0xba259f9fU, 0xe34ba8a8U,
0xf3a25151U, 0xfe5da3a3U, 0xc0804040U, 0x8a058f8fU,
0xad3f9292U, 0xbc219d9dU, 0x48703838U, 0x04f1f5f5U,
0xdf63bcbcU, 0xc177b6b6U, 0x75afdadaU, 0x63422121U,
0x30201010U, 0x1ae5ffffU, 0x0efdf3f3U, 0x6dbfd2d2U,
0x4c81cdcdU, 0x14180c0cU, 0x35261313U, 0x2fc3ececU,
0xe1be5f5fU, 0xa2359797U, 0xcc884444U, 0x392e1717U,
0x5793c4c4U, 0xf255a7a7U, 0x82fc7e7eU, 0x477a3d3dU,
0xacc86464U, 0xe7ba5d5dU, 0x2b321919U, 0x95e67373U,
0xa0c06060U, 0x98198181U, 0xd19e4f4fU, 0x7fa3dcdcU,
0x66442222U, 0x7e542a2aU, 0xab3b9090U, 0x830b8888U,
0xca8c4646U, 0x29c7eeeeU, 0xd36bb8b8U, 0x3c281414U,
0x79a7dedeU, 0xe2bc5e5eU, 0x1d160b0bU, 0x76addbdbU,
0x3bdbe0e0U, 0x56643232U, 0x4e743a3aU, 0x1e140a0aU,
0xdb924949U, 0x0a0c0606U, 0x6c482424U, 0xe4b85c5cU,
0x5d9fc2c2U, 0x6ebdd3d3U, 0xef43acacU, 0xa6c46262U,
0xa8399191U, 0xa4319595U, 0x37d3e4e4U, 0x8bf27979U,
0x32d5e7e7U, 0x438bc8c8U, 0x596e3737U, 0xb7da6d6dU,
0x8c018d8dU, 0x64b1d5d5U, 0xd29c4e4eU, 0xe049a9a9U,
0xb4d86c6cU, 0xfaac5656U, 0x07f3f4f4U, 0x25cfeaeaU,
0xafca6565U, 0x8ef47a7aU, 0xe947aeaeU, 0x18100808U,
0xd56fbabaU, 0x88f07878U, 0x6f4a2525U, 0x725c2e2eU,
0x24381c1cU, 0xf157a6a6U, 0xc773b4b4U, 0x5197c6c6U,
0x23cbe8e8U, 0x7ca1ddddU, 0x9ce87474U, 0x213e1f1fU,
0xdd964b4bU, 0xdc61bdbdU, 0x860d8b8bU, 0x850f8a8aU,
0x90e07070U, 0x427c3e3eU, 0xc471b5b5U, 0xaacc6666U,
0xd8904848U, 0x05060303U, 0x01f7f6f6U, 0x121c0e0eU,
0xa3c26161U, 0x5f6a3535U, 0xf9ae5757U, 0xd069b9b9U,
0x91178686U, 0x5899c1c1U, 0x273a1d1dU, 0xb9279e9eU,
0x38d9e1e1U, 0x13ebf8f8U, 0xb32b9898U, 0x33221111U,
0xbbd26969U, 0x70a9d9d9U, 0x89078e8eU, 0xa7339494U,
0xb62d9b9bU, 0x223c1e1eU, 0x92158787U, 0x20c9e9e9U,
0x4987ceceU, 0xffaa5555U, 0x78502828U, 0x7aa5dfdfU,
0x8f038c8cU, 0xf859a1a1U, 0x80098989U, 0x171a0d0dU,
0xda65bfbfU, 0x31d7e6e6U, 0xc6844242U, 0xb8d06868U,
0xc3824141U, 0xb0299999U, 0x775a2d2dU, 0x111e0f0fU,
0xcb7bb0b0U, 0xfca85454U, 0xd66dbbbbU, 0x3a2c1616U,
},
{
0x63a5c663U, 0x7c84f87cU, 0x7799ee77U, 0x7b8df67bU,
0xf20dfff2U, 0x6bbdd66bU, 0x6fb1de6fU, 0xc55491c5U,
0x30506030U, 0x01030201U, 0x67a9ce67U, 0x2b7d562bU,
0xfe19e7feU, 0xd762b5d7U, 0xabe64dabU, 0x769aec76U,
0xca458fcaU, 0x829d1f82U, 0xc94089c9U, 0x7d87fa7dU,
0xfa15effaU, 0x59ebb259U, 0x47c98e47U, 0xf00bfbf0U,
0xadec41adU, 0xd467b3d4U, 0xa2fd5fa2U, 0xafea45afU,
0x9cbf239cU, 0xa4f753a4U, 0x7296e472U, 0xc05b9bc0U,
0xb7c275b7U, 0xfd1ce1fdU, 0x93ae3d93U, 0x266a4c26U,
0x365a6c36U, 0x3f417e3fU, 0xf702f5f7U, 0xcc4f83ccU,
0x345c6834U, 0xa5f451a5U, 0xe534d1e5U, 0xf108f9f1U,
0x7193e271U, 0xd873abd8U, 0x31536231U, 0x153f2a15U,
0x040c0804U, 0xc75295c7U, 0x23654623U, 0xc35e9dc3U,
0x18283018U, 0x96a13796U, 0x050f0a05U, 0x9ab52f9aU,
0x07090e07U, 0x12362412U, 0x809b1b80U, 0xe23ddfe2U,
0xeb26cdebU, 0x27694e27U, 0xb2cd7fb2U, 0x759fea75U,
0x091b1209U, 0x839e1d83U, 0x2c74582cU, 0x1a2e341aU,
0x1b2d361bU, 0x6eb2dc6eU, 0x5aeeb45aU, 0xa0fb5ba0U,
0x52f6a452U, 0x3b4d763bU, 0xd661b7d6U, 0xb3ce7db3U,
0x297b5229U, 0xe33edde3U, 0x2f715e2fU, 0x84971384U,
0x53f5a653U, 0xd168b9d1U, 0x00000000U, 0xed2cc1edU,
0x20604020U, 0xfc1fe3fcU, 0xb1c879b1U, 0x5bedb65bU,
0x6abed46aU, 0xcb468dcbU, 0xbed967beU, 0x394b7239U,
0x4ade944aU, 0x4cd4984cU, 0x58e8b058U, 0xcf4a85cfU,
0xd06bbbd0U, 0xef2ac5efU, 0xaae54faaU, 0xfb16edfbU,
0x43c58643U, 0x4dd79a4dU, 0x33556633U, 0x85941185U,
0x45cf8a45U, 0xf910e9f9U, 0x02060402U, 0x7f81fe7fU,
0x50f0a050U, 0x3c44783cU, 0x9fba259fU, 0xa8e34ba8U,
0x51f3a251U, 0xa3fe5da3U, 0x40c08040U, 0x8f8a058fU,
0x92ad3f92U, 0x9dbc219dU, 0x38487038U, 0xf504f1f5U,
0xbcdf63bcU, 0xb6c177b6U, 0xda75afdaU, 0x21634221U,
0x10302010U, 0xff1ae5ffU, 0xf30efdf3U, 0xd26dbfd2U,
0xcd4c81cdU, 0x0c14180cU, 0x13352613U, 0xec2fc3ecU,
0x5fe1be5fU, 0x97a23597U, 0x44cc8844U, 0x17392e17U,
0xc45793c4U, 0xa7f255a7U, 0x7e82fc7eU, 0x3d477a3dU,
0x64acc864U, 0x5de7ba5dU, 0x192b3219U, 0x7395e673U,
0x60a0c060U, 0x81981981U, 0x4fd19e4fU, 0xdc7fa3dcU,
0x22664422U, 0x2a7e542aU, 0x90ab3b90U, 0x88830b88U,
0x46ca8c46U, 0xee29c7eeU, 0xb8d36bb8U, 0x143c2814U,
0xde79a7deU, 0x5ee2bc5eU, 0x0b1d160bU, 0xdb76addbU,
0xe03bdbe0U, 0x32566432U, 0x3a4e743aU, 0x0a1e140aU,
0x49db9249U, 0x060a0c06U, 0x246c4824U, 0x5ce4b85cU,
0xc25d9fc2U, 0xd36ebdd3U, 0xacef43acU, 0x62a6c462U,
0x91a83991U, 0x95a43195U, 0xe437d3e4U, 0x798bf279U,
0xe732d5e7U, 0xc8438bc8U, 0x37596e37U, 0x6db7da6dU,
0x8d8c018dU, 0xd564b1d5U, 0x4ed29c4eU, 0xa9e049a9U,
0x6cb4d86cU, 0x56faac56U, 0xf407f3f4U, 0xea25cfeaU,
0x65afca65U, 0x7a8ef47aU, 0xaee947aeU, 0x08181008U,
0xbad56fbaU, 0x7888f078U, 0x256f4a25U, 0x2e725c2eU,
0x1c24381cU, 0xa6f157a6U, 0xb4c773b4U, 0xc65197c6U,
0xe823cbe8U, 0xdd7ca1ddU, 0x749ce874U, 0x1f213e1fU,
0x4bdd964bU, 0xbddc61bdU, 0x8b860d8bU, 0x8a850f8aU,
0x7090e070U, 0x3e427c3eU, 0xb5c471b5U, 0x66aacc66U,
0x48d89048U, 0x03050603U, 0xf601f7f6U, 0x0e121c0eU,
0x61a3c261U, 0x355f6a35U, 0x57f9ae57U, 0xb9d069b9U,
0x86911786U, 0xc15899c1U, 0x1d273a1dU, 0x9eb9279eU,
0xe138d9e1U, 0xf813ebf8U, 0x98b32b98U, 0x11332211U,
0x69bbd269U, 0xd970a9d9U, 0x8e89078eU, 0x94a73394U,
0x9bb62d9bU, 0x1e223c1eU, 0x87921587U, 0xe920c9e9U,
0xce4987ceU, 0x55ffaa55U, 0x28785028U, 0xdf7aa5dfU,
0x8c8f038cU, 0xa1f859a1U, 0x89800989U, 0x0d171a0dU,
0xbfda65bfU, 0xe631d7e6U, 0x42c68442U, 0x68b8d068U,
0x41c38241U, 0x99b02999U, 0x2d775a2dU, 0x0f111e0fU,
0xb0cb7bb0U, 0x54fca854U, 0xbbd66dbbU, 0x163a2c16U,
},
{
0x6363a5c6U, 0x7c7c84f8U, 0x777799eeU, 0x7b7b8df6U,
0xf2f20dffU, 0x6b6bbdd6U, 0x6f6fb1deU, 0xc5c55491U,
0x30305060U, 0x01010302U, 0x6767a9ceU, 0x2b2b7d56U,
0xfefe19e7U, 0xd7d762b5U, 0xababe64dU, 0x76769aecU,
0xcaca458fU, 0x82829d1fU, 0xc9c94089U, 0x7d7d87faU,
0xfafa15efU, 0x5959ebb2U, 0x4747c98eU, 0xf0f00bfbU,
0xadadec41U, 0xd4d467b3U, 0xa2a2fd5fU, 0xafafea45U,
0x9c9cbf23U, 0xa4a4f753U, 0x727296e4U, 0xc0c05b9bU,
0xb7b7c275U, 0xfdfd1ce1U, 0x9393ae3dU, 0x26266a4cU,
0x36365a6cU, 0x3f3f417eU, 0xf7f702f5U, 0xcccc4f83U,
0x34345c68U, 0xa5a5f451U, 0xe5e534d1U, 0xf1f108f9U,
0x717193e2U, 0xd8d873abU, 0x31315362U, 0x15153f2aU,
0x04040c08U, 0xc7c75295U, 0x23236546U, 0xc3c35e9dU,
0x18182830U, 0x9696a137U, 0x05050f0aU, 0x9a9ab52fU,
0x0707090eU, 0x12123624U, 0x80809b1bU, 0xe2e23ddfU,
0xebeb26cdU, 0x2727694eU, 0xb2b2cd7fU, 0x75759feaU,
0x09091b12U, 0x83839e1dU, 0x2c2c7458U, 0x1a1a2e34U,
0x1b1b2d36U, 0x6e6eb2dcU, 0x5a5aeeb4U, 0xa0a0fb5bU,
0x5252f6a4U, 0x3b3b4d76U, 0xd6d661b7U, 0xb3b3ce7dU,
0x29297b52U, 0xe3e33eddU, 0x2f2f715eU, 0x84849713U,
0x5353f5a6U, 0xd1d168b9U, 0x00000000U, 0xeded2cc1U,
0x20206040U, 0xfcfc1fe3U, 0xb1b1c879U, 0x5b5bedb6U,
0x6a6abed4U, 0xcbcb468dU, 0xbebed967U, 0x39394b72U,
0x4a4ade94U, 0x4c4cd498U, 0x5858e8b0U, 0xcfcf4a85U,
0xd0d06bbbU, 0xefef2ac5U, 0xaaaae54fU, 0xfbfb16edU,
0x4343c586U, 0x4d4dd79aU, 0x33335566U, 0x85859411U,
0x4545cf8aU, 0xf9f910e9U, 0x02020604U, 0x7f7f81feU,
0x5050f0a0U, 0x3c3c4478U, 0x9f9fba25U, 0xa8a8e34bU,
0x5151f3a2U, 0xa3a3fe5dU, 0x4040c080U, 0x8f8f8a05U,
0x9292ad3fU, 0x9d9dbc21U, 0x38384870U, 0xf5f504f1U,
0xbcbcdf63U, 0xb6b6c177U, 0xdada75afU, 0x21216342U,
0x10103020U, 0xffff1ae5U, 0xf3f30efdU, 0xd2d26dbfU,
0xcdcd4c81U, 0x0c0c1418U, 0x13133526U, 0xecec2fc3U,
0x5f5fe1beU, 0x9797a235U, 0x4444cc88U, 0x1717392eU,
0xc4c45793U, 0xa7a7f255U, 0x7e7e82fcU, 0x3d3d477aU,
0x6464acc8U, 0x5d5de7baU, 0x19192b32U, 0x737395e6U,
0x6060a0c0U, 0x81819819U, 0x4f4fd19eU, 0xdcdc7fa3U,
0x22226644U, 0x2a2a7e54U, 0x9090ab3bU, 0x8888830bU,
0x4646ca8cU, 0xeeee29c7U, 0xb8b8d36bU, 0x14143c28U,
0xdede79a7U, 0x5e5ee2bcU, 0x0b0b1d16U, 0xdbdb76adU,
0xe0e03bdbU, 0x32325664U, 0x3a3a4e74U, 0x0a0a1e14U,
0x4949db92U, 0x06060a0cU, 0x24246c48U, 0x5c5ce4b8U,
0xc2c25d9fU, 0xd3d36ebdU, 0xacacef43U, 0x6262a6c4U,
0x9191a839U, 0x9595a431U, 0xe4e437d3U, 0x79798bf2U,
0xe7e732d5U, 0xc8c8438bU, 0x3737596eU, 0x6d6db7daU,
0x8d8d8c01U, 0xd5d564b1U, 0x4e4ed29cU, 0xa9a9e049U,
0x6c6cb4d8U, 0x5656faacU, 0xf4f407f3U, 0xeaea25cfU,
0x6565afcaU, 0x7a7a8ef4U, 0xaeaee947U, 0x08081810U,
0xbabad56fU, 0x787888f0U, 0x25256f4aU, 0x2e2e725cU,
0x1c1c2438U, 0xa6a6f157U, 0xb4b4c773U, 0xc6c65197U,
0xe8e823cbU, 0xdddd7ca1U, 0x74749ce8U, 0x1f1f213eU,
0x4b4bdd96U, 0xbdbddc61U, 0x8b8b860dU, 0x8a8a850fU,
0x707090e0U, 0x3e3e427cU, 0xb5b5c471U, 0x6666aaccU,
0x4848d890U, 0x03030506U, 0xf6f601f7U, 0x0e0e121cU,
0x6161a3c2U, 0x35355f6aU, 0x5757f9aeU, 0xb9b9d069U,
0x86869117U, 0xc1c15899U, 0x1d1d273aU, 0x9e9eb927U,
0xe1e138d9U, 0xf8f813ebU, 0x9898b32bU, 0x11113322U,
0x6969bbd2U, 0xd9d970a9U, 0x8e8e8907U, 0x9494a733U,
0x9b9bb62dU, 0x1e1e223cU, 0x87879215U, 0xe9e920c9U,
0xcece4987U, 0x5555ffaaU, 0x28287850U, 0xdfdf7aa5U,
0x8c8c8f03U, 0xa1a1f859U, 0x89898009U, 0x0d0d171aU,
0xbfbfda65U, 0xe6e631d7U, 0x4242c684U, 0x6868b8d0U,
0x4141c382U, 0x9999b029U, 0x2d2d775aU, 0x0f0f111eU,
0xb0b0cb7bU, 0x5454fca8U, 0xbbbbd66dU, 0x16163a2cU,
}
};
#if defined(HAVE_AES_DECRYPT) && !defined(WOLFSSL_SILABS_SE_ACCEL)
static const FLASH_QUALIFIER word32 Td[4][256] = {
{
0x51f4a750U, 0x7e416553U, 0x1a17a4c3U, 0x3a275e96U,
0x3bab6bcbU, 0x1f9d45f1U, 0xacfa58abU, 0x4be30393U,
0x2030fa55U, 0xad766df6U, 0x88cc7691U, 0xf5024c25U,
0x4fe5d7fcU, 0xc52acbd7U, 0x26354480U, 0xb562a38fU,
0xdeb15a49U, 0x25ba1b67U, 0x45ea0e98U, 0x5dfec0e1U,
0xc32f7502U, 0x814cf012U, 0x8d4697a3U, 0x6bd3f9c6U,
0x038f5fe7U, 0x15929c95U, 0xbf6d7aebU, 0x955259daU,
0xd4be832dU, 0x587421d3U, 0x49e06929U, 0x8ec9c844U,
0x75c2896aU, 0xf48e7978U, 0x99583e6bU, 0x27b971ddU,
0xbee14fb6U, 0xf088ad17U, 0xc920ac66U, 0x7dce3ab4U,
0x63df4a18U, 0xe51a3182U, 0x97513360U, 0x62537f45U,
0xb16477e0U, 0xbb6bae84U, 0xfe81a01cU, 0xf9082b94U,
0x70486858U, 0x8f45fd19U, 0x94de6c87U, 0x527bf8b7U,
0xab73d323U, 0x724b02e2U, 0xe31f8f57U, 0x6655ab2aU,
0xb2eb2807U, 0x2fb5c203U, 0x86c57b9aU, 0xd33708a5U,
0x302887f2U, 0x23bfa5b2U, 0x02036abaU, 0xed16825cU,
0x8acf1c2bU, 0xa779b492U, 0xf307f2f0U, 0x4e69e2a1U,
0x65daf4cdU, 0x0605bed5U, 0xd134621fU, 0xc4a6fe8aU,
0x342e539dU, 0xa2f355a0U, 0x058ae132U, 0xa4f6eb75U,
0x0b83ec39U, 0x4060efaaU, 0x5e719f06U, 0xbd6e1051U,
0x3e218af9U, 0x96dd063dU, 0xdd3e05aeU, 0x4de6bd46U,
0x91548db5U, 0x71c45d05U, 0x0406d46fU, 0x605015ffU,
0x1998fb24U, 0xd6bde997U, 0x894043ccU, 0x67d99e77U,
0xb0e842bdU, 0x07898b88U, 0xe7195b38U, 0x79c8eedbU,
0xa17c0a47U, 0x7c420fe9U, 0xf8841ec9U, 0x00000000U,
0x09808683U, 0x322bed48U, 0x1e1170acU, 0x6c5a724eU,
0xfd0efffbU, 0x0f853856U, 0x3daed51eU, 0x362d3927U,
0x0a0fd964U, 0x685ca621U, 0x9b5b54d1U, 0x24362e3aU,
0x0c0a67b1U, 0x9357e70fU, 0xb4ee96d2U, 0x1b9b919eU,
0x80c0c54fU, 0x61dc20a2U, 0x5a774b69U, 0x1c121a16U,
0xe293ba0aU, 0xc0a02ae5U, 0x3c22e043U, 0x121b171dU,
0x0e090d0bU, 0xf28bc7adU, 0x2db6a8b9U, 0x141ea9c8U,
0x57f11985U, 0xaf75074cU, 0xee99ddbbU, 0xa37f60fdU,
0xf701269fU, 0x5c72f5bcU, 0x44663bc5U, 0x5bfb7e34U,
0x8b432976U, 0xcb23c6dcU, 0xb6edfc68U, 0xb8e4f163U,
0xd731dccaU, 0x42638510U, 0x13972240U, 0x84c61120U,
0x854a247dU, 0xd2bb3df8U, 0xaef93211U, 0xc729a16dU,
0x1d9e2f4bU, 0xdcb230f3U, 0x0d8652ecU, 0x77c1e3d0U,
0x2bb3166cU, 0xa970b999U, 0x119448faU, 0x47e96422U,
0xa8fc8cc4U, 0xa0f03f1aU, 0x567d2cd8U, 0x223390efU,
0x87494ec7U, 0xd938d1c1U, 0x8ccaa2feU, 0x98d40b36U,
0xa6f581cfU, 0xa57ade28U, 0xdab78e26U, 0x3fadbfa4U,
0x2c3a9de4U, 0x5078920dU, 0x6a5fcc9bU, 0x547e4662U,
0xf68d13c2U, 0x90d8b8e8U, 0x2e39f75eU, 0x82c3aff5U,
0x9f5d80beU, 0x69d0937cU, 0x6fd52da9U, 0xcf2512b3U,
0xc8ac993bU, 0x10187da7U, 0xe89c636eU, 0xdb3bbb7bU,
0xcd267809U, 0x6e5918f4U, 0xec9ab701U, 0x834f9aa8U,
0xe6956e65U, 0xaaffe67eU, 0x21bccf08U, 0xef15e8e6U,
0xbae79bd9U, 0x4a6f36ceU, 0xea9f09d4U, 0x29b07cd6U,
0x31a4b2afU, 0x2a3f2331U, 0xc6a59430U, 0x35a266c0U,
0x744ebc37U, 0xfc82caa6U, 0xe090d0b0U, 0x33a7d815U,
0xf104984aU, 0x41ecdaf7U, 0x7fcd500eU, 0x1791f62fU,
0x764dd68dU, 0x43efb04dU, 0xccaa4d54U, 0xe49604dfU,
0x9ed1b5e3U, 0x4c6a881bU, 0xc12c1fb8U, 0x4665517fU,
0x9d5eea04U, 0x018c355dU, 0xfa877473U, 0xfb0b412eU,
0xb3671d5aU, 0x92dbd252U, 0xe9105633U, 0x6dd64713U,
0x9ad7618cU, 0x37a10c7aU, 0x59f8148eU, 0xeb133c89U,
0xcea927eeU, 0xb761c935U, 0xe11ce5edU, 0x7a47b13cU,
0x9cd2df59U, 0x55f2733fU, 0x1814ce79U, 0x73c737bfU,
0x53f7cdeaU, 0x5ffdaa5bU, 0xdf3d6f14U, 0x7844db86U,
0xcaaff381U, 0xb968c43eU, 0x3824342cU, 0xc2a3405fU,
0x161dc372U, 0xbce2250cU, 0x283c498bU, 0xff0d9541U,
0x39a80171U, 0x080cb3deU, 0xd8b4e49cU, 0x6456c190U,
0x7bcb8461U, 0xd532b670U, 0x486c5c74U, 0xd0b85742U,
},
{
0x5051f4a7U, 0x537e4165U, 0xc31a17a4U, 0x963a275eU,
0xcb3bab6bU, 0xf11f9d45U, 0xabacfa58U, 0x934be303U,
0x552030faU, 0xf6ad766dU, 0x9188cc76U, 0x25f5024cU,
0xfc4fe5d7U, 0xd7c52acbU, 0x80263544U, 0x8fb562a3U,
0x49deb15aU, 0x6725ba1bU, 0x9845ea0eU, 0xe15dfec0U,
0x02c32f75U, 0x12814cf0U, 0xa38d4697U, 0xc66bd3f9U,
0xe7038f5fU, 0x9515929cU, 0xebbf6d7aU, 0xda955259U,
0x2dd4be83U, 0xd3587421U, 0x2949e069U, 0x448ec9c8U,
0x6a75c289U, 0x78f48e79U, 0x6b99583eU, 0xdd27b971U,
0xb6bee14fU, 0x17f088adU, 0x66c920acU, 0xb47dce3aU,
0x1863df4aU, 0x82e51a31U, 0x60975133U, 0x4562537fU,
0xe0b16477U, 0x84bb6baeU, 0x1cfe81a0U, 0x94f9082bU,
0x58704868U, 0x198f45fdU, 0x8794de6cU, 0xb7527bf8U,
0x23ab73d3U, 0xe2724b02U, 0x57e31f8fU, 0x2a6655abU,
0x07b2eb28U, 0x032fb5c2U, 0x9a86c57bU, 0xa5d33708U,
0xf2302887U, 0xb223bfa5U, 0xba02036aU, 0x5ced1682U,
0x2b8acf1cU, 0x92a779b4U, 0xf0f307f2U, 0xa14e69e2U,
0xcd65daf4U, 0xd50605beU, 0x1fd13462U, 0x8ac4a6feU,
0x9d342e53U, 0xa0a2f355U, 0x32058ae1U, 0x75a4f6ebU,
0x390b83ecU, 0xaa4060efU, 0x065e719fU, 0x51bd6e10U,
0xf93e218aU, 0x3d96dd06U, 0xaedd3e05U, 0x464de6bdU,
0xb591548dU, 0x0571c45dU, 0x6f0406d4U, 0xff605015U,
0x241998fbU, 0x97d6bde9U, 0xcc894043U, 0x7767d99eU,
0xbdb0e842U, 0x8807898bU, 0x38e7195bU, 0xdb79c8eeU,
0x47a17c0aU, 0xe97c420fU, 0xc9f8841eU, 0x00000000U,
0x83098086U, 0x48322bedU, 0xac1e1170U, 0x4e6c5a72U,
0xfbfd0effU, 0x560f8538U, 0x1e3daed5U, 0x27362d39U,
0x640a0fd9U, 0x21685ca6U, 0xd19b5b54U, 0x3a24362eU,
0xb10c0a67U, 0x0f9357e7U, 0xd2b4ee96U, 0x9e1b9b91U,
0x4f80c0c5U, 0xa261dc20U, 0x695a774bU, 0x161c121aU,
0x0ae293baU, 0xe5c0a02aU, 0x433c22e0U, 0x1d121b17U,
0x0b0e090dU, 0xadf28bc7U, 0xb92db6a8U, 0xc8141ea9U,
0x8557f119U, 0x4caf7507U, 0xbbee99ddU, 0xfda37f60U,
0x9ff70126U, 0xbc5c72f5U, 0xc544663bU, 0x345bfb7eU,
0x768b4329U, 0xdccb23c6U, 0x68b6edfcU, 0x63b8e4f1U,
0xcad731dcU, 0x10426385U, 0x40139722U, 0x2084c611U,
0x7d854a24U, 0xf8d2bb3dU, 0x11aef932U, 0x6dc729a1U,
0x4b1d9e2fU, 0xf3dcb230U, 0xec0d8652U, 0xd077c1e3U,
0x6c2bb316U, 0x99a970b9U, 0xfa119448U, 0x2247e964U,
0xc4a8fc8cU, 0x1aa0f03fU, 0xd8567d2cU, 0xef223390U,
0xc787494eU, 0xc1d938d1U, 0xfe8ccaa2U, 0x3698d40bU,
0xcfa6f581U, 0x28a57adeU, 0x26dab78eU, 0xa43fadbfU,
0xe42c3a9dU, 0x0d507892U, 0x9b6a5fccU, 0x62547e46U,
0xc2f68d13U, 0xe890d8b8U, 0x5e2e39f7U, 0xf582c3afU,
0xbe9f5d80U, 0x7c69d093U, 0xa96fd52dU, 0xb3cf2512U,
0x3bc8ac99U, 0xa710187dU, 0x6ee89c63U, 0x7bdb3bbbU,
0x09cd2678U, 0xf46e5918U, 0x01ec9ab7U, 0xa8834f9aU,
0x65e6956eU, 0x7eaaffe6U, 0x0821bccfU, 0xe6ef15e8U,
0xd9bae79bU, 0xce4a6f36U, 0xd4ea9f09U, 0xd629b07cU,
0xaf31a4b2U, 0x312a3f23U, 0x30c6a594U, 0xc035a266U,
0x37744ebcU, 0xa6fc82caU, 0xb0e090d0U, 0x1533a7d8U,
0x4af10498U, 0xf741ecdaU, 0x0e7fcd50U, 0x2f1791f6U,
0x8d764dd6U, 0x4d43efb0U, 0x54ccaa4dU, 0xdfe49604U,
0xe39ed1b5U, 0x1b4c6a88U, 0xb8c12c1fU, 0x7f466551U,
0x049d5eeaU, 0x5d018c35U, 0x73fa8774U, 0x2efb0b41U,
0x5ab3671dU, 0x5292dbd2U, 0x33e91056U, 0x136dd647U,
0x8c9ad761U, 0x7a37a10cU, 0x8e59f814U, 0x89eb133cU,
0xeecea927U, 0x35b761c9U, 0xede11ce5U, 0x3c7a47b1U,
0x599cd2dfU, 0x3f55f273U, 0x791814ceU, 0xbf73c737U,
0xea53f7cdU, 0x5b5ffdaaU, 0x14df3d6fU, 0x867844dbU,
0x81caaff3U, 0x3eb968c4U, 0x2c382434U, 0x5fc2a340U,
0x72161dc3U, 0x0cbce225U, 0x8b283c49U, 0x41ff0d95U,
0x7139a801U, 0xde080cb3U, 0x9cd8b4e4U, 0x906456c1U,
0x617bcb84U, 0x70d532b6U, 0x74486c5cU, 0x42d0b857U,
},
{
0xa75051f4U, 0x65537e41U, 0xa4c31a17U, 0x5e963a27U,
0x6bcb3babU, 0x45f11f9dU, 0x58abacfaU, 0x03934be3U,
0xfa552030U, 0x6df6ad76U, 0x769188ccU, 0x4c25f502U,
0xd7fc4fe5U, 0xcbd7c52aU, 0x44802635U, 0xa38fb562U,
0x5a49deb1U, 0x1b6725baU, 0x0e9845eaU, 0xc0e15dfeU,
0x7502c32fU, 0xf012814cU, 0x97a38d46U, 0xf9c66bd3U,
0x5fe7038fU, 0x9c951592U, 0x7aebbf6dU, 0x59da9552U,
0x832dd4beU, 0x21d35874U, 0x692949e0U, 0xc8448ec9U,
0x896a75c2U, 0x7978f48eU, 0x3e6b9958U, 0x71dd27b9U,
0x4fb6bee1U, 0xad17f088U, 0xac66c920U, 0x3ab47dceU,
0x4a1863dfU, 0x3182e51aU, 0x33609751U, 0x7f456253U,
0x77e0b164U, 0xae84bb6bU, 0xa01cfe81U, 0x2b94f908U,
0x68587048U, 0xfd198f45U, 0x6c8794deU, 0xf8b7527bU,
0xd323ab73U, 0x02e2724bU, 0x8f57e31fU, 0xab2a6655U,
0x2807b2ebU, 0xc2032fb5U, 0x7b9a86c5U, 0x08a5d337U,
0x87f23028U, 0xa5b223bfU, 0x6aba0203U, 0x825ced16U,
0x1c2b8acfU, 0xb492a779U, 0xf2f0f307U, 0xe2a14e69U,
0xf4cd65daU, 0xbed50605U, 0x621fd134U, 0xfe8ac4a6U,
0x539d342eU, 0x55a0a2f3U, 0xe132058aU, 0xeb75a4f6U,
0xec390b83U, 0xefaa4060U, 0x9f065e71U, 0x1051bd6eU,
0x8af93e21U, 0x063d96ddU, 0x05aedd3eU, 0xbd464de6U,
0x8db59154U, 0x5d0571c4U, 0xd46f0406U, 0x15ff6050U,
0xfb241998U, 0xe997d6bdU, 0x43cc8940U, 0x9e7767d9U,
0x42bdb0e8U, 0x8b880789U, 0x5b38e719U, 0xeedb79c8U,
0x0a47a17cU, 0x0fe97c42U, 0x1ec9f884U, 0x00000000U,
0x86830980U, 0xed48322bU, 0x70ac1e11U, 0x724e6c5aU,
0xfffbfd0eU, 0x38560f85U, 0xd51e3daeU, 0x3927362dU,
0xd9640a0fU, 0xa621685cU, 0x54d19b5bU, 0x2e3a2436U,
0x67b10c0aU, 0xe70f9357U, 0x96d2b4eeU, 0x919e1b9bU,
0xc54f80c0U, 0x20a261dcU, 0x4b695a77U, 0x1a161c12U,
0xba0ae293U, 0x2ae5c0a0U, 0xe0433c22U, 0x171d121bU,
0x0d0b0e09U, 0xc7adf28bU, 0xa8b92db6U, 0xa9c8141eU,
0x198557f1U, 0x074caf75U, 0xddbbee99U, 0x60fda37fU,
0x269ff701U, 0xf5bc5c72U, 0x3bc54466U, 0x7e345bfbU,
0x29768b43U, 0xc6dccb23U, 0xfc68b6edU, 0xf163b8e4U,
0xdccad731U, 0x85104263U, 0x22401397U, 0x112084c6U,
0x247d854aU, 0x3df8d2bbU, 0x3211aef9U, 0xa16dc729U,
0x2f4b1d9eU, 0x30f3dcb2U, 0x52ec0d86U, 0xe3d077c1U,
0x166c2bb3U, 0xb999a970U, 0x48fa1194U, 0x642247e9U,
0x8cc4a8fcU, 0x3f1aa0f0U, 0x2cd8567dU, 0x90ef2233U,
0x4ec78749U, 0xd1c1d938U, 0xa2fe8ccaU, 0x0b3698d4U,
0x81cfa6f5U, 0xde28a57aU, 0x8e26dab7U, 0xbfa43fadU,
0x9de42c3aU, 0x920d5078U, 0xcc9b6a5fU, 0x4662547eU,
0x13c2f68dU, 0xb8e890d8U, 0xf75e2e39U, 0xaff582c3U,
0x80be9f5dU, 0x937c69d0U, 0x2da96fd5U, 0x12b3cf25U,
0x993bc8acU, 0x7da71018U, 0x636ee89cU, 0xbb7bdb3bU,
0x7809cd26U, 0x18f46e59U, 0xb701ec9aU, 0x9aa8834fU,
0x6e65e695U, 0xe67eaaffU, 0xcf0821bcU, 0xe8e6ef15U,
0x9bd9bae7U, 0x36ce4a6fU, 0x09d4ea9fU, 0x7cd629b0U,
0xb2af31a4U, 0x23312a3fU, 0x9430c6a5U, 0x66c035a2U,
0xbc37744eU, 0xcaa6fc82U, 0xd0b0e090U, 0xd81533a7U,
0x984af104U, 0xdaf741ecU, 0x500e7fcdU, 0xf62f1791U,
0xd68d764dU, 0xb04d43efU, 0x4d54ccaaU, 0x04dfe496U,
0xb5e39ed1U, 0x881b4c6aU, 0x1fb8c12cU, 0x517f4665U,
0xea049d5eU, 0x355d018cU, 0x7473fa87U, 0x412efb0bU,
0x1d5ab367U, 0xd25292dbU, 0x5633e910U, 0x47136dd6U,
0x618c9ad7U, 0x0c7a37a1U, 0x148e59f8U, 0x3c89eb13U,
0x27eecea9U, 0xc935b761U, 0xe5ede11cU, 0xb13c7a47U,
0xdf599cd2U, 0x733f55f2U, 0xce791814U, 0x37bf73c7U,
0xcdea53f7U, 0xaa5b5ffdU, 0x6f14df3dU, 0xdb867844U,
0xf381caafU, 0xc43eb968U, 0x342c3824U, 0x405fc2a3U,
0xc372161dU, 0x250cbce2U, 0x498b283cU, 0x9541ff0dU,
0x017139a8U, 0xb3de080cU, 0xe49cd8b4U, 0xc1906456U,
0x84617bcbU, 0xb670d532U, 0x5c74486cU, 0x5742d0b8U,
},
{
0xf4a75051U, 0x4165537eU, 0x17a4c31aU, 0x275e963aU,
0xab6bcb3bU, 0x9d45f11fU, 0xfa58abacU, 0xe303934bU,
0x30fa5520U, 0x766df6adU, 0xcc769188U, 0x024c25f5U,
0xe5d7fc4fU, 0x2acbd7c5U, 0x35448026U, 0x62a38fb5U,
0xb15a49deU, 0xba1b6725U, 0xea0e9845U, 0xfec0e15dU,
0x2f7502c3U, 0x4cf01281U, 0x4697a38dU, 0xd3f9c66bU,
0x8f5fe703U, 0x929c9515U, 0x6d7aebbfU, 0x5259da95U,
0xbe832dd4U, 0x7421d358U, 0xe0692949U, 0xc9c8448eU,
0xc2896a75U, 0x8e7978f4U, 0x583e6b99U, 0xb971dd27U,
0xe14fb6beU, 0x88ad17f0U, 0x20ac66c9U, 0xce3ab47dU,
0xdf4a1863U, 0x1a3182e5U, 0x51336097U, 0x537f4562U,
0x6477e0b1U, 0x6bae84bbU, 0x81a01cfeU, 0x082b94f9U,
0x48685870U, 0x45fd198fU, 0xde6c8794U, 0x7bf8b752U,
0x73d323abU, 0x4b02e272U, 0x1f8f57e3U, 0x55ab2a66U,
0xeb2807b2U, 0xb5c2032fU, 0xc57b9a86U, 0x3708a5d3U,
0x2887f230U, 0xbfa5b223U, 0x036aba02U, 0x16825cedU,
0xcf1c2b8aU, 0x79b492a7U, 0x07f2f0f3U, 0x69e2a14eU,
0xdaf4cd65U, 0x05bed506U, 0x34621fd1U, 0xa6fe8ac4U,
0x2e539d34U, 0xf355a0a2U, 0x8ae13205U, 0xf6eb75a4U,
0x83ec390bU, 0x60efaa40U, 0x719f065eU, 0x6e1051bdU,
0x218af93eU, 0xdd063d96U, 0x3e05aeddU, 0xe6bd464dU,
0x548db591U, 0xc45d0571U, 0x06d46f04U, 0x5015ff60U,
0x98fb2419U, 0xbde997d6U, 0x4043cc89U, 0xd99e7767U,
0xe842bdb0U, 0x898b8807U, 0x195b38e7U, 0xc8eedb79U,
0x7c0a47a1U, 0x420fe97cU, 0x841ec9f8U, 0x00000000U,
0x80868309U, 0x2bed4832U, 0x1170ac1eU, 0x5a724e6cU,
0x0efffbfdU, 0x8538560fU, 0xaed51e3dU, 0x2d392736U,
0x0fd9640aU, 0x5ca62168U, 0x5b54d19bU, 0x362e3a24U,
0x0a67b10cU, 0x57e70f93U, 0xee96d2b4U, 0x9b919e1bU,
0xc0c54f80U, 0xdc20a261U, 0x774b695aU, 0x121a161cU,
0x93ba0ae2U, 0xa02ae5c0U, 0x22e0433cU, 0x1b171d12U,
0x090d0b0eU, 0x8bc7adf2U, 0xb6a8b92dU, 0x1ea9c814U,
0xf1198557U, 0x75074cafU, 0x99ddbbeeU, 0x7f60fda3U,
0x01269ff7U, 0x72f5bc5cU, 0x663bc544U, 0xfb7e345bU,
0x4329768bU, 0x23c6dccbU, 0xedfc68b6U, 0xe4f163b8U,
0x31dccad7U, 0x63851042U, 0x97224013U, 0xc6112084U,
0x4a247d85U, 0xbb3df8d2U, 0xf93211aeU, 0x29a16dc7U,
0x9e2f4b1dU, 0xb230f3dcU, 0x8652ec0dU, 0xc1e3d077U,
0xb3166c2bU, 0x70b999a9U, 0x9448fa11U, 0xe9642247U,
0xfc8cc4a8U, 0xf03f1aa0U, 0x7d2cd856U, 0x3390ef22U,
0x494ec787U, 0x38d1c1d9U, 0xcaa2fe8cU, 0xd40b3698U,
0xf581cfa6U, 0x7ade28a5U, 0xb78e26daU, 0xadbfa43fU,
0x3a9de42cU, 0x78920d50U, 0x5fcc9b6aU, 0x7e466254U,
0x8d13c2f6U, 0xd8b8e890U, 0x39f75e2eU, 0xc3aff582U,
0x5d80be9fU, 0xd0937c69U, 0xd52da96fU, 0x2512b3cfU,
0xac993bc8U, 0x187da710U, 0x9c636ee8U, 0x3bbb7bdbU,
0x267809cdU, 0x5918f46eU, 0x9ab701ecU, 0x4f9aa883U,
0x956e65e6U, 0xffe67eaaU, 0xbccf0821U, 0x15e8e6efU,
0xe79bd9baU, 0x6f36ce4aU, 0x9f09d4eaU, 0xb07cd629U,
0xa4b2af31U, 0x3f23312aU, 0xa59430c6U, 0xa266c035U,
0x4ebc3774U, 0x82caa6fcU, 0x90d0b0e0U, 0xa7d81533U,
0x04984af1U, 0xecdaf741U, 0xcd500e7fU, 0x91f62f17U,
0x4dd68d76U, 0xefb04d43U, 0xaa4d54ccU, 0x9604dfe4U,
0xd1b5e39eU, 0x6a881b4cU, 0x2c1fb8c1U, 0x65517f46U,
0x5eea049dU, 0x8c355d01U, 0x877473faU, 0x0b412efbU,
0x671d5ab3U, 0xdbd25292U, 0x105633e9U, 0xd647136dU,
0xd7618c9aU, 0xa10c7a37U, 0xf8148e59U, 0x133c89ebU,
0xa927eeceU, 0x61c935b7U, 0x1ce5ede1U, 0x47b13c7aU,
0xd2df599cU, 0xf2733f55U, 0x14ce7918U, 0xc737bf73U,
0xf7cdea53U, 0xfdaa5b5fU, 0x3d6f14dfU, 0x44db8678U,
0xaff381caU, 0x68c43eb9U, 0x24342c38U, 0xa3405fc2U,
0x1dc37216U, 0xe2250cbcU, 0x3c498b28U, 0x0d9541ffU,
0xa8017139U, 0x0cb3de08U, 0xb4e49cd8U, 0x56c19064U,
0xcb84617bU, 0x32b670d5U, 0x6c5c7448U, 0xb85742d0U,
}
};
#endif /* HAVE_AES_DECRYPT */
#endif /* WOLFSSL_AES_SMALL_TABLES */
#ifdef HAVE_AES_DECRYPT
#if (defined(HAVE_AES_CBC) && !defined(WOLFSSL_DEVCRYPTO_CBC) && \
!defined(WOLFSSL_SILABS_SE_ACCEL)) || \
defined(WOLFSSL_AES_DIRECT)
static const FLASH_QUALIFIER byte Td4[256] =
{
0x52U, 0x09U, 0x6aU, 0xd5U, 0x30U, 0x36U, 0xa5U, 0x38U,
0xbfU, 0x40U, 0xa3U, 0x9eU, 0x81U, 0xf3U, 0xd7U, 0xfbU,
0x7cU, 0xe3U, 0x39U, 0x82U, 0x9bU, 0x2fU, 0xffU, 0x87U,
0x34U, 0x8eU, 0x43U, 0x44U, 0xc4U, 0xdeU, 0xe9U, 0xcbU,
0x54U, 0x7bU, 0x94U, 0x32U, 0xa6U, 0xc2U, 0x23U, 0x3dU,
0xeeU, 0x4cU, 0x95U, 0x0bU, 0x42U, 0xfaU, 0xc3U, 0x4eU,
0x08U, 0x2eU, 0xa1U, 0x66U, 0x28U, 0xd9U, 0x24U, 0xb2U,
0x76U, 0x5bU, 0xa2U, 0x49U, 0x6dU, 0x8bU, 0xd1U, 0x25U,
0x72U, 0xf8U, 0xf6U, 0x64U, 0x86U, 0x68U, 0x98U, 0x16U,
0xd4U, 0xa4U, 0x5cU, 0xccU, 0x5dU, 0x65U, 0xb6U, 0x92U,
0x6cU, 0x70U, 0x48U, 0x50U, 0xfdU, 0xedU, 0xb9U, 0xdaU,
0x5eU, 0x15U, 0x46U, 0x57U, 0xa7U, 0x8dU, 0x9dU, 0x84U,
0x90U, 0xd8U, 0xabU, 0x00U, 0x8cU, 0xbcU, 0xd3U, 0x0aU,
0xf7U, 0xe4U, 0x58U, 0x05U, 0xb8U, 0xb3U, 0x45U, 0x06U,
0xd0U, 0x2cU, 0x1eU, 0x8fU, 0xcaU, 0x3fU, 0x0fU, 0x02U,
0xc1U, 0xafU, 0xbdU, 0x03U, 0x01U, 0x13U, 0x8aU, 0x6bU,
0x3aU, 0x91U, 0x11U, 0x41U, 0x4fU, 0x67U, 0xdcU, 0xeaU,
0x97U, 0xf2U, 0xcfU, 0xceU, 0xf0U, 0xb4U, 0xe6U, 0x73U,
0x96U, 0xacU, 0x74U, 0x22U, 0xe7U, 0xadU, 0x35U, 0x85U,
0xe2U, 0xf9U, 0x37U, 0xe8U, 0x1cU, 0x75U, 0xdfU, 0x6eU,
0x47U, 0xf1U, 0x1aU, 0x71U, 0x1dU, 0x29U, 0xc5U, 0x89U,
0x6fU, 0xb7U, 0x62U, 0x0eU, 0xaaU, 0x18U, 0xbeU, 0x1bU,
0xfcU, 0x56U, 0x3eU, 0x4bU, 0xc6U, 0xd2U, 0x79U, 0x20U,
0x9aU, 0xdbU, 0xc0U, 0xfeU, 0x78U, 0xcdU, 0x5aU, 0xf4U,
0x1fU, 0xddU, 0xa8U, 0x33U, 0x88U, 0x07U, 0xc7U, 0x31U,
0xb1U, 0x12U, 0x10U, 0x59U, 0x27U, 0x80U, 0xecU, 0x5fU,
0x60U, 0x51U, 0x7fU, 0xa9U, 0x19U, 0xb5U, 0x4aU, 0x0dU,
0x2dU, 0xe5U, 0x7aU, 0x9fU, 0x93U, 0xc9U, 0x9cU, 0xefU,
0xa0U, 0xe0U, 0x3bU, 0x4dU, 0xaeU, 0x2aU, 0xf5U, 0xb0U,
0xc8U, 0xebU, 0xbbU, 0x3cU, 0x83U, 0x53U, 0x99U, 0x61U,
0x17U, 0x2bU, 0x04U, 0x7eU, 0xbaU, 0x77U, 0xd6U, 0x26U,
0xe1U, 0x69U, 0x14U, 0x63U, 0x55U, 0x21U, 0x0cU, 0x7dU,
};
#endif /* HAVE_AES_CBC || WOLFSSL_AES_DIRECT */
#endif /* HAVE_AES_DECRYPT */
#define GETBYTE(x, y) (word32)((byte)((x) >> (8 * (y))))
#ifdef WOLFSSL_AES_SMALL_TABLES
static const byte Tsbox[256] = {
0x63U, 0x7cU, 0x77U, 0x7bU, 0xf2U, 0x6bU, 0x6fU, 0xc5U,
0x30U, 0x01U, 0x67U, 0x2bU, 0xfeU, 0xd7U, 0xabU, 0x76U,
0xcaU, 0x82U, 0xc9U, 0x7dU, 0xfaU, 0x59U, 0x47U, 0xf0U,
0xadU, 0xd4U, 0xa2U, 0xafU, 0x9cU, 0xa4U, 0x72U, 0xc0U,
0xb7U, 0xfdU, 0x93U, 0x26U, 0x36U, 0x3fU, 0xf7U, 0xccU,
0x34U, 0xa5U, 0xe5U, 0xf1U, 0x71U, 0xd8U, 0x31U, 0x15U,
0x04U, 0xc7U, 0x23U, 0xc3U, 0x18U, 0x96U, 0x05U, 0x9aU,
0x07U, 0x12U, 0x80U, 0xe2U, 0xebU, 0x27U, 0xb2U, 0x75U,
0x09U, 0x83U, 0x2cU, 0x1aU, 0x1bU, 0x6eU, 0x5aU, 0xa0U,
0x52U, 0x3bU, 0xd6U, 0xb3U, 0x29U, 0xe3U, 0x2fU, 0x84U,
0x53U, 0xd1U, 0x00U, 0xedU, 0x20U, 0xfcU, 0xb1U, 0x5bU,
0x6aU, 0xcbU, 0xbeU, 0x39U, 0x4aU, 0x4cU, 0x58U, 0xcfU,
0xd0U, 0xefU, 0xaaU, 0xfbU, 0x43U, 0x4dU, 0x33U, 0x85U,
0x45U, 0xf9U, 0x02U, 0x7fU, 0x50U, 0x3cU, 0x9fU, 0xa8U,
0x51U, 0xa3U, 0x40U, 0x8fU, 0x92U, 0x9dU, 0x38U, 0xf5U,
0xbcU, 0xb6U, 0xdaU, 0x21U, 0x10U, 0xffU, 0xf3U, 0xd2U,
0xcdU, 0x0cU, 0x13U, 0xecU, 0x5fU, 0x97U, 0x44U, 0x17U,
0xc4U, 0xa7U, 0x7eU, 0x3dU, 0x64U, 0x5dU, 0x19U, 0x73U,
0x60U, 0x81U, 0x4fU, 0xdcU, 0x22U, 0x2aU, 0x90U, 0x88U,
0x46U, 0xeeU, 0xb8U, 0x14U, 0xdeU, 0x5eU, 0x0bU, 0xdbU,
0xe0U, 0x32U, 0x3aU, 0x0aU, 0x49U, 0x06U, 0x24U, 0x5cU,
0xc2U, 0xd3U, 0xacU, 0x62U, 0x91U, 0x95U, 0xe4U, 0x79U,
0xe7U, 0xc8U, 0x37U, 0x6dU, 0x8dU, 0xd5U, 0x4eU, 0xa9U,
0x6cU, 0x56U, 0xf4U, 0xeaU, 0x65U, 0x7aU, 0xaeU, 0x08U,
0xbaU, 0x78U, 0x25U, 0x2eU, 0x1cU, 0xa6U, 0xb4U, 0xc6U,
0xe8U, 0xddU, 0x74U, 0x1fU, 0x4bU, 0xbdU, 0x8bU, 0x8aU,
0x70U, 0x3eU, 0xb5U, 0x66U, 0x48U, 0x03U, 0xf6U, 0x0eU,
0x61U, 0x35U, 0x57U, 0xb9U, 0x86U, 0xc1U, 0x1dU, 0x9eU,
0xe1U, 0xf8U, 0x98U, 0x11U, 0x69U, 0xd9U, 0x8eU, 0x94U,
0x9bU, 0x1eU, 0x87U, 0xe9U, 0xceU, 0x55U, 0x28U, 0xdfU,
0x8cU, 0xa1U, 0x89U, 0x0dU, 0xbfU, 0xe6U, 0x42U, 0x68U,
0x41U, 0x99U, 0x2dU, 0x0fU, 0xb0U, 0x54U, 0xbbU, 0x16U
};
#define AES_XTIME(x) ((byte)((byte)((x) << 1) ^ ((0 - ((x) >> 7)) & 0x1b)))
static WARN_UNUSED_RESULT word32 col_mul(
word32 t, int i2, int i3, int ia, int ib)
{
byte t3 = GETBYTE(t, i3);
byte tm = AES_XTIME(GETBYTE(t, i2) ^ t3);
return GETBYTE(t, ia) ^ GETBYTE(t, ib) ^ t3 ^ tm;
}
#if defined(HAVE_AES_CBC) || defined(WOLFSSL_AES_DIRECT)
static WARN_UNUSED_RESULT word32 inv_col_mul(
word32 t, int i9, int ib, int id, int ie)
{
byte t9 = GETBYTE(t, i9);
byte tb = GETBYTE(t, ib);
byte td = GETBYTE(t, id);
byte te = GETBYTE(t, ie);
byte t0 = t9 ^ tb ^ td;
return t0 ^ AES_XTIME(AES_XTIME(AES_XTIME(t0 ^ te) ^ td ^ te) ^ tb ^ te);
}
#endif /* HAVE_AES_CBC || WOLFSSL_AES_DIRECT */
#endif /* WOLFSSL_AES_SMALL_TABLES */
#endif
#if defined(HAVE_AES_CBC) || defined(WOLFSSL_AES_DIRECT) || \
defined(HAVE_AESCCM) || defined(HAVE_AESGCM)
#ifndef WC_AES_BITSLICED
#ifndef WC_CACHE_LINE_SZ
#if defined(__x86_64__) || defined(_M_X64) || \
(defined(__ILP32__) && (__ILP32__ >= 1))
#define WC_CACHE_LINE_SZ 64
#else
/* default cache line size */
#define WC_CACHE_LINE_SZ 32
#endif
#endif
#ifndef WC_NO_CACHE_RESISTANT
#if defined(__riscv) && !defined(WOLFSSL_AES_TOUCH_LINES)
#define WOLFSSL_AES_TOUCH_LINES
#endif
#ifndef WOLFSSL_AES_SMALL_TABLES
/* load 4 Te Tables into cache by cache line stride */
static WARN_UNUSED_RESULT WC_INLINE word32 PreFetchTe(void)
{
#ifndef WOLFSSL_AES_TOUCH_LINES
word32 x = 0;
int i,j;
for (i = 0; i < 4; i++) {
/* 256 elements, each one is 4 bytes */
for (j = 0; j < 256; j += WC_CACHE_LINE_SZ/4) {
x &= Te[i][j];
}
}
return x;
#else
return 0;
#endif
}
#else
/* load sbox into cache by cache line stride */
static WARN_UNUSED_RESULT WC_INLINE word32 PreFetchSBox(void)
{
#ifndef WOLFSSL_AES_TOUCH_LINES
word32 x = 0;
int i;
for (i = 0; i < 256; i += WC_CACHE_LINE_SZ/4) {
x &= Tsbox[i];
}
return x;
#else
return 0;
#endif
}
#endif
#endif
#ifdef WOLFSSL_AES_TOUCH_LINES
#if WC_CACHE_LINE_SZ == 128
#define WC_CACHE_LINE_BITS 5
#define WC_CACHE_LINE_MASK_HI 0xe0
#define WC_CACHE_LINE_MASK_LO 0x1f
#define WC_CACHE_LINE_ADD 0x20
#elif WC_CACHE_LINE_SZ == 64
#define WC_CACHE_LINE_BITS 4
#define WC_CACHE_LINE_MASK_HI 0xf0
#define WC_CACHE_LINE_MASK_LO 0x0f
#define WC_CACHE_LINE_ADD 0x10
#elif WC_CACHE_LINE_SZ == 32
#define WC_CACHE_LINE_BITS 3
#define WC_CACHE_LINE_MASK_HI 0xf8
#define WC_CACHE_LINE_MASK_LO 0x07
#define WC_CACHE_LINE_ADD 0x08
#elif WC_CACHE_LINE_SZ == 16
#define WC_CACHE_LINE_BITS 2
#define WC_CACHE_LINE_MASK_HI 0xfc
#define WC_CACHE_LINE_MASK_LO 0x03
#define WC_CACHE_LINE_ADD 0x04
#else
#error Cache line size not supported
#endif
#ifndef WOLFSSL_AES_SMALL_TABLES
static word32 GetTable(const word32* t, byte o)
{
#if WC_CACHE_LINE_SZ == 64
word32 e;
byte hi = o & 0xf0;
byte lo = o & 0x0f;
e = t[lo + 0x00] & ((word32)0 - (((word32)hi - 0x01) >> 31)); hi -= 0x10;
e |= t[lo + 0x10] & ((word32)0 - (((word32)hi - 0x01) >> 31)); hi -= 0x10;
e |= t[lo + 0x20] & ((word32)0 - (((word32)hi - 0x01) >> 31)); hi -= 0x10;
e |= t[lo + 0x30] & ((word32)0 - (((word32)hi - 0x01) >> 31)); hi -= 0x10;
e |= t[lo + 0x40] & ((word32)0 - (((word32)hi - 0x01) >> 31)); hi -= 0x10;
e |= t[lo + 0x50] & ((word32)0 - (((word32)hi - 0x01) >> 31)); hi -= 0x10;
e |= t[lo + 0x60] & ((word32)0 - (((word32)hi - 0x01) >> 31)); hi -= 0x10;
e |= t[lo + 0x70] & ((word32)0 - (((word32)hi - 0x01) >> 31)); hi -= 0x10;
e |= t[lo + 0x80] & ((word32)0 - (((word32)hi - 0x01) >> 31)); hi -= 0x10;
e |= t[lo + 0x90] & ((word32)0 - (((word32)hi - 0x01) >> 31)); hi -= 0x10;
e |= t[lo + 0xa0] & ((word32)0 - (((word32)hi - 0x01) >> 31)); hi -= 0x10;
e |= t[lo + 0xb0] & ((word32)0 - (((word32)hi - 0x01) >> 31)); hi -= 0x10;
e |= t[lo + 0xc0] & ((word32)0 - (((word32)hi - 0x01) >> 31)); hi -= 0x10;
e |= t[lo + 0xd0] & ((word32)0 - (((word32)hi - 0x01) >> 31)); hi -= 0x10;
e |= t[lo + 0xe0] & ((word32)0 - (((word32)hi - 0x01) >> 31)); hi -= 0x10;
e |= t[lo + 0xf0] & ((word32)0 - (((word32)hi - 0x01) >> 31));
return e;
#else
word32 e = 0;
int i;
byte hi = o & WC_CACHE_LINE_MASK_HI;
byte lo = o & WC_CACHE_LINE_MASK_LO;
for (i = 0; i < 256; i += (1 << WC_CACHE_LINE_BITS)) {
e |= t[lo + i] & ((word32)0 - (((word32)hi - 0x01) >> 31));
hi -= WC_CACHE_LINE_ADD;
}
return e;
#endif
}
#endif
#ifdef WOLFSSL_AES_SMALL_TABLES
static byte GetTable8(const byte* t, byte o)
{
#if WC_CACHE_LINE_SZ == 64
byte e;
byte hi = o & 0xf0;
byte lo = o & 0x0f;
e = t[lo + 0x00] & ((word32)0 - (((word32)hi - 0x01) >> 31)); hi -= 0x10;
e |= t[lo + 0x10] & ((word32)0 - (((word32)hi - 0x01) >> 31)); hi -= 0x10;
e |= t[lo + 0x20] & ((word32)0 - (((word32)hi - 0x01) >> 31)); hi -= 0x10;
e |= t[lo + 0x30] & ((word32)0 - (((word32)hi - 0x01) >> 31)); hi -= 0x10;
e |= t[lo + 0x40] & ((word32)0 - (((word32)hi - 0x01) >> 31)); hi -= 0x10;
e |= t[lo + 0x50] & ((word32)0 - (((word32)hi - 0x01) >> 31)); hi -= 0x10;
e |= t[lo + 0x60] & ((word32)0 - (((word32)hi - 0x01) >> 31)); hi -= 0x10;
e |= t[lo + 0x70] & ((word32)0 - (((word32)hi - 0x01) >> 31)); hi -= 0x10;
e |= t[lo + 0x80] & ((word32)0 - (((word32)hi - 0x01) >> 31)); hi -= 0x10;
e |= t[lo + 0x90] & ((word32)0 - (((word32)hi - 0x01) >> 31)); hi -= 0x10;
e |= t[lo + 0xa0] & ((word32)0 - (((word32)hi - 0x01) >> 31)); hi -= 0x10;
e |= t[lo + 0xb0] & ((word32)0 - (((word32)hi - 0x01) >> 31)); hi -= 0x10;
e |= t[lo + 0xc0] & ((word32)0 - (((word32)hi - 0x01) >> 31)); hi -= 0x10;
e |= t[lo + 0xd0] & ((word32)0 - (((word32)hi - 0x01) >> 31)); hi -= 0x10;
e |= t[lo + 0xe0] & ((word32)0 - (((word32)hi - 0x01) >> 31)); hi -= 0x10;
e |= t[lo + 0xf0] & ((word32)0 - (((word32)hi - 0x01) >> 31));
return e;
#else
byte e = 0;
int i;
byte hi = o & WC_CACHE_LINE_MASK_HI;
byte lo = o & WC_CACHE_LINE_MASK_LO;
for (i = 0; i < 256; i += (1 << WC_CACHE_LINE_BITS)) {
e |= t[lo + i] & ((word32)0 - (((word32)hi - 0x01) >> 31));
hi -= WC_CACHE_LINE_ADD;
}
return e;
#endif
}
#endif
#ifndef WOLFSSL_AES_SMALL_TABLES
static void GetTable_Multi(const word32* t, word32* t0, byte o0,
word32* t1, byte o1, word32* t2, byte o2, word32* t3, byte o3)
{
word32 e0 = 0;
word32 e1 = 0;
word32 e2 = 0;
word32 e3 = 0;
byte hi0 = o0 & WC_CACHE_LINE_MASK_HI;
byte lo0 = o0 & WC_CACHE_LINE_MASK_LO;
byte hi1 = o1 & WC_CACHE_LINE_MASK_HI;
byte lo1 = o1 & WC_CACHE_LINE_MASK_LO;
byte hi2 = o2 & WC_CACHE_LINE_MASK_HI;
byte lo2 = o2 & WC_CACHE_LINE_MASK_LO;
byte hi3 = o3 & WC_CACHE_LINE_MASK_HI;
byte lo3 = o3 & WC_CACHE_LINE_MASK_LO;
int i;
for (i = 0; i < 256; i += (1 << WC_CACHE_LINE_BITS)) {
e0 |= t[lo0 + i] & ((word32)0 - (((word32)hi0 - 0x01) >> 31));
hi0 -= WC_CACHE_LINE_ADD;
e1 |= t[lo1 + i] & ((word32)0 - (((word32)hi1 - 0x01) >> 31));
hi1 -= WC_CACHE_LINE_ADD;
e2 |= t[lo2 + i] & ((word32)0 - (((word32)hi2 - 0x01) >> 31));
hi2 -= WC_CACHE_LINE_ADD;
e3 |= t[lo3 + i] & ((word32)0 - (((word32)hi3 - 0x01) >> 31));
hi3 -= WC_CACHE_LINE_ADD;
}
*t0 = e0;
*t1 = e1;
*t2 = e2;
*t3 = e3;
}
static void XorTable_Multi(const word32* t, word32* t0, byte o0,
word32* t1, byte o1, word32* t2, byte o2, word32* t3, byte o3)
{
word32 e0 = 0;
word32 e1 = 0;
word32 e2 = 0;
word32 e3 = 0;
byte hi0 = o0 & 0xf0;
byte lo0 = o0 & 0x0f;
byte hi1 = o1 & 0xf0;
byte lo1 = o1 & 0x0f;
byte hi2 = o2 & 0xf0;
byte lo2 = o2 & 0x0f;
byte hi3 = o3 & 0xf0;
byte lo3 = o3 & 0x0f;
int i;
for (i = 0; i < 256; i += (1 << WC_CACHE_LINE_BITS)) {
e0 |= t[lo0 + i] & ((word32)0 - (((word32)hi0 - 0x01) >> 31));
hi0 -= WC_CACHE_LINE_ADD;
e1 |= t[lo1 + i] & ((word32)0 - (((word32)hi1 - 0x01) >> 31));
hi1 -= WC_CACHE_LINE_ADD;
e2 |= t[lo2 + i] & ((word32)0 - (((word32)hi2 - 0x01) >> 31));
hi2 -= WC_CACHE_LINE_ADD;
e3 |= t[lo3 + i] & ((word32)0 - (((word32)hi3 - 0x01) >> 31));
hi3 -= WC_CACHE_LINE_ADD;
}
*t0 ^= e0;
*t1 ^= e1;
*t2 ^= e2;
*t3 ^= e3;
}
static word32 GetTable8_4(const byte* t, byte o0, byte o1, byte o2, byte o3)
{
word32 e = 0;
int i;
byte hi0 = o0 & WC_CACHE_LINE_MASK_HI;
byte lo0 = o0 & WC_CACHE_LINE_MASK_LO;
byte hi1 = o1 & WC_CACHE_LINE_MASK_HI;
byte lo1 = o1 & WC_CACHE_LINE_MASK_LO;
byte hi2 = o2 & WC_CACHE_LINE_MASK_HI;
byte lo2 = o2 & WC_CACHE_LINE_MASK_LO;
byte hi3 = o3 & WC_CACHE_LINE_MASK_HI;
byte lo3 = o3 & WC_CACHE_LINE_MASK_LO;
for (i = 0; i < 256; i += (1 << WC_CACHE_LINE_BITS)) {
e |= (word32)(t[lo0 + i] & ((word32)0 - (((word32)hi0 - 0x01) >> 31)))
<< 24;
hi0 -= WC_CACHE_LINE_ADD;
e |= (word32)(t[lo1 + i] & ((word32)0 - (((word32)hi1 - 0x01) >> 31)))
<< 16;
hi1 -= WC_CACHE_LINE_ADD;
e |= (word32)(t[lo2 + i] & ((word32)0 - (((word32)hi2 - 0x01) >> 31)))
<< 8;
hi2 -= WC_CACHE_LINE_ADD;
e |= (word32)(t[lo3 + i] & ((word32)0 - (((word32)hi3 - 0x01) >> 31)))
<< 0;
hi3 -= WC_CACHE_LINE_ADD;
}
return e;
}
#endif
#else
#define GetTable(t, o) t[o]
#define GetTable8(t, o) t[o]
#define GetTable_Multi(t, t0, o0, t1, o1, t2, o2, t3, o3) \
*(t0) = (t)[o0]; *(t1) = (t)[o1]; *(t2) = (t)[o2]; *(t3) = (t)[o3]
#define XorTable_Multi(t, t0, o0, t1, o1, t2, o2, t3, o3) \
*(t0) ^= (t)[o0]; *(t1) ^= (t)[o1]; *(t2) ^= (t)[o2]; *(t3) ^= (t)[o3]
#define GetTable8_4(t, o0, o1, o2, o3) \
(((word32)(t)[o0] << 24) | ((word32)(t)[o1] << 16) | \
((word32)(t)[o2] << 8) | ((word32)(t)[o3] << 0))
#endif
#ifndef HAVE_CUDA
/* Encrypt a block using AES.
*
* @param [in] aes AES object.
* @param [in] inBlock Block to encrypt.
* @param [out] outBlock Encrypted block.
* @param [in] r Rounds divided by 2.
*/
static void AesEncrypt_C(Aes* aes, const byte* inBlock, byte* outBlock,
word32 r)
{
word32 s0, s1, s2, s3;
word32 t0, t1, t2, t3;
const word32* rk;
#ifdef WC_C_DYNAMIC_FALLBACK
rk = aes->key_C_fallback;
#else
rk = aes->key;
#endif
/*
* map byte array block to cipher state
* and add initial round key:
*/
XMEMCPY(&s0, inBlock, sizeof(s0));
XMEMCPY(&s1, inBlock + sizeof(s0), sizeof(s1));
XMEMCPY(&s2, inBlock + 2 * sizeof(s0), sizeof(s2));
XMEMCPY(&s3, inBlock + 3 * sizeof(s0), sizeof(s3));
#ifdef LITTLE_ENDIAN_ORDER
s0 = ByteReverseWord32(s0);
s1 = ByteReverseWord32(s1);
s2 = ByteReverseWord32(s2);
s3 = ByteReverseWord32(s3);
#endif
/* AddRoundKey */
s0 ^= rk[0];
s1 ^= rk[1];
s2 ^= rk[2];
s3 ^= rk[3];
#ifndef WOLFSSL_AES_SMALL_TABLES
#ifndef WC_NO_CACHE_RESISTANT
s0 |= PreFetchTe();
#endif
#ifndef WOLFSSL_AES_TOUCH_LINES
#define ENC_ROUND_T_S(o) \
t0 = GetTable(Te[0], GETBYTE(s0, 3)) ^ GetTable(Te[1], GETBYTE(s1, 2)) ^ \
GetTable(Te[2], GETBYTE(s2, 1)) ^ GetTable(Te[3], GETBYTE(s3, 0)) ^ \
rk[(o)+4]; \
t1 = GetTable(Te[0], GETBYTE(s1, 3)) ^ GetTable(Te[1], GETBYTE(s2, 2)) ^ \
GetTable(Te[2], GETBYTE(s3, 1)) ^ GetTable(Te[3], GETBYTE(s0, 0)) ^ \
rk[(o)+5]; \
t2 = GetTable(Te[0], GETBYTE(s2, 3)) ^ GetTable(Te[1], GETBYTE(s3, 2)) ^ \
GetTable(Te[2], GETBYTE(s0, 1)) ^ GetTable(Te[3], GETBYTE(s1, 0)) ^ \
rk[(o)+6]; \
t3 = GetTable(Te[0], GETBYTE(s3, 3)) ^ GetTable(Te[1], GETBYTE(s0, 2)) ^ \
GetTable(Te[2], GETBYTE(s1, 1)) ^ GetTable(Te[3], GETBYTE(s2, 0)) ^ \
rk[(o)+7]
#define ENC_ROUND_S_T(o) \
s0 = GetTable(Te[0], GETBYTE(t0, 3)) ^ GetTable(Te[1], GETBYTE(t1, 2)) ^ \
GetTable(Te[2], GETBYTE(t2, 1)) ^ GetTable(Te[3], GETBYTE(t3, 0)) ^ \
rk[(o)+0]; \
s1 = GetTable(Te[0], GETBYTE(t1, 3)) ^ GetTable(Te[1], GETBYTE(t2, 2)) ^ \
GetTable(Te[2], GETBYTE(t3, 1)) ^ GetTable(Te[3], GETBYTE(t0, 0)) ^ \
rk[(o)+1]; \
s2 = GetTable(Te[0], GETBYTE(t2, 3)) ^ GetTable(Te[1], GETBYTE(t3, 2)) ^ \
GetTable(Te[2], GETBYTE(t0, 1)) ^ GetTable(Te[3], GETBYTE(t1, 0)) ^ \
rk[(o)+2]; \
s3 = GetTable(Te[0], GETBYTE(t3, 3)) ^ GetTable(Te[1], GETBYTE(t0, 2)) ^ \
GetTable(Te[2], GETBYTE(t1, 1)) ^ GetTable(Te[3], GETBYTE(t2, 0)) ^ \
rk[(o)+3]
#else
#define ENC_ROUND_T_S(o) \
GetTable_Multi(Te[0], &t0, GETBYTE(s0, 3), &t1, GETBYTE(s1, 3), \
&t2, GETBYTE(s2, 3), &t3, GETBYTE(s3, 3)); \
XorTable_Multi(Te[1], &t0, GETBYTE(s1, 2), &t1, GETBYTE(s2, 2), \
&t2, GETBYTE(s3, 2), &t3, GETBYTE(s0, 2)); \
XorTable_Multi(Te[2], &t0, GETBYTE(s2, 1), &t1, GETBYTE(s3, 1), \
&t2, GETBYTE(s0, 1), &t3, GETBYTE(s1, 1)); \
XorTable_Multi(Te[3], &t0, GETBYTE(s3, 0), &t1, GETBYTE(s0, 0), \
&t2, GETBYTE(s1, 0), &t3, GETBYTE(s2, 0)); \
t0 ^= rk[(o)+4]; t1 ^= rk[(o)+5]; t2 ^= rk[(o)+6]; t3 ^= rk[(o)+7];
#define ENC_ROUND_S_T(o) \
GetTable_Multi(Te[0], &s0, GETBYTE(t0, 3), &s1, GETBYTE(t1, 3), \
&s2, GETBYTE(t2, 3), &s3, GETBYTE(t3, 3)); \
XorTable_Multi(Te[1], &s0, GETBYTE(t1, 2), &s1, GETBYTE(t2, 2), \
&s2, GETBYTE(t3, 2), &s3, GETBYTE(t0, 2)); \
XorTable_Multi(Te[2], &s0, GETBYTE(t2, 1), &s1, GETBYTE(t3, 1), \
&s2, GETBYTE(t0, 1), &s3, GETBYTE(t1, 1)); \
XorTable_Multi(Te[3], &s0, GETBYTE(t3, 0), &s1, GETBYTE(t0, 0), \
&s2, GETBYTE(t1, 0), &s3, GETBYTE(t2, 0)); \
s0 ^= rk[(o)+0]; s1 ^= rk[(o)+1]; s2 ^= rk[(o)+2]; s3 ^= rk[(o)+3];
#endif
#ifndef WOLFSSL_AES_NO_UNROLL
/* Unroll the loop. */
ENC_ROUND_T_S( 0);
ENC_ROUND_S_T( 8); ENC_ROUND_T_S( 8);
ENC_ROUND_S_T(16); ENC_ROUND_T_S(16);
ENC_ROUND_S_T(24); ENC_ROUND_T_S(24);
ENC_ROUND_S_T(32); ENC_ROUND_T_S(32);
if (r > 5) {
ENC_ROUND_S_T(40); ENC_ROUND_T_S(40);
if (r > 6) {
ENC_ROUND_S_T(48); ENC_ROUND_T_S(48);
}
}
rk += r * 8;
#else
/*
* Nr - 1 full rounds:
*/
for (;;) {
ENC_ROUND_T_S(0);
rk += 8;
if (--r == 0) {
break;
}
ENC_ROUND_S_T(0);
}
#endif
/*
* apply last round and
* map cipher state to byte array block:
*/
#ifndef WOLFSSL_AES_TOUCH_LINES
s0 =
(GetTable(Te[2], GETBYTE(t0, 3)) & 0xff000000) ^
(GetTable(Te[3], GETBYTE(t1, 2)) & 0x00ff0000) ^
(GetTable(Te[0], GETBYTE(t2, 1)) & 0x0000ff00) ^
(GetTable(Te[1], GETBYTE(t3, 0)) & 0x000000ff) ^
rk[0];
s1 =
(GetTable(Te[2], GETBYTE(t1, 3)) & 0xff000000) ^
(GetTable(Te[3], GETBYTE(t2, 2)) & 0x00ff0000) ^
(GetTable(Te[0], GETBYTE(t3, 1)) & 0x0000ff00) ^
(GetTable(Te[1], GETBYTE(t0, 0)) & 0x000000ff) ^
rk[1];
s2 =
(GetTable(Te[2], GETBYTE(t2, 3)) & 0xff000000) ^
(GetTable(Te[3], GETBYTE(t3, 2)) & 0x00ff0000) ^
(GetTable(Te[0], GETBYTE(t0, 1)) & 0x0000ff00) ^
(GetTable(Te[1], GETBYTE(t1, 0)) & 0x000000ff) ^
rk[2];
s3 =
(GetTable(Te[2], GETBYTE(t3, 3)) & 0xff000000) ^
(GetTable(Te[3], GETBYTE(t0, 2)) & 0x00ff0000) ^
(GetTable(Te[0], GETBYTE(t1, 1)) & 0x0000ff00) ^
(GetTable(Te[1], GETBYTE(t2, 0)) & 0x000000ff) ^
rk[3];
#else
{
word32 u0;
word32 u1;
word32 u2;
word32 u3;
s0 = rk[0]; s1 = rk[1]; s2 = rk[2]; s3 = rk[3];
GetTable_Multi(Te[2], &u0, GETBYTE(t0, 3), &u1, GETBYTE(t1, 3),
&u2, GETBYTE(t2, 3), &u3, GETBYTE(t3, 3));
s0 ^= u0 & 0xff000000; s1 ^= u1 & 0xff000000;
s2 ^= u2 & 0xff000000; s3 ^= u3 & 0xff000000;
GetTable_Multi(Te[3], &u0, GETBYTE(t1, 2), &u1, GETBYTE(t2, 2),
&u2, GETBYTE(t3, 2), &u3, GETBYTE(t0, 2));
s0 ^= u0 & 0x00ff0000; s1 ^= u1 & 0x00ff0000;
s2 ^= u2 & 0x00ff0000; s3 ^= u3 & 0x00ff0000;
GetTable_Multi(Te[0], &u0, GETBYTE(t2, 1), &u1, GETBYTE(t3, 1),
&u2, GETBYTE(t0, 1), &u3, GETBYTE(t1, 1));
s0 ^= u0 & 0x0000ff00; s1 ^= u1 & 0x0000ff00;
s2 ^= u2 & 0x0000ff00; s3 ^= u3 & 0x0000ff00;
GetTable_Multi(Te[1], &u0, GETBYTE(t3, 0), &u1, GETBYTE(t0, 0),
&u2, GETBYTE(t1, 0), &u3, GETBYTE(t2, 0));
s0 ^= u0 & 0x000000ff; s1 ^= u1 & 0x000000ff;
s2 ^= u2 & 0x000000ff; s3 ^= u3 & 0x000000ff;
}
#endif
#else
#ifndef WC_NO_CACHE_RESISTANT
s0 |= PreFetchSBox();
#endif
r *= 2;
/* Two rounds at a time */
for (rk += 4; r > 1; r--, rk += 4) {
t0 =
((word32)GetTable8(Tsbox, GETBYTE(s0, 3)) << 24) ^
((word32)GetTable8(Tsbox, GETBYTE(s1, 2)) << 16) ^
((word32)GetTable8(Tsbox, GETBYTE(s2, 1)) << 8) ^
((word32)GetTable8(Tsbox, GETBYTE(s3, 0)));
t1 =
((word32)GetTable8(Tsbox, GETBYTE(s1, 3)) << 24) ^
((word32)GetTable8(Tsbox, GETBYTE(s2, 2)) << 16) ^
((word32)GetTable8(Tsbox, GETBYTE(s3, 1)) << 8) ^
((word32)GetTable8(Tsbox, GETBYTE(s0, 0)));
t2 =
((word32)GetTable8(Tsbox, GETBYTE(s2, 3)) << 24) ^
((word32)GetTable8(Tsbox, GETBYTE(s3, 2)) << 16) ^
((word32)GetTable8(Tsbox, GETBYTE(s0, 1)) << 8) ^
((word32)GetTable8(Tsbox, GETBYTE(s1, 0)));
t3 =
((word32)GetTable8(Tsbox, GETBYTE(s3, 3)) << 24) ^
((word32)GetTable8(Tsbox, GETBYTE(s0, 2)) << 16) ^
((word32)GetTable8(Tsbox, GETBYTE(s1, 1)) << 8) ^
((word32)GetTable8(Tsbox, GETBYTE(s2, 0)));
s0 =
(col_mul(t0, 3, 2, 0, 1) << 24) ^
(col_mul(t0, 2, 1, 0, 3) << 16) ^
(col_mul(t0, 1, 0, 2, 3) << 8) ^
(col_mul(t0, 0, 3, 2, 1) ) ^
rk[0];
s1 =
(col_mul(t1, 3, 2, 0, 1) << 24) ^
(col_mul(t1, 2, 1, 0, 3) << 16) ^
(col_mul(t1, 1, 0, 2, 3) << 8) ^
(col_mul(t1, 0, 3, 2, 1) ) ^
rk[1];
s2 =
(col_mul(t2, 3, 2, 0, 1) << 24) ^
(col_mul(t2, 2, 1, 0, 3) << 16) ^
(col_mul(t2, 1, 0, 2, 3) << 8) ^
(col_mul(t2, 0, 3, 2, 1) ) ^
rk[2];
s3 =
(col_mul(t3, 3, 2, 0, 1) << 24) ^
(col_mul(t3, 2, 1, 0, 3) << 16) ^
(col_mul(t3, 1, 0, 2, 3) << 8) ^
(col_mul(t3, 0, 3, 2, 1) ) ^
rk[3];
}
t0 =
((word32)GetTable8(Tsbox, GETBYTE(s0, 3)) << 24) ^
((word32)GetTable8(Tsbox, GETBYTE(s1, 2)) << 16) ^
((word32)GetTable8(Tsbox, GETBYTE(s2, 1)) << 8) ^
((word32)GetTable8(Tsbox, GETBYTE(s3, 0)));
t1 =
((word32)GetTable8(Tsbox, GETBYTE(s1, 3)) << 24) ^
((word32)GetTable8(Tsbox, GETBYTE(s2, 2)) << 16) ^
((word32)GetTable8(Tsbox, GETBYTE(s3, 1)) << 8) ^
((word32)GetTable8(Tsbox, GETBYTE(s0, 0)));
t2 =
((word32)GetTable8(Tsbox, GETBYTE(s2, 3)) << 24) ^
((word32)GetTable8(Tsbox, GETBYTE(s3, 2)) << 16) ^
((word32)GetTable8(Tsbox, GETBYTE(s0, 1)) << 8) ^
((word32)GetTable8(Tsbox, GETBYTE(s1, 0)));
t3 =
((word32)GetTable8(Tsbox, GETBYTE(s3, 3)) << 24) ^
((word32)GetTable8(Tsbox, GETBYTE(s0, 2)) << 16) ^
((word32)GetTable8(Tsbox, GETBYTE(s1, 1)) << 8) ^
((word32)GetTable8(Tsbox, GETBYTE(s2, 0)));
s0 = t0 ^ rk[0];
s1 = t1 ^ rk[1];
s2 = t2 ^ rk[2];
s3 = t3 ^ rk[3];
#endif
/* write out */
#ifdef LITTLE_ENDIAN_ORDER
s0 = ByteReverseWord32(s0);
s1 = ByteReverseWord32(s1);
s2 = ByteReverseWord32(s2);
s3 = ByteReverseWord32(s3);
#endif
XMEMCPY(outBlock, &s0, sizeof(s0));
XMEMCPY(outBlock + sizeof(s0), &s1, sizeof(s1));
XMEMCPY(outBlock + 2 * sizeof(s0), &s2, sizeof(s2));
XMEMCPY(outBlock + 3 * sizeof(s0), &s3, sizeof(s3));
}
#if defined(HAVE_AES_ECB) && !(defined(WOLFSSL_IMX6_CAAM) && \
!defined(NO_IMX6_CAAM_AES) && !defined(WOLFSSL_QNX_CAAM))
/* Encrypt a number of blocks using AES.
*
* @param [in] aes AES object.
* @param [in] in Block to encrypt.
* @param [out] out Encrypted block.
* @param [in] sz Number of blocks to encrypt.
*/
static void AesEncryptBlocks_C(Aes* aes, const byte* in, byte* out, word32 sz)
{
word32 i;
for (i = 0; i < sz; i += AES_BLOCK_SIZE) {
AesEncrypt_C(aes, in, out, aes->rounds >> 1);
in += AES_BLOCK_SIZE;
out += AES_BLOCK_SIZE;
}
}
#endif
#else
extern void AesEncrypt_C(Aes* aes, const byte* inBlock, byte* outBlock,
word32 r);
extern void AesEncryptBlocks_C(Aes* aes, const byte* in, byte* out, word32 sz);
#endif /* HAVE_CUDA */
#else
/* Bit-sliced implementation based on work by "circuit minimization team" (CMT):
* http://cs-www.cs.yale.edu/homes/peralta/CircuitStuff/CMT.html
*/
/* http://cs-www.cs.yale.edu/homes/peralta/CircuitStuff/SLP_AES_113.txt */
static void bs_sub_bytes(bs_word u[8])
{
bs_word y1, y2, y3, y4, y5, y6, y7, y8, y9;
bs_word y10, y11, y12, y13, y14, y15, y16, y17, y18, y19;
bs_word y20, y21;
bs_word t0, t1, t2, t3, t4, t5, t6, t7, t8, t9;
bs_word t10, t11, t12, t13, t14, t15, t16, t17, t18, t19;
bs_word t20, t21, t22, t23, t24, t25, t26, t27, t28, t29;
bs_word t30, t31, t32, t33, t34, t35, t36, t37, t38, t39;
bs_word t40, t41, t42, t43, t44, t45;
bs_word z0, z1, z2, z3, z4, z5, z6, z7, z8, z9;
bs_word z10, z11, z12, z13, z14, z15, z16, z17;
bs_word tc1, tc2, tc3, tc4, tc5, tc6, tc7, tc8, tc9;
bs_word tc10, tc11, tc12, tc13, tc14, tc16, tc17, tc18;
bs_word tc20, tc21, tc26;
bs_word U0, U1, U2, U3, U4, U5, U6, U7;
bs_word S0, S1, S2, S3, S4, S5, S6, S7;
U0 = u[7];
U1 = u[6];
U2 = u[5];
U3 = u[4];
U4 = u[3];
U5 = u[2];
U6 = u[1];
U7 = u[0];
y14 = U3 ^ U5;
y13 = U0 ^ U6;
y9 = U0 ^ U3;
y8 = U0 ^ U5;
t0 = U1 ^ U2;
y1 = t0 ^ U7;
y4 = y1 ^ U3;
y12 = y13 ^ y14;
y2 = y1 ^ U0;
y5 = y1 ^ U6;
y3 = y5 ^ y8;
t1 = U4 ^ y12;
y15 = t1 ^ U5;
y20 = t1 ^ U1;
y6 = y15 ^ U7;
y10 = y15 ^ t0;
y11 = y20 ^ y9;
y7 = U7 ^ y11;
y17 = y10 ^ y11;
y19 = y10 ^ y8;
y16 = t0 ^ y11;
y21 = y13 ^ y16;
y18 = U0 ^ y16;
t2 = y12 & y15;
t3 = y3 & y6;
t4 = t3 ^ t2;
t5 = y4 & U7;
t6 = t5 ^ t2;
t7 = y13 & y16;
t8 = y5 & y1;
t9 = t8 ^ t7;
t10 = y2 & y7;
t11 = t10 ^ t7;
t12 = y9 & y11;
t13 = y14 & y17;
t14 = t13 ^ t12;
t15 = y8 & y10;
t16 = t15 ^ t12;
t17 = t4 ^ y20;
t18 = t6 ^ t16;
t19 = t9 ^ t14;
t20 = t11 ^ t16;
t21 = t17 ^ t14;
t22 = t18 ^ y19;
t23 = t19 ^ y21;
t24 = t20 ^ y18;
t25 = t21 ^ t22;
t26 = t21 & t23;
t27 = t24 ^ t26;
t28 = t25 & t27;
t29 = t28 ^ t22;
t30 = t23 ^ t24;
t31 = t22 ^ t26;
t32 = t31 & t30;
t33 = t32 ^ t24;
t34 = t23 ^ t33;
t35 = t27 ^ t33;
t36 = t24 & t35;
t37 = t36 ^ t34;
t38 = t27 ^ t36;
t39 = t29 & t38;
t40 = t25 ^ t39;
t41 = t40 ^ t37;
t42 = t29 ^ t33;
t43 = t29 ^ t40;
t44 = t33 ^ t37;
t45 = t42 ^ t41;
z0 = t44 & y15;
z1 = t37 & y6;
z2 = t33 & U7;
z3 = t43 & y16;
z4 = t40 & y1;
z5 = t29 & y7;
z6 = t42 & y11;
z7 = t45 & y17;
z8 = t41 & y10;
z9 = t44 & y12;
z10 = t37 & y3;
z11 = t33 & y4;
z12 = t43 & y13;
z13 = t40 & y5;
z14 = t29 & y2;
z15 = t42 & y9;
z16 = t45 & y14;
z17 = t41 & y8;
tc1 = z15 ^ z16;
tc2 = z10 ^ tc1;
tc3 = z9 ^ tc2;
tc4 = z0 ^ z2;
tc5 = z1 ^ z0;
tc6 = z3 ^ z4;
tc7 = z12 ^ tc4;
tc8 = z7 ^ tc6;
tc9 = z8 ^ tc7;
tc10 = tc8 ^ tc9;
tc11 = tc6 ^ tc5;
tc12 = z3 ^ z5;
tc13 = z13 ^ tc1;
tc14 = tc4 ^ tc12;
S3 = tc3 ^ tc11;
tc16 = z6 ^ tc8;
tc17 = z14 ^ tc10;
tc18 = tc13 ^ tc14;
S7 = ~(z12 ^ tc18);
tc20 = z15 ^ tc16;
tc21 = tc2 ^ z11;
S0 = tc3 ^ tc16;
S6 = ~(tc10 ^ tc18);
S4 = tc14 ^ S3;
S1 = ~(S3 ^ tc16);
tc26 = tc17 ^ tc20;
S2 = ~(tc26 ^ z17);
S5 = tc21 ^ tc17;
u[0] = S7;
u[1] = S6;
u[2] = S5;
u[3] = S4;
u[4] = S3;
u[5] = S2;
u[6] = S1;
u[7] = S0;
}
#define BS_MASK_BIT_SET(w, j, bmask) \
(((bs_word)0 - (((w) >> (j)) & (bs_word)1)) & (bmask))
#define BS_TRANS_8(t, o, w, bmask, s) \
t[o + s + 0] |= BS_MASK_BIT_SET(w, s + 0, bmask); \
t[o + s + 1] |= BS_MASK_BIT_SET(w, s + 1, bmask); \
t[o + s + 2] |= BS_MASK_BIT_SET(w, s + 2, bmask); \
t[o + s + 3] |= BS_MASK_BIT_SET(w, s + 3, bmask); \
t[o + s + 4] |= BS_MASK_BIT_SET(w, s + 4, bmask); \
t[o + s + 5] |= BS_MASK_BIT_SET(w, s + 5, bmask); \
t[o + s + 6] |= BS_MASK_BIT_SET(w, s + 6, bmask); \
t[o + s + 7] |= BS_MASK_BIT_SET(w, s + 7, bmask)
static void bs_transpose(bs_word* t, bs_word* blocks)
{
bs_word bmask = 1;
int i;
XMEMSET(t, 0, sizeof(bs_word) * AES_BLOCK_BITS);
for (i = 0; i < BS_WORD_SIZE; i++) {
int j;
int o = 0;
for (j = 0; j < BS_BLOCK_WORDS; j++) {
#ifdef LITTLE_ENDIAN_ORDER
bs_word w = blocks[i * BS_BLOCK_WORDS + j];
#else
bs_word w = bs_bswap(blocks[i * BS_BLOCK_WORDS + j]);
#endif
#ifdef WOLFSSL_AES_NO_UNROLL
int k;
for (k = 0; k < BS_WORD_SIZE; k++) {
t[o + k] |= BS_MASK_BIT_SET(w, k, bmask);
}
#else
BS_TRANS_8(t, o, w, bmask, 0);
#if BS_WORD_SIZE >= 16
BS_TRANS_8(t, o, w, bmask, 8);
#endif
#if BS_WORD_SIZE >= 32
BS_TRANS_8(t, o, w, bmask, 16);
BS_TRANS_8(t, o, w, bmask, 24);
#endif
#if BS_WORD_SIZE >= 64
BS_TRANS_8(t, o, w, bmask, 32);
BS_TRANS_8(t, o, w, bmask, 40);
BS_TRANS_8(t, o, w, bmask, 48);
BS_TRANS_8(t, o, w, bmask, 56);
#endif
#endif
o += BS_WORD_SIZE;
}
bmask <<= 1;
}
}
#define BS_INV_TRANS_8(t, o, w, bmask, s) \
t[o + (s + 0) * BS_BLOCK_WORDS] |= BS_MASK_BIT_SET(w, s + 0, bmask); \
t[o + (s + 1) * BS_BLOCK_WORDS] |= BS_MASK_BIT_SET(w, s + 1, bmask); \
t[o + (s + 2) * BS_BLOCK_WORDS] |= BS_MASK_BIT_SET(w, s + 2, bmask); \
t[o + (s + 3) * BS_BLOCK_WORDS] |= BS_MASK_BIT_SET(w, s + 3, bmask); \
t[o + (s + 4) * BS_BLOCK_WORDS] |= BS_MASK_BIT_SET(w, s + 4, bmask); \
t[o + (s + 5) * BS_BLOCK_WORDS] |= BS_MASK_BIT_SET(w, s + 5, bmask); \
t[o + (s + 6) * BS_BLOCK_WORDS] |= BS_MASK_BIT_SET(w, s + 6, bmask); \
t[o + (s + 7) * BS_BLOCK_WORDS] |= BS_MASK_BIT_SET(w, s + 7, bmask)
static void bs_inv_transpose(bs_word* t, bs_word* blocks)
{
int o;
XMEMSET(t, 0, sizeof(bs_word) * AES_BLOCK_BITS);
for (o = 0; o < BS_BLOCK_WORDS; o++) {
int i;
for (i = 0; i < BS_WORD_SIZE; i++) {
#ifdef LITTLE_ENDIAN_ORDER
bs_word bmask = (bs_word)1 << i;
#else
bs_word bmask = bs_bswap((bs_word)1 << i);
#endif
bs_word w = blocks[(o << BS_WORD_SHIFT) + i];
#ifdef WOLFSSL_AES_NO_UNROLL
int j;
for (j = 0; j < BS_WORD_SIZE; j++) {
t[j * BS_BLOCK_WORDS + o] |= BS_MASK_BIT_SET(w, j, bmask);
}
#else
BS_INV_TRANS_8(t, o, w, bmask, 0);
#if BS_WORD_SIZE >= 16
BS_INV_TRANS_8(t, o, w, bmask, 8);
#endif
#if BS_WORD_SIZE >= 32
BS_INV_TRANS_8(t, o, w, bmask, 16);
BS_INV_TRANS_8(t, o, w, bmask, 24);
#endif
#if BS_WORD_SIZE >= 64
BS_INV_TRANS_8(t, o, w, bmask, 32);
BS_INV_TRANS_8(t, o, w, bmask, 40);
BS_INV_TRANS_8(t, o, w, bmask, 48);
BS_INV_TRANS_8(t, o, w, bmask, 56);
#endif
#endif
}
}
}
#define BS_ROW_OFF_0 0
#define BS_ROW_OFF_1 32
#define BS_ROW_OFF_2 64
#define BS_ROW_OFF_3 96
#define BS_ROW_ADD (AES_BLOCK_BITS / 16 + AES_BLOCK_BITS / 4)
#define BS_IDX_MASK 0x7f
#define BS_ASSIGN_8(d, od, s, os) \
d[(od) + 0] = s[(os) + 0]; \
d[(od) + 1] = s[(os) + 1]; \
d[(od) + 2] = s[(os) + 2]; \
d[(od) + 3] = s[(os) + 3]; \
d[(od) + 4] = s[(os) + 4]; \
d[(od) + 5] = s[(os) + 5]; \
d[(od) + 6] = s[(os) + 6]; \
d[(od) + 7] = s[(os) + 7]
static void bs_shift_rows(bs_word* t, bs_word* b)
{
int i;
for (i = 0; i < 128; i += 32) {
BS_ASSIGN_8(t, i + 0, b, ( 0 + i) & BS_IDX_MASK);
BS_ASSIGN_8(t, i + 8, b, ( 40 + i) & BS_IDX_MASK);
BS_ASSIGN_8(t, i + 16, b, ( 80 + i) & BS_IDX_MASK);
BS_ASSIGN_8(t, i + 24, b, (120 + i) & BS_IDX_MASK);
}
}
#define BS_SHIFT_OFF_0 0
#define BS_SHIFT_OFF_1 8
#define BS_SHIFT_OFF_2 16
#define BS_SHIFT_OFF_3 24
/* Shift rows and mix columns.
* See: See https://eprint.iacr.org/2009/129.pdf - Appendix A
*/
#define BS_SHIFT_MIX_8(t, o, br0, br1, br2, br3, of) \
of = br0[7] ^ br1[7]; \
t[o+0] = br1[0] ^ br2[0] ^ br3[0] ^ of; \
t[o+1] = br0[0] ^ br1[0] ^ br1[1] ^ br2[1] ^ br3[1] ^ of; \
t[o+2] = br0[1] ^ br1[1] ^ br1[2] ^ br2[2] ^ br3[2]; \
t[o+3] = br0[2] ^ br1[2] ^ br1[3] ^ br2[3] ^ br3[3] ^ of; \
t[o+4] = br0[3] ^ br1[3] ^ br1[4] ^ br2[4] ^ br3[4] ^ of; \
t[o+5] = br0[4] ^ br1[4] ^ br1[5] ^ br2[5] ^ br3[5]; \
t[o+6] = br0[5] ^ br1[5] ^ br1[6] ^ br2[6] ^ br3[6]; \
t[o+7] = br0[6] ^ br1[6] ^ br1[7] ^ br2[7] ^ br3[7]
static void bs_shift_mix(bs_word* t, bs_word* b)
{
int i;
word8 or0 = BS_ROW_OFF_0 + BS_SHIFT_OFF_0;
word8 or1 = BS_ROW_OFF_1 + BS_SHIFT_OFF_1;
word8 or2 = BS_ROW_OFF_2 + BS_SHIFT_OFF_2;
word8 or3 = BS_ROW_OFF_3 + BS_SHIFT_OFF_3;
for (i = 0; i < AES_BLOCK_BITS; i += AES_BLOCK_BITS / 4) {
bs_word* br0 = b + or0;
bs_word* br1 = b + or1;
bs_word* br2 = b + or2;
bs_word* br3 = b + or3;
bs_word of;
BS_SHIFT_MIX_8(t, i + 0, br0, br1, br2, br3, of);
BS_SHIFT_MIX_8(t, i + 8, br1, br2, br3, br0, of);
BS_SHIFT_MIX_8(t, i + 16, br2, br3, br0, br1, of);
BS_SHIFT_MIX_8(t, i + 24, br3, br0, br1, br2, of);
or0 = (or0 + AES_BLOCK_BITS / 4) & BS_IDX_MASK;
or1 = (or1 + AES_BLOCK_BITS / 4) & BS_IDX_MASK;
or2 = (or2 + AES_BLOCK_BITS / 4) & BS_IDX_MASK;
or3 = (or3 + AES_BLOCK_BITS / 4) & BS_IDX_MASK;
}
}
static void bs_add_round_key(bs_word* out, bs_word* b, bs_word* rk)
{
xorbufout((byte*)out, (byte*)b, (byte*)rk, BS_BLOCK_SIZE);
}
static void bs_sub_bytes_blocks(bs_word* b)
{
int i;
for (i = 0; i < AES_BLOCK_BITS; i += 8) {
bs_sub_bytes(b + i);
}
}
static const FLASH_QUALIFIER byte bs_rcon[] = {
0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1B, 0x36,
/* for 128-bit blocks, Rijndael never uses more than 10 rcon values */
};
static void bs_ke_sub_bytes(unsigned char* out, unsigned char *in) {
bs_word block[AES_BLOCK_BITS];
bs_word trans[AES_BLOCK_BITS];
XMEMSET(block, 0, sizeof(block));
XMEMCPY(block, in, 4);
bs_transpose(trans, block);
bs_sub_bytes_blocks(trans);
bs_inv_transpose(block, trans);
XMEMCPY(out, block, 4);
}
static void bs_ke_transform(unsigned char* out, unsigned char *in, word8 i) {
/* Rotate the input 8 bits to the left */
#ifdef LITTLE_ENDIAN_ORDER
*(word32*)out = rotrFixed(*(word32*)in, 8);
#else
*(word32*)out = rotlFixed(*(word32*)in, 8);
#endif
bs_ke_sub_bytes(out, out);
/* On just the first byte, add 2^i to the byte */
out[0] ^= bs_rcon[i];
}
static void bs_expand_key(unsigned char *in, word32 sz) {
unsigned char t[4];
word32 o;
word8 i = 0;
if (sz == 176) {
/* Total of 11 rounds - AES-128. */
for (o = 16; o < sz; o += 16) {
bs_ke_transform(t, in + o - 4, i);
i++;
*(word32*)(in + o + 0) = *(word32*)(in + o - 16) ^
*(word32*) t;
*(word32*)(in + o + 4) = *(word32*)(in + o - 12) ^
*(word32*)(in + o + 0);
*(word32*)(in + o + 8) = *(word32*)(in + o - 8) ^
*(word32*)(in + o + 4);
*(word32*)(in + o + 12) = *(word32*)(in + o - 4) ^
*(word32*)(in + o + 8);
}
}
else if (sz == 208) {
/* Total of 13 rounds - AES-192. */
for (o = 24; o < sz; o += 24) {
bs_ke_transform(t, in + o - 4, i);
i++;
*(word32*)(in + o + 0) = *(word32*)(in + o - 24) ^
*(word32*) t;
*(word32*)(in + o + 4) = *(word32*)(in + o - 20) ^
*(word32*)(in + o + 0);
*(word32*)(in + o + 8) = *(word32*)(in + o - 16) ^
*(word32*)(in + o + 4);
*(word32*)(in + o + 12) = *(word32*)(in + o - 12) ^
*(word32*)(in + o + 8);
*(word32*)(in + o + 16) = *(word32*)(in + o - 8) ^
*(word32*)(in + o + 12);
*(word32*)(in + o + 20) = *(word32*)(in + o - 4) ^
*(word32*)(in + o + 16);
}
}
else if (sz == 240) {
/* Total of 15 rounds - AES-256. */
for (o = 32; o < sz; o += 16) {
if ((o & 0x1f) == 0) {
bs_ke_transform(t, in + o - 4, i);
i++;
}
else {
bs_ke_sub_bytes(t, in + o - 4);
}
*(word32*)(in + o + 0) = *(word32*)(in + o - 32) ^
*(word32*) t;
*(word32*)(in + o + 4) = *(word32*)(in + o - 28) ^
*(word32*)(in + o + 0);
*(word32*)(in + o + 8) = *(word32*)(in + o - 24) ^
*(word32*)(in + o + 4);
*(word32*)(in + o + 12) = *(word32*)(in + o - 20) ^
*(word32*)(in + o + 8);
}
}
}
static void bs_set_key(bs_word* rk, const byte* key, word32 keyLen,
word32 rounds)
{
int i;
byte bs_key[15 * AES_BLOCK_SIZE];
int ksSz = (rounds + 1) * AES_BLOCK_SIZE;
bs_word block[AES_BLOCK_BITS];
/* Fist round. */
XMEMCPY(bs_key, key, keyLen);
bs_expand_key(bs_key, ksSz);
for (i = 0; i < ksSz; i += AES_BLOCK_SIZE) {
int k;
XMEMCPY(block, bs_key + i, AES_BLOCK_SIZE);
for (k = BS_BLOCK_WORDS; k < AES_BLOCK_BITS; k += BS_BLOCK_WORDS) {
int l;
for (l = 0; l < BS_BLOCK_WORDS; l++) {
block[k + l] = block[l];
}
}
bs_transpose(rk, block);
rk += AES_BLOCK_BITS;
}
}
static void bs_encrypt(bs_word* state, bs_word* rk, word32 r)
{
word32 i;
bs_word trans[AES_BLOCK_BITS];
bs_transpose(trans, state);
bs_add_round_key(trans, trans, rk);
for (i = 1; i < r; i++) {
bs_sub_bytes_blocks(trans);
bs_shift_mix(state, trans);
rk += AES_BLOCK_BITS;
bs_add_round_key(trans, state, rk);
}
bs_sub_bytes_blocks(trans);
bs_shift_rows(state, trans);
rk += AES_BLOCK_BITS;
bs_add_round_key(trans, state, rk);
bs_inv_transpose(state, trans);
}
#ifndef HAVE_CUDA
/* Encrypt a block using AES.
*
* @param [in] aes AES object.
* @param [in] inBlock Block to encrypt.
* @param [out] outBlock Encrypted block.
* @param [in] r Rounds divided by 2.
*/
static void AesEncrypt_C(Aes* aes, const byte* inBlock, byte* outBlock,
word32 r)
{
bs_word state[AES_BLOCK_BITS];
(void)r;
XMEMCPY(state, inBlock, AES_BLOCK_SIZE);
XMEMSET(((byte*)state) + AES_BLOCK_SIZE, 0, sizeof(state) - AES_BLOCK_SIZE);
bs_encrypt(state, aes->bs_key, aes->rounds);
XMEMCPY(outBlock, state, AES_BLOCK_SIZE);
}
#if defined(HAVE_AES_ECB) && !(defined(WOLFSSL_IMX6_CAAM) && \
!defined(NO_IMX6_CAAM_AES) && !defined(WOLFSSL_QNX_CAAM))
/* Encrypt a number of blocks using AES.
*
* @param [in] aes AES object.
* @param [in] in Block to encrypt.
* @param [out] out Encrypted block.
* @param [in] sz Number of blocks to encrypt.
*/
static void AesEncryptBlocks_C(Aes* aes, const byte* in, byte* out, word32 sz)
{
bs_word state[AES_BLOCK_BITS];
while (sz >= BS_BLOCK_SIZE) {
XMEMCPY(state, in, BS_BLOCK_SIZE);
bs_encrypt(state, aes->bs_key, aes->rounds);
XMEMCPY(out, state, BS_BLOCK_SIZE);
sz -= BS_BLOCK_SIZE;
in += BS_BLOCK_SIZE;
out += BS_BLOCK_SIZE;
}
if (sz > 0) {
XMEMCPY(state, in, sz);
XMEMSET(((byte*)state) + sz, 0, sizeof(state) - sz);
bs_encrypt(state, aes->bs_key, aes->rounds);
XMEMCPY(out, state, sz);
}
}
#endif
#else
extern void AesEncrypt_C(Aes* aes, const byte* inBlock, byte* outBlock,
word32 r);
extern void AesEncryptBlocks_C(Aes* aes, const byte* in, byte* out, word32 sz);
#endif /* HAVE_CUDA */
#endif /* !WC_AES_BITSLICED */
/* this section disabled with NO_AES_192 */
/* calling this one when missing NO_AES_192 */
static WARN_UNUSED_RESULT int wc_AesEncrypt(
Aes* aes, const byte* inBlock, byte* outBlock)
{
word32 r;
if (aes == NULL) {
return BAD_FUNC_ARG;
}
#ifdef WC_DEBUG_CIPHER_LIFECYCLE
{
int ret = wc_debug_CipherLifecycleCheck(aes->CipherLifecycleTag, 0);
if (ret < 0)
return ret;
}
#endif
r = aes->rounds >> 1;
if (r > 7 || r == 0) {
WOLFSSL_ERROR_VERBOSE(KEYUSAGE_E);
return KEYUSAGE_E;
}
#ifdef WOLFSSL_AESNI
if (aes->use_aesni) {
ASSERT_SAVED_VECTOR_REGISTERS();
#ifdef DEBUG_AESNI
printf("about to aes encrypt\n");
printf("in = %p\n", inBlock);
printf("out = %p\n", outBlock);
printf("aes->key = %p\n", aes->key);
printf("aes->rounds = %d\n", aes->rounds);
printf("sz = %d\n", AES_BLOCK_SIZE);
#endif
/* check alignment, decrypt doesn't need alignment */
if ((wc_ptr_t)inBlock % AESNI_ALIGN) {
#ifndef NO_WOLFSSL_ALLOC_ALIGN
byte* tmp = (byte*)XMALLOC(AES_BLOCK_SIZE + AESNI_ALIGN, aes->heap,
DYNAMIC_TYPE_TMP_BUFFER);
byte* tmp_align;
if (tmp == NULL)
return MEMORY_E;
tmp_align = tmp + (AESNI_ALIGN - ((wc_ptr_t)tmp % AESNI_ALIGN));
XMEMCPY(tmp_align, inBlock, AES_BLOCK_SIZE);
AES_ECB_encrypt_AESNI(tmp_align, tmp_align, AES_BLOCK_SIZE,
(byte*)aes->key, (int)aes->rounds);
XMEMCPY(outBlock, tmp_align, AES_BLOCK_SIZE);
XFREE(tmp, aes->heap, DYNAMIC_TYPE_TMP_BUFFER);
return 0;
#else
WOLFSSL_MSG("AES-ECB encrypt with bad alignment");
WOLFSSL_ERROR_VERBOSE(BAD_ALIGN_E);
return BAD_ALIGN_E;
#endif
}
AES_ECB_encrypt_AESNI(inBlock, outBlock, AES_BLOCK_SIZE, (byte*)aes->key,
(int)aes->rounds);
return 0;
}
else {
#ifdef DEBUG_AESNI
printf("Skipping AES-NI\n");
#endif
}
#endif /* WOLFSSL_AESNI */
#if defined(WOLFSSL_SCE) && !defined(WOLFSSL_SCE_NO_AES)
AES_ECB_encrypt(aes, inBlock, outBlock, AES_BLOCK_SIZE);
return 0;
#endif
#if defined(WOLFSSL_IMXRT_DCP)
if (aes->keylen == 16) {
DCPAesEcbEncrypt(aes, outBlock, inBlock, AES_BLOCK_SIZE);
return 0;
}
#endif
#if defined(WOLFSSL_SE050) && defined(WOLFSSL_SE050_CRYPT)
if (aes->useSWCrypt == 0) {
return se050_aes_crypt(aes, inBlock, outBlock, AES_BLOCK_SIZE,
AES_ENCRYPTION, kAlgorithm_SSS_AES_ECB);
}
#endif
#if defined(WOLFSSL_ESPIDF) && defined(NEED_AES_HW_FALLBACK)
ESP_LOGV(TAG, "wc_AesEncrypt fallback check");
if (wc_esp32AesSupportedKeyLen(aes)) {
return wc_esp32AesEncrypt(aes, inBlock, outBlock);
}
else {
/* For example, the ESP32-S3 does not support HW for len = 24,
* so fall back to SW */
#ifdef DEBUG_WOLFSSL
ESP_LOGW(TAG, "wc_AesEncrypt HW Falling back, unsupported keylen = %d",
aes->keylen);
#endif
}
#endif
AesEncrypt_C(aes, inBlock, outBlock, r);
return 0;
} /* wc_AesEncrypt */
#endif /* HAVE_AES_CBC || WOLFSSL_AES_DIRECT || HAVE_AESGCM */
#if defined(HAVE_AES_DECRYPT)
#if (defined(HAVE_AES_CBC) && !defined(WOLFSSL_DEVCRYPTO_CBC) && \
!defined(WOLFSSL_SILABS_SE_ACCEL)) || \
defined(WOLFSSL_AES_DIRECT)
#ifndef WC_AES_BITSLICED
#ifndef WC_NO_CACHE_RESISTANT
#ifndef WOLFSSL_AES_SMALL_TABLES
/* load 4 Td Tables into cache by cache line stride */
static WARN_UNUSED_RESULT WC_INLINE word32 PreFetchTd(void)
{
word32 x = 0;
int i,j;
for (i = 0; i < 4; i++) {
/* 256 elements, each one is 4 bytes */
for (j = 0; j < 256; j += WC_CACHE_LINE_SZ/4) {
x &= Td[i][j];
}
}
return x;
}
#endif /* !WOLFSSL_AES_SMALL_TABLES */
/* load Td Table4 into cache by cache line stride */
static WARN_UNUSED_RESULT WC_INLINE word32 PreFetchTd4(void)
{
#ifndef WOLFSSL_AES_TOUCH_LINES
word32 x = 0;
int i;
for (i = 0; i < 256; i += WC_CACHE_LINE_SZ) {
x &= (word32)Td4[i];
}
return x;
#else
return 0;
#endif
}
#endif /* !WC_NO_CACHE_RESISTANT */
/* Decrypt a block using AES.
*
* @param [in] aes AES object.
* @param [in] inBlock Block to encrypt.
* @param [out] outBlock Encrypted block.
* @param [in] r Rounds divided by 2.
*/
static void AesDecrypt_C(Aes* aes, const byte* inBlock, byte* outBlock,
word32 r)
{
word32 s0, s1, s2, s3;
word32 t0, t1, t2, t3;
const word32* rk;
#ifdef WC_C_DYNAMIC_FALLBACK
rk = aes->key_C_fallback;
#else
rk = aes->key;
#endif
/*
* map byte array block to cipher state
* and add initial round key:
*/
XMEMCPY(&s0, inBlock, sizeof(s0));
XMEMCPY(&s1, inBlock + sizeof(s0), sizeof(s1));
XMEMCPY(&s2, inBlock + 2 * sizeof(s0), sizeof(s2));
XMEMCPY(&s3, inBlock + 3 * sizeof(s0), sizeof(s3));
#ifdef LITTLE_ENDIAN_ORDER
s0 = ByteReverseWord32(s0);
s1 = ByteReverseWord32(s1);
s2 = ByteReverseWord32(s2);
s3 = ByteReverseWord32(s3);
#endif
s0 ^= rk[0];
s1 ^= rk[1];
s2 ^= rk[2];
s3 ^= rk[3];
#ifndef WOLFSSL_AES_SMALL_TABLES
#ifndef WC_NO_CACHE_RESISTANT
s0 |= PreFetchTd();
#endif
#ifndef WOLFSSL_AES_TOUCH_LINES
/* Unroll the loop. */
#define DEC_ROUND_T_S(o) \
t0 = GetTable(Td[0], GETBYTE(s0, 3)) ^ GetTable(Td[1], GETBYTE(s3, 2)) ^ \
GetTable(Td[2], GETBYTE(s2, 1)) ^ GetTable(Td[3], GETBYTE(s1, 0)) ^ rk[(o)+4]; \
t1 = GetTable(Td[0], GETBYTE(s1, 3)) ^ GetTable(Td[1], GETBYTE(s0, 2)) ^ \
GetTable(Td[2], GETBYTE(s3, 1)) ^ GetTable(Td[3], GETBYTE(s2, 0)) ^ rk[(o)+5]; \
t2 = GetTable(Td[0], GETBYTE(s2, 3)) ^ GetTable(Td[1], GETBYTE(s1, 2)) ^ \
GetTable(Td[2], GETBYTE(s0, 1)) ^ GetTable(Td[3], GETBYTE(s3, 0)) ^ rk[(o)+6]; \
t3 = GetTable(Td[0], GETBYTE(s3, 3)) ^ GetTable(Td[1], GETBYTE(s2, 2)) ^ \
GetTable(Td[2], GETBYTE(s1, 1)) ^ GetTable(Td[3], GETBYTE(s0, 0)) ^ rk[(o)+7]
#define DEC_ROUND_S_T(o) \
s0 = GetTable(Td[0], GETBYTE(t0, 3)) ^ GetTable(Td[1], GETBYTE(t3, 2)) ^ \
GetTable(Td[2], GETBYTE(t2, 1)) ^ GetTable(Td[3], GETBYTE(t1, 0)) ^ rk[(o)+0]; \
s1 = GetTable(Td[0], GETBYTE(t1, 3)) ^ GetTable(Td[1], GETBYTE(t0, 2)) ^ \
GetTable(Td[2], GETBYTE(t3, 1)) ^ GetTable(Td[3], GETBYTE(t2, 0)) ^ rk[(o)+1]; \
s2 = GetTable(Td[0], GETBYTE(t2, 3)) ^ GetTable(Td[1], GETBYTE(t1, 2)) ^ \
GetTable(Td[2], GETBYTE(t0, 1)) ^ GetTable(Td[3], GETBYTE(t3, 0)) ^ rk[(o)+2]; \
s3 = GetTable(Td[0], GETBYTE(t3, 3)) ^ GetTable(Td[1], GETBYTE(t2, 2)) ^ \
GetTable(Td[2], GETBYTE(t1, 1)) ^ GetTable(Td[3], GETBYTE(t0, 0)) ^ rk[(o)+3]
#else
#define DEC_ROUND_T_S(o) \
GetTable_Multi(Td[0], &t0, GETBYTE(s0, 3), &t1, GETBYTE(s1, 3), \
&t2, GETBYTE(s2, 3), &t3, GETBYTE(s3, 3)); \
XorTable_Multi(Td[1], &t0, GETBYTE(s3, 2), &t1, GETBYTE(s0, 2), \
&t2, GETBYTE(s1, 2), &t3, GETBYTE(s2, 2)); \
XorTable_Multi(Td[2], &t0, GETBYTE(s2, 1), &t1, GETBYTE(s3, 1), \
&t2, GETBYTE(s0, 1), &t3, GETBYTE(s1, 1)); \
XorTable_Multi(Td[3], &t0, GETBYTE(s1, 0), &t1, GETBYTE(s2, 0), \
&t2, GETBYTE(s3, 0), &t3, GETBYTE(s0, 0)); \
t0 ^= rk[(o)+4]; t1 ^= rk[(o)+5]; t2 ^= rk[(o)+6]; t3 ^= rk[(o)+7];
#define DEC_ROUND_S_T(o) \
GetTable_Multi(Td[0], &s0, GETBYTE(t0, 3), &s1, GETBYTE(t1, 3), \
&s2, GETBYTE(t2, 3), &s3, GETBYTE(t3, 3)); \
XorTable_Multi(Td[1], &s0, GETBYTE(t3, 2), &s1, GETBYTE(t0, 2), \
&s2, GETBYTE(t1, 2), &s3, GETBYTE(t2, 2)); \
XorTable_Multi(Td[2], &s0, GETBYTE(t2, 1), &s1, GETBYTE(t3, 1), \
&s2, GETBYTE(t0, 1), &s3, GETBYTE(t1, 1)); \
XorTable_Multi(Td[3], &s0, GETBYTE(t1, 0), &s1, GETBYTE(t2, 0), \
&s2, GETBYTE(t3, 0), &s3, GETBYTE(t0, 0)); \
s0 ^= rk[(o)+0]; s1 ^= rk[(o)+1]; s2 ^= rk[(o)+2]; s3 ^= rk[(o)+3];
#endif
#ifndef WOLFSSL_AES_NO_UNROLL
DEC_ROUND_T_S( 0);
DEC_ROUND_S_T( 8); DEC_ROUND_T_S( 8);
DEC_ROUND_S_T(16); DEC_ROUND_T_S(16);
DEC_ROUND_S_T(24); DEC_ROUND_T_S(24);
DEC_ROUND_S_T(32); DEC_ROUND_T_S(32);
if (r > 5) {
DEC_ROUND_S_T(40); DEC_ROUND_T_S(40);
if (r > 6) {
DEC_ROUND_S_T(48); DEC_ROUND_T_S(48);
}
}
rk += r * 8;
#else
/*
* Nr - 1 full rounds:
*/
for (;;) {
DEC_ROUND_T_S(0);
rk += 8;
if (--r == 0) {
break;
}
DEC_ROUND_S_T(0);
}
#endif
/*
* apply last round and
* map cipher state to byte array block:
*/
#ifndef WC_NO_CACHE_RESISTANT
t0 |= PreFetchTd4();
#endif
s0 = GetTable8_4(Td4, GETBYTE(t0, 3), GETBYTE(t3, 2),
GETBYTE(t2, 1), GETBYTE(t1, 0)) ^ rk[0];
s1 = GetTable8_4(Td4, GETBYTE(t1, 3), GETBYTE(t0, 2),
GETBYTE(t3, 1), GETBYTE(t2, 0)) ^ rk[1];
s2 = GetTable8_4(Td4, GETBYTE(t2, 3), GETBYTE(t1, 2),
GETBYTE(t0, 1), GETBYTE(t3, 0)) ^ rk[2];
s3 = GetTable8_4(Td4, GETBYTE(t3, 3), GETBYTE(t2, 2),
GETBYTE(t1, 1), GETBYTE(t0, 0)) ^ rk[3];
#else
#ifndef WC_NO_CACHE_RESISTANT
s0 |= PreFetchTd4();
#endif
r *= 2;
for (rk += 4; r > 1; r--, rk += 4) {
t0 =
((word32)GetTable8(Td4, GETBYTE(s0, 3)) << 24) ^
((word32)GetTable8(Td4, GETBYTE(s3, 2)) << 16) ^
((word32)GetTable8(Td4, GETBYTE(s2, 1)) << 8) ^
((word32)GetTable8(Td4, GETBYTE(s1, 0))) ^
rk[0];
t1 =
((word32)GetTable8(Td4, GETBYTE(s1, 3)) << 24) ^
((word32)GetTable8(Td4, GETBYTE(s0, 2)) << 16) ^
((word32)GetTable8(Td4, GETBYTE(s3, 1)) << 8) ^
((word32)GetTable8(Td4, GETBYTE(s2, 0))) ^
rk[1];
t2 =
((word32)GetTable8(Td4, GETBYTE(s2, 3)) << 24) ^
((word32)GetTable8(Td4, GETBYTE(s1, 2)) << 16) ^
((word32)GetTable8(Td4, GETBYTE(s0, 1)) << 8) ^
((word32)GetTable8(Td4, GETBYTE(s3, 0))) ^
rk[2];
t3 =
((word32)GetTable8(Td4, GETBYTE(s3, 3)) << 24) ^
((word32)GetTable8(Td4, GETBYTE(s2, 2)) << 16) ^
((word32)GetTable8(Td4, GETBYTE(s1, 1)) << 8) ^
((word32)GetTable8(Td4, GETBYTE(s0, 0))) ^
rk[3];
s0 =
(inv_col_mul(t0, 0, 2, 1, 3) << 24) ^
(inv_col_mul(t0, 3, 1, 0, 2) << 16) ^
(inv_col_mul(t0, 2, 0, 3, 1) << 8) ^
(inv_col_mul(t0, 1, 3, 2, 0) );
s1 =
(inv_col_mul(t1, 0, 2, 1, 3) << 24) ^
(inv_col_mul(t1, 3, 1, 0, 2) << 16) ^
(inv_col_mul(t1, 2, 0, 3, 1) << 8) ^
(inv_col_mul(t1, 1, 3, 2, 0) );
s2 =
(inv_col_mul(t2, 0, 2, 1, 3) << 24) ^
(inv_col_mul(t2, 3, 1, 0, 2) << 16) ^
(inv_col_mul(t2, 2, 0, 3, 1) << 8) ^
(inv_col_mul(t2, 1, 3, 2, 0) );
s3 =
(inv_col_mul(t3, 0, 2, 1, 3) << 24) ^
(inv_col_mul(t3, 3, 1, 0, 2) << 16) ^
(inv_col_mul(t3, 2, 0, 3, 1) << 8) ^
(inv_col_mul(t3, 1, 3, 2, 0) );
}
t0 =
((word32)GetTable8(Td4, GETBYTE(s0, 3)) << 24) ^
((word32)GetTable8(Td4, GETBYTE(s3, 2)) << 16) ^
((word32)GetTable8(Td4, GETBYTE(s2, 1)) << 8) ^
((word32)GetTable8(Td4, GETBYTE(s1, 0)));
t1 =
((word32)GetTable8(Td4, GETBYTE(s1, 3)) << 24) ^
((word32)GetTable8(Td4, GETBYTE(s0, 2)) << 16) ^
((word32)GetTable8(Td4, GETBYTE(s3, 1)) << 8) ^
((word32)GetTable8(Td4, GETBYTE(s2, 0)));
t2 =
((word32)GetTable8(Td4, GETBYTE(s2, 3)) << 24) ^
((word32)GetTable8(Td4, GETBYTE(s1, 2)) << 16) ^
((word32)GetTable8(Td4, GETBYTE(s0, 1)) << 8) ^
((word32)GetTable8(Td4, GETBYTE(s3, 0)));
t3 =
((word32)GetTable8(Td4, GETBYTE(s3, 3)) << 24) ^
((word32)GetTable8(Td4, GETBYTE(s2, 2)) << 16) ^
((word32)GetTable8(Td4, GETBYTE(s1, 1)) << 8) ^
((word32)GetTable8(Td4, GETBYTE(s0, 0)));
s0 = t0 ^ rk[0];
s1 = t1 ^ rk[1];
s2 = t2 ^ rk[2];
s3 = t3 ^ rk[3];
#endif
/* write out */
#ifdef LITTLE_ENDIAN_ORDER
s0 = ByteReverseWord32(s0);
s1 = ByteReverseWord32(s1);
s2 = ByteReverseWord32(s2);
s3 = ByteReverseWord32(s3);
#endif
XMEMCPY(outBlock, &s0, sizeof(s0));
XMEMCPY(outBlock + sizeof(s0), &s1, sizeof(s1));
XMEMCPY(outBlock + 2 * sizeof(s0), &s2, sizeof(s2));
XMEMCPY(outBlock + 3 * sizeof(s0), &s3, sizeof(s3));
}
#if defined(HAVE_AES_ECB) && !(defined(WOLFSSL_IMX6_CAAM) && \
!defined(NO_IMX6_CAAM_AES) && !defined(WOLFSSL_QNX_CAAM))
/* Decrypt a number of blocks using AES.
*
* @param [in] aes AES object.
* @param [in] in Block to encrypt.
* @param [out] out Encrypted block.
* @param [in] sz Number of blocks to encrypt.
*/
static void AesDecryptBlocks_C(Aes* aes, const byte* in, byte* out, word32 sz)
{
word32 i;
for (i = 0; i < sz; i += AES_BLOCK_SIZE) {
AesDecrypt_C(aes, in, out, aes->rounds >> 1);
in += AES_BLOCK_SIZE;
out += AES_BLOCK_SIZE;
}
}
#endif
#else /* WC_AES_BITSLICED */
/* http://cs-www.cs.yale.edu/homes/peralta/CircuitStuff/Sinv.txt */
static void bs_inv_sub_bytes(bs_word u[8])
{
bs_word U0, U1, U2, U3, U4, U5, U6, U7;
bs_word Y0, Y1, Y2, Y3, Y4, Y5, Y6, Y7;
bs_word RTL0, RTL1, RTL2;
bs_word sa0, sa1;
bs_word sb0, sb1;
bs_word ab0, ab1, ab2, ab3;
bs_word ab20, ab21, ab22, ab23;
bs_word al, ah, aa, bl, bh, bb;
bs_word abcd1, abcd2, abcd3, abcd4, abcd5, abcd6;
bs_word ph11, ph12, ph13, ph01, ph02, ph03;
bs_word pl01, pl02, pl03, pl11, pl12, pl13;
bs_word r1, r2, r3, r4, r5, r6, r7, r8, r9;
bs_word rr1, rr2;
bs_word r10, r11;
bs_word cp1, cp2, cp3, cp4;
bs_word vr1, vr2, vr3;
bs_word pr1, pr2, pr3;
bs_word wr1, wr2, wr3;
bs_word qr1, qr2, qr3;
bs_word tinv1, tinv2, tinv3, tinv4, tinv5, tinv6, tinv7, tinv8, tinv9;
bs_word tinv10, tinv11, tinv12, tinv13;
bs_word t01, t02;
bs_word d0, d1, d2, d3;
bs_word dl, dd, dh;
bs_word sd0, sd1;
bs_word p0, p1, p2, p3, p4, p6, p7;
bs_word X11, X13, X14, X16, X18, X19;
bs_word S0, S1, S2, S3, S4, S5, S6, S7;
U0 = u[7];
U1 = u[6];
U2 = u[5];
U3 = u[4];
U4 = u[3];
U5 = u[2];
U6 = u[1];
U7 = u[0];
Y0 = U0 ^ U3;
Y2 = ~(U1 ^ U3);
Y4 = U0 ^ Y2;
RTL0 = U6 ^ U7;
Y1 = Y2 ^ RTL0;
Y7 = ~(U2 ^ Y1);
RTL1 = U3 ^ U4;
Y6 = ~(U7 ^ RTL1);
Y3 = Y1 ^ RTL1;
RTL2 = ~(U0 ^ U2);
Y5 = U5 ^ RTL2;
sa1 = Y0 ^ Y2;
sa0 = Y1 ^ Y3;
sb1 = Y4 ^ Y6;
sb0 = Y5 ^ Y7;
ah = Y0 ^ Y1;
al = Y2 ^ Y3;
aa = sa0 ^ sa1;
bh = Y4 ^ Y5;
bl = Y6 ^ Y7;
bb = sb0 ^ sb1;
ab20 = sa0 ^ sb0;
ab22 = al ^ bl;
ab23 = Y3 ^ Y7;
ab21 = sa1 ^ sb1;
abcd1 = ah & bh;
rr1 = Y0 & Y4;
ph11 = ab20 ^ abcd1;
t01 = Y1 & Y5;
ph01 = t01 ^ abcd1;
abcd2 = al & bl;
r1 = Y2 & Y6;
pl11 = ab22 ^ abcd2;
r2 = Y3 & Y7;
pl01 = r2 ^ abcd2;
r3 = sa0 & sb0;
vr1 = aa & bb;
pr1 = vr1 ^ r3;
wr1 = sa1 & sb1;
qr1 = wr1 ^ r3;
ab0 = ph11 ^ rr1;
ab1 = ph01 ^ ab21;
ab2 = pl11 ^ r1;
ab3 = pl01 ^ qr1;
cp1 = ab0 ^ pr1;
cp2 = ab1 ^ qr1;
cp3 = ab2 ^ pr1;
cp4 = ab3 ^ ab23;
tinv1 = cp3 ^ cp4;
tinv2 = cp3 & cp1;
tinv3 = cp2 ^ tinv2;
tinv4 = cp1 ^ cp2;
tinv5 = cp4 ^ tinv2;
tinv6 = tinv5 & tinv4;
tinv7 = tinv3 & tinv1;
d2 = cp4 ^ tinv7;
d0 = cp2 ^ tinv6;
tinv8 = cp1 & cp4;
tinv9 = tinv4 & tinv8;
tinv10 = tinv4 ^ tinv2;
d1 = tinv9 ^ tinv10;
tinv11 = cp2 & cp3;
tinv12 = tinv1 & tinv11;
tinv13 = tinv1 ^ tinv2;
d3 = tinv12 ^ tinv13;
sd1 = d1 ^ d3;
sd0 = d0 ^ d2;
dl = d0 ^ d1;
dh = d2 ^ d3;
dd = sd0 ^ sd1;
abcd3 = dh & bh;
rr2 = d3 & Y4;
t02 = d2 & Y5;
abcd4 = dl & bl;
r4 = d1 & Y6;
r5 = d0 & Y7;
r6 = sd0 & sb0;
vr2 = dd & bb;
wr2 = sd1 & sb1;
abcd5 = dh & ah;
r7 = d3 & Y0;
r8 = d2 & Y1;
abcd6 = dl & al;
r9 = d1 & Y2;
r10 = d0 & Y3;
r11 = sd0 & sa0;
vr3 = dd & aa;
wr3 = sd1 & sa1;
ph12 = rr2 ^ abcd3;
ph02 = t02 ^ abcd3;
pl12 = r4 ^ abcd4;
pl02 = r5 ^ abcd4;
pr2 = vr2 ^ r6;
qr2 = wr2 ^ r6;
p0 = ph12 ^ pr2;
p1 = ph02 ^ qr2;
p2 = pl12 ^ pr2;
p3 = pl02 ^ qr2;
ph13 = r7 ^ abcd5;
ph03 = r8 ^ abcd5;
pl13 = r9 ^ abcd6;
pl03 = r10 ^ abcd6;
pr3 = vr3 ^ r11;
qr3 = wr3 ^ r11;
p4 = ph13 ^ pr3;
S7 = ph03 ^ qr3;
p6 = pl13 ^ pr3;
p7 = pl03 ^ qr3;
S3 = p1 ^ p6;
S6 = p2 ^ p6;
S0 = p3 ^ p6;
X11 = p0 ^ p2;
S5 = S0 ^ X11;
X13 = p4 ^ p7;
X14 = X11 ^ X13;
S1 = S3 ^ X14;
X16 = p1 ^ S7;
S2 = X14 ^ X16;
X18 = p0 ^ p4;
X19 = S5 ^ X16;
S4 = X18 ^ X19;
u[0] = S7;
u[1] = S6;
u[2] = S5;
u[3] = S4;
u[4] = S3;
u[5] = S2;
u[6] = S1;
u[7] = S0;
}
static void bs_inv_shift_rows(bs_word* b)
{
bs_word t[AES_BLOCK_BITS];
int i;
for (i = 0; i < 128; i += 32) {
BS_ASSIGN_8(t, i + 0, b, ( 0 + i) & BS_IDX_MASK);
BS_ASSIGN_8(t, i + 8, b, (104 + i) & BS_IDX_MASK);
BS_ASSIGN_8(t, i + 16, b, ( 80 + i) & BS_IDX_MASK);
BS_ASSIGN_8(t, i + 24, b, ( 56 + i) & BS_IDX_MASK);
}
XMEMCPY(b, t, sizeof(t));
}
#define O0 0
#define O1 8
#define O2 16
#define O3 24
#define BS_INV_MIX_SHIFT_8(br, b, O0, O1, O2, O3, of0, of1, of2) \
of0 = b[O0+7] ^ b[O0+6] ^ b[O0+5] ^ b[O1 + 7] ^ b[O1+5] ^ \
b[O2+6] ^ b[O2+5] ^ b[O3+5]; \
of1 = b[O0+7] ^ b[O0+6] ^ b[O1+6] ^ \
b[O2+7] ^ b[O2+6] ^ b[O3+6]; \
of2 = b[O0+7] ^ b[O1+7] ^ \
b[O2+7] ^ b[O3+7]; \
\
br[0] = b[O1+0] ^ \
b[O2+0] ^ b[O3+0] ^ of0; \
br[1] = b[O0+0] ^ b[O1+0] ^ b[O1+1] ^ \
b[O2+1] ^ b[O3+1] ^ of0 ^ of1; \
br[2] = b[O0+1] ^ b[O0+0] ^ b[O1+1] ^ b[O1+2] ^ \
b[O2+2] ^ b[O2+0] ^ b[O3+2] ^ of1 ^ of2; \
br[3] = b[O0+2] ^ b[O0+1] ^ b[O0+0] ^ b[O1+0] ^ b[O1+2] ^ b[O1+3] ^ \
b[O2+3] ^ b[O2+1] ^ b[O2+0] ^ b[O3+3] ^ b[O3+0] ^ of0 ^ of2; \
br[4] = b[O0+3] ^ b[O0+2] ^ b[O0+1] ^ b[O1+1] ^ b[O1+3] ^ b[O1+4] ^ \
b[O2+4] ^ b[O2+2] ^ b[O2+1] ^ b[O3+4] ^ b[O3+1] ^ of0 ^ of1; \
br[5] = b[O0+4] ^ b[O0+3] ^ b[O0+2] ^ b[O1+2] ^ b[O1+4] ^ b[O1+5] ^ \
b[O2+5] ^ b[O2+3] ^ b[O2+2] ^ b[O3+5] ^ b[O3+2] ^ of1 ^ of2; \
br[6] = b[O0+5] ^ b[O0+4] ^ b[O0+3] ^ b[O1+3] ^ b[O1+5] ^ b[O1+6] ^ \
b[O2+6] ^ b[O2+4] ^ b[O2+3] ^ b[O3+6] ^ b[O3+3] ^ of2; \
br[7] = b[O0+6] ^ b[O0+5] ^ b[O0+4] ^ b[O1+4] ^ b[O1+6] ^ b[O1+7] ^ \
b[O2+7] ^ b[O2+5] ^ b[O2+4] ^ b[O3+7] ^ b[O3+4]
/* Inverse mix columns and shift rows. */
static void bs_inv_mix_shift(bs_word* t, bs_word* b)
{
bs_word* bp = b;
word8 or0 = BS_ROW_OFF_0 + BS_SHIFT_OFF_0;
word8 or1 = BS_ROW_OFF_1 + BS_SHIFT_OFF_1;
word8 or2 = BS_ROW_OFF_2 + BS_SHIFT_OFF_2;
word8 or3 = BS_ROW_OFF_3 + BS_SHIFT_OFF_3;
int i;
for (i = 0; i < AES_BLOCK_BITS / 4; i += AES_BLOCK_BITS / 16) {
bs_word* br;
bs_word of0;
bs_word of1;
bs_word of2;
br = t + or0;
BS_INV_MIX_SHIFT_8(br, bp, O0, O1, O2, O3, of0, of1, of2);
br = t + or1;
BS_INV_MIX_SHIFT_8(br, bp, O1, O2, O3, O0, of0, of1, of2);
br = t + or2;
BS_INV_MIX_SHIFT_8(br, bp, O2, O3, O0, O1, of0, of1, of2);
br = t + or3;
BS_INV_MIX_SHIFT_8(br, bp, O3, O0, O1, O2, of0, of1, of2);
or0 = (or0 + AES_BLOCK_BITS / 4) & BS_IDX_MASK;
or1 = (or1 + AES_BLOCK_BITS / 4) & BS_IDX_MASK;
or2 = (or2 + AES_BLOCK_BITS / 4) & BS_IDX_MASK;
or3 = (or3 + AES_BLOCK_BITS / 4) & BS_IDX_MASK;
bp += AES_BLOCK_BITS / 4;
}
}
static void bs_inv_sub_bytes_blocks(bs_word* b)
{
int i;
for (i = 0; i < AES_BLOCK_BITS; i += 8) {
bs_inv_sub_bytes(b + i);
}
}
static void bs_decrypt(bs_word* state, bs_word* rk, word32 r)
{
int i;
bs_word trans[AES_BLOCK_BITS];
bs_transpose(trans, state);
rk += r * AES_BLOCK_BITS;
bs_add_round_key(trans, trans, rk);
bs_inv_shift_rows(trans);
bs_inv_sub_bytes_blocks(trans);
rk -= AES_BLOCK_BITS;
bs_add_round_key(trans, trans, rk);
for (i = (int)r - 2; i >= 0; i--) {
bs_inv_mix_shift(state, trans);
bs_inv_sub_bytes_blocks(state);
rk -= AES_BLOCK_BITS;
bs_add_round_key(trans, state, rk);
}
bs_inv_transpose(state, trans);
}
#ifdef WOLFSSL_AES_DIRECT
/* Decrypt a block using AES.
*
* @param [in] aes AES object.
* @param [in] inBlock Block to encrypt.
* @param [out] outBlock Encrypted block.
* @param [in] r Rounds divided by 2.
*/
static void AesDecrypt_C(Aes* aes, const byte* inBlock, byte* outBlock,
word32 r)
{
bs_word state[AES_BLOCK_BITS];
(void)r;
XMEMCPY(state, inBlock, AES_BLOCK_SIZE);
XMEMSET(((byte*)state) + AES_BLOCK_SIZE, 0, sizeof(state) - AES_BLOCK_SIZE);
bs_decrypt(state, aes->bs_key, aes->rounds);
XMEMCPY(outBlock, state, AES_BLOCK_SIZE);
}
#endif
#if defined(HAVE_AES_ECB) && !(defined(WOLFSSL_IMX6_CAAM) && \
!defined(NO_IMX6_CAAM_AES) && !defined(WOLFSSL_QNX_CAAM))
/* Decrypt a number of blocks using AES.
*
* @param [in] aes AES object.
* @param [in] in Block to encrypt.
* @param [out] out Encrypted block.
* @param [in] sz Number of blocks to encrypt.
*/
static void AesDecryptBlocks_C(Aes* aes, const byte* in, byte* out, word32 sz)
{
bs_word state[AES_BLOCK_BITS];
while (sz >= BS_BLOCK_SIZE) {
XMEMCPY(state, in, BS_BLOCK_SIZE);
bs_decrypt(state, aes->bs_key, aes->rounds);
XMEMCPY(out, state, BS_BLOCK_SIZE);
sz -= BS_BLOCK_SIZE;
in += BS_BLOCK_SIZE;
out += BS_BLOCK_SIZE;
}
if (sz > 0) {
XMEMCPY(state, in, sz);
XMEMSET(((byte*)state) + sz, 0, sizeof(state) - sz);
bs_decrypt(state, aes->bs_key, aes->rounds);
XMEMCPY(out, state, sz);
}
}
#endif
#endif /* !WC_AES_BITSLICED */
#if !defined(WC_AES_BITSLICED) || defined(WOLFSSL_AES_DIRECT)
/* Software AES - ECB Decrypt */
static WARN_UNUSED_RESULT int wc_AesDecrypt(
Aes* aes, const byte* inBlock, byte* outBlock)
{
word32 r;
if (aes == NULL) {
return BAD_FUNC_ARG;
}
#ifdef WC_DEBUG_CIPHER_LIFECYCLE
{
int ret = wc_debug_CipherLifecycleCheck(aes->CipherLifecycleTag, 0);
if (ret < 0)
return ret;
}
#endif
r = aes->rounds >> 1;
if (r > 7 || r == 0) {
WOLFSSL_ERROR_VERBOSE(KEYUSAGE_E);
return KEYUSAGE_E;
}
#ifdef WOLFSSL_AESNI
if (aes->use_aesni) {
ASSERT_SAVED_VECTOR_REGISTERS();
#ifdef DEBUG_AESNI
printf("about to aes decrypt\n");
printf("in = %p\n", inBlock);
printf("out = %p\n", outBlock);
printf("aes->key = %p\n", aes->key);
printf("aes->rounds = %d\n", aes->rounds);
printf("sz = %d\n", AES_BLOCK_SIZE);
#endif
/* if input and output same will overwrite input iv */
if ((const byte*)aes->tmp != inBlock)
XMEMCPY(aes->tmp, inBlock, AES_BLOCK_SIZE);
AES_ECB_decrypt_AESNI(inBlock, outBlock, AES_BLOCK_SIZE, (byte*)aes->key,
(int)aes->rounds);
return 0;
}
else {
#ifdef DEBUG_AESNI
printf("Skipping AES-NI\n");
#endif
}
#endif /* WOLFSSL_AESNI */
#if defined(WOLFSSL_SCE) && !defined(WOLFSSL_SCE_NO_AES)
return AES_ECB_decrypt(aes, inBlock, outBlock, AES_BLOCK_SIZE);
#endif
#if defined(WOLFSSL_IMXRT_DCP)
if (aes->keylen == 16) {
DCPAesEcbDecrypt(aes, outBlock, inBlock, AES_BLOCK_SIZE);
return 0;
}
#endif
#if defined(WOLFSSL_SE050) && defined(WOLFSSL_SE050_CRYPT)
if (aes->useSWCrypt == 0) {
return se050_aes_crypt(aes, inBlock, outBlock, AES_BLOCK_SIZE,
AES_DECRYPTION, kAlgorithm_SSS_AES_ECB);
}
#endif
#if defined(WOLFSSL_ESPIDF) && defined(NEED_AES_HW_FALLBACK)
if (wc_esp32AesSupportedKeyLen(aes)) {
return wc_esp32AesDecrypt(aes, inBlock, outBlock);
}
else {
/* For example, the ESP32-S3 does not support HW for len = 24,
* so fall back to SW */
#ifdef DEBUG_WOLFSSL
ESP_LOGW(TAG, "wc_AesDecrypt HW Falling back, "
"unsupported keylen = %d", aes->keylen);
#endif
} /* else !wc_esp32AesSupportedKeyLen for ESP32 */
#endif
AesDecrypt_C(aes, inBlock, outBlock, r);
return 0;
} /* wc_AesDecrypt[_SW]() */
#endif /* !WC_AES_BITSLICED || WOLFSSL_AES_DIRECT */
#endif /* HAVE_AES_CBC || WOLFSSL_AES_DIRECT */
#endif /* HAVE_AES_DECRYPT */
#endif /* NEED_AES_TABLES */
/* wc_AesSetKey */
#if defined(STM32_CRYPTO)
int wc_AesSetKey(Aes* aes, const byte* userKey, word32 keylen,
const byte* iv, int dir)
{
word32 *rk;
(void)dir;
if (aes == NULL || (keylen != 16 &&
#ifdef WOLFSSL_AES_192
keylen != 24 &&
#endif
keylen != 32)) {
return BAD_FUNC_ARG;
}
#ifdef WC_DEBUG_CIPHER_LIFECYCLE
{
int ret = wc_debug_CipherLifecycleCheck(aes->CipherLifecycleTag, 0);
if (ret < 0)
return ret;
}
#endif
rk = aes->key;
aes->keylen = keylen;
aes->rounds = keylen/4 + 6;
XMEMCPY(rk, userKey, keylen);
#if !defined(WOLFSSL_STM32_CUBEMX) || defined(STM32_HAL_V2)
ByteReverseWords(rk, rk, keylen);
#endif
#if defined(WOLFSSL_AES_CFB) || defined(WOLFSSL_AES_COUNTER) || \
defined(WOLFSSL_AES_OFB)
aes->left = 0;
#endif
return wc_AesSetIV(aes, iv);
}
#if defined(WOLFSSL_AES_DIRECT)
int wc_AesSetKeyDirect(Aes* aes, const byte* userKey, word32 keylen,
const byte* iv, int dir)
{
return wc_AesSetKey(aes, userKey, keylen, iv, dir);
}
#endif
#elif defined(HAVE_COLDFIRE_SEC)
#if defined (HAVE_THREADX)
#include "memory_pools.h"
extern TX_BYTE_POOL mp_ncached; /* Non Cached memory pool */
#endif
#define AES_BUFFER_SIZE (AES_BLOCK_SIZE * 64)
static unsigned char *AESBuffIn = NULL;
static unsigned char *AESBuffOut = NULL;
static byte *secReg;
static byte *secKey;
static volatile SECdescriptorType *secDesc;
static wolfSSL_Mutex Mutex_AesSEC;
#define SEC_DESC_AES_CBC_ENCRYPT 0x60300010
#define SEC_DESC_AES_CBC_DECRYPT 0x60200010
extern volatile unsigned char __MBAR[];
int wc_AesSetKey(Aes* aes, const byte* userKey, word32 keylen,
const byte* iv, int dir)
{
if (AESBuffIn == NULL) {
#if defined (HAVE_THREADX)
int s1, s2, s3, s4, s5;
s5 = tx_byte_allocate(&mp_ncached,(void *)&secDesc,
sizeof(SECdescriptorType), TX_NO_WAIT);
s1 = tx_byte_allocate(&mp_ncached, (void *)&AESBuffIn,
AES_BUFFER_SIZE, TX_NO_WAIT);
s2 = tx_byte_allocate(&mp_ncached, (void *)&AESBuffOut,
AES_BUFFER_SIZE, TX_NO_WAIT);
s3 = tx_byte_allocate(&mp_ncached, (void *)&secKey,
AES_BLOCK_SIZE*2, TX_NO_WAIT);
s4 = tx_byte_allocate(&mp_ncached, (void *)&secReg,
AES_BLOCK_SIZE, TX_NO_WAIT);
if (s1 || s2 || s3 || s4 || s5)
return BAD_FUNC_ARG;
#else
#warning "Allocate non-Cache buffers"
#endif
wc_InitMutex(&Mutex_AesSEC);
}
if (!((keylen == 16) || (keylen == 24) || (keylen == 32)))
return BAD_FUNC_ARG;
if (aes == NULL)
return BAD_FUNC_ARG;
#ifdef WC_DEBUG_CIPHER_LIFECYCLE
{
int ret = wc_debug_CipherLifecycleCheck(aes->CipherLifecycleTag, 0);
if (ret < 0)
return ret;
}
#endif
aes->keylen = keylen;
aes->rounds = keylen/4 + 6;
XMEMCPY(aes->key, userKey, keylen);
if (iv)
XMEMCPY(aes->reg, iv, AES_BLOCK_SIZE);
#if defined(WOLFSSL_AES_CFB) || defined(WOLFSSL_AES_COUNTER) || \
defined(WOLFSSL_AES_OFB)
aes->left = 0;
#endif
return 0;
}
#elif defined(FREESCALE_LTC)
int wc_AesSetKeyLocal(Aes* aes, const byte* userKey, word32 keylen,
const byte* iv, int dir, int checkKeyLen)
{
if (aes == NULL)
return BAD_FUNC_ARG;
#ifdef WC_DEBUG_CIPHER_LIFECYCLE
{
int ret = wc_debug_CipherLifecycleCheck(aes->CipherLifecycleTag, 0);
if (ret < 0)
return ret;
}
#endif
if (checkKeyLen) {
if (!((keylen == 16) || (keylen == 24) || (keylen == 32)))
return BAD_FUNC_ARG;
}
(void)dir;
aes->rounds = keylen/4 + 6;
XMEMCPY(aes->key, userKey, keylen);
#if defined(WOLFSSL_AES_CFB) || defined(WOLFSSL_AES_COUNTER) || \
defined(WOLFSSL_AES_OFB)
aes->left = 0;
#endif
return wc_AesSetIV(aes, iv);
}
int wc_AesSetKey(Aes* aes, const byte* userKey, word32 keylen,
const byte* iv, int dir)
{
return wc_AesSetKeyLocal(aes, userKey, keylen, iv, dir, 1);
}
int wc_AesSetKeyDirect(Aes* aes, const byte* userKey, word32 keylen,
const byte* iv, int dir)
{
return wc_AesSetKey(aes, userKey, keylen, iv, dir);
}
#elif defined(FREESCALE_MMCAU)
int wc_AesSetKeyLocal(Aes* aes, const byte* userKey, word32 keylen,
const byte* iv, int dir, int checkKeyLen)
{
int ret;
byte* rk;
byte* tmpKey = (byte*)userKey;
int tmpKeyDynamic = 0;
word32 alignOffset = 0;
(void)dir;
if (aes == NULL)
return BAD_FUNC_ARG;
#ifdef WC_DEBUG_CIPHER_LIFECYCLE
{
int ret = wc_debug_CipherLifecycleCheck(aes->CipherLifecycleTag, 0);
if (ret < 0)
return ret;
}
#endif
if (checkKeyLen) {
if (!((keylen == 16) || (keylen == 24) || (keylen == 32)))
return BAD_FUNC_ARG;
}
rk = (byte*)aes->key;
if (rk == NULL)
return BAD_FUNC_ARG;
#if defined(WOLFSSL_AES_CFB) || defined(WOLFSSL_AES_COUNTER) || \
defined(WOLFSSL_AES_OFB)
aes->left = 0;
#endif
aes->rounds = keylen/4 + 6;
#ifdef FREESCALE_MMCAU_CLASSIC
if ((wc_ptr_t)userKey % WOLFSSL_MMCAU_ALIGNMENT) {
#ifndef NO_WOLFSSL_ALLOC_ALIGN
byte* tmp = (byte*)XMALLOC(keylen + WOLFSSL_MMCAU_ALIGNMENT,
aes->heap, DYNAMIC_TYPE_TMP_BUFFER);
if (tmp == NULL) {
return MEMORY_E;
}
alignOffset = WOLFSSL_MMCAU_ALIGNMENT -
((wc_ptr_t)tmp % WOLFSSL_MMCAU_ALIGNMENT);
tmpKey = tmp + alignOffset;
XMEMCPY(tmpKey, userKey, keylen);
tmpKeyDynamic = 1;
#else
WOLFSSL_MSG("Bad cau_aes_set_key alignment");
return BAD_ALIGN_E;
#endif
}
#endif
ret = wolfSSL_CryptHwMutexLock();
if(ret == 0) {
#ifdef FREESCALE_MMCAU_CLASSIC
cau_aes_set_key(tmpKey, keylen*8, rk);
#else
MMCAU_AES_SetKey(tmpKey, keylen, rk);
#endif
wolfSSL_CryptHwMutexUnLock();
ret = wc_AesSetIV(aes, iv);
}
if (tmpKeyDynamic == 1) {
XFREE(tmpKey - alignOffset, aes->heap, DYNAMIC_TYPE_TMP_BUFFER);
}
return ret;
}
int wc_AesSetKey(Aes* aes, const byte* userKey, word32 keylen,
const byte* iv, int dir)
{
return wc_AesSetKeyLocal(aes, userKey, keylen, iv, dir, 1);
}
int wc_AesSetKeyDirect(Aes* aes, const byte* userKey, word32 keylen,
const byte* iv, int dir)
{
return wc_AesSetKey(aes, userKey, keylen, iv, dir);
}
#elif defined(WOLFSSL_NRF51_AES)
int wc_AesSetKey(Aes* aes, const byte* userKey, word32 keylen,
const byte* iv, int dir)
{
int ret;
(void)dir;
(void)iv;
if (aes == NULL || keylen != 16)
return BAD_FUNC_ARG;
#ifdef WC_DEBUG_CIPHER_LIFECYCLE
ret = wc_debug_CipherLifecycleCheck(aes->CipherLifecycleTag, 0);
if (ret < 0)
return ret;
#endif
aes->keylen = keylen;
aes->rounds = keylen/4 + 6;
XMEMCPY(aes->key, userKey, keylen);
ret = nrf51_aes_set_key(userKey);
#if defined(WOLFSSL_AES_CFB) || defined(WOLFSSL_AES_COUNTER) || \
defined(WOLFSSL_AES_OFB)
aes->left = 0;
#endif
return ret;
}
int wc_AesSetKeyDirect(Aes* aes, const byte* userKey, word32 keylen,
const byte* iv, int dir)
{
return wc_AesSetKey(aes, userKey, keylen, iv, dir);
}
#elif defined(WOLFSSL_ESP32_CRYPT) && !defined(NO_WOLFSSL_ESP32_CRYPT_AES)
/* This is the only definition for HW only.
* but needs to be renamed when fallback needed.
* See call in wc_AesSetKey() */
int wc_AesSetKey_for_ESP32(Aes* aes, const byte* userKey, word32 keylen,
const byte* iv, int dir)
{
(void)dir;
(void)iv;
ESP_LOGV(TAG, "wc_AesSetKey_for_ESP32");
if (aes == NULL || (keylen != 16 && keylen != 24 && keylen != 32)) {
return BAD_FUNC_ARG;
}
#ifdef WC_DEBUG_CIPHER_LIFECYCLE
{
int ret = wc_debug_CipherLifecycleCheck(aes->CipherLifecycleTag, 0);
if (ret < 0)
return ret;
}
#endif
#if !defined(WOLFSSL_AES_128)
if (keylen == 16) {
return BAD_FUNC_ARG;
}
#endif
#if !defined(WOLFSSL_AES_192)
if (keylen == 24) {
return BAD_FUNC_ARG;
}
#endif
#if !defined(WOLFSSL_AES_256)
if (keylen == 32) {
return BAD_FUNC_ARG;
}
#endif
aes->keylen = keylen;
aes->rounds = keylen/4 + 6;
XMEMCPY(aes->key, userKey, keylen);
#if defined(WOLFSSL_AES_COUNTER)
aes->left = 0;
#endif
return wc_AesSetIV(aes, iv);
} /* wc_AesSetKey */
/* end #elif ESP32 */
#elif defined(WOLFSSL_CRYPTOCELL) && defined(WOLFSSL_CRYPTOCELL_AES)
int wc_AesSetKey(Aes* aes, const byte* userKey, word32 keylen, const byte* iv,
int dir)
{
SaSiError_t ret = SASI_OK;
SaSiAesIv_t iv_aes;
if (aes == NULL ||
(keylen != AES_128_KEY_SIZE &&
keylen != AES_192_KEY_SIZE &&
keylen != AES_256_KEY_SIZE)) {
return BAD_FUNC_ARG;
}
#ifdef WC_DEBUG_CIPHER_LIFECYCLE
{
int ret2 =
wc_debug_CipherLifecycleCheck(aes->CipherLifecycleTag, 0);
if (ret2 < 0)
return ret2;
}
#endif
#if defined(AES_MAX_KEY_SIZE)
if (keylen > (AES_MAX_KEY_SIZE/8)) {
return BAD_FUNC_ARG;
}
#endif
if (dir != AES_ENCRYPTION &&
dir != AES_DECRYPTION) {
return BAD_FUNC_ARG;
}
if (dir == AES_ENCRYPTION) {
aes->ctx.mode = SASI_AES_ENCRYPT;
SaSi_AesInit(&aes->ctx.user_ctx,
SASI_AES_ENCRYPT,
SASI_AES_MODE_CBC,
SASI_AES_PADDING_NONE);
}
else {
aes->ctx.mode = SASI_AES_DECRYPT;
SaSi_AesInit(&aes->ctx.user_ctx,
SASI_AES_DECRYPT,
SASI_AES_MODE_CBC,
SASI_AES_PADDING_NONE);
}
aes->keylen = keylen;
aes->rounds = keylen/4 + 6;
XMEMCPY(aes->key, userKey, keylen);
aes->ctx.key.pKey = (byte*)aes->key;
aes->ctx.key.keySize= keylen;
ret = SaSi_AesSetKey(&aes->ctx.user_ctx,
SASI_AES_USER_KEY,
&aes->ctx.key,
sizeof(aes->ctx.key));
if (ret != SASI_OK) {
return BAD_FUNC_ARG;
}
ret = wc_AesSetIV(aes, iv);
if (iv)
XMEMCPY(iv_aes, iv, AES_BLOCK_SIZE);
else
XMEMSET(iv_aes, 0, AES_BLOCK_SIZE);
ret = SaSi_AesSetIv(&aes->ctx.user_ctx, iv_aes);
if (ret != SASI_OK) {
return ret;
}
return ret;
}
#if defined(WOLFSSL_AES_DIRECT)
int wc_AesSetKeyDirect(Aes* aes, const byte* userKey, word32 keylen,
const byte* iv, int dir)
{
return wc_AesSetKey(aes, userKey, keylen, iv, dir);
}
#endif
#elif defined(WOLFSSL_IMX6_CAAM) && !defined(NO_IMX6_CAAM_AES) \
&& !defined(WOLFSSL_QNX_CAAM)
/* implemented in wolfcrypt/src/port/caam/caam_aes.c */
#elif defined(WOLFSSL_AFALG)
/* implemented in wolfcrypt/src/port/af_alg/afalg_aes.c */
#elif defined(WOLFSSL_DEVCRYPTO_AES)
/* implemented in wolfcrypt/src/port/devcrypto/devcrypto_aes.c */
#elif defined(WOLFSSL_SILABS_SE_ACCEL)
/* implemented in wolfcrypt/src/port/silabs/silabs_aes.c */
#elif defined(WOLFSSL_RENESAS_FSPSM_CRYPTONLY) && \
!defined(NO_WOLFSSL_RENESAS_FSPSM_AES)
/* implemented in wolfcrypt/src/port/renesas/renesas_fspsm_aes.c */
#else
#define NEED_SOFTWARE_AES_SETKEY
#endif
/* Either we fell though with no HW support at all,
* or perhaps there's HW support for *some* keylengths
* and we need both HW and SW. */
#ifdef NEED_SOFTWARE_AES_SETKEY
#ifdef NEED_AES_TABLES
#ifndef WC_AES_BITSLICED
/* Set the AES key and expand.
*
* @param [in] aes AES object.
* @param [in] key Block to encrypt.
* @param [in] keySz Number of bytes in key.
* @param [in] dir Direction of crypt: AES_ENCRYPTION or AES_DECRYPTION.
*/
static void AesSetKey_C(Aes* aes, const byte* key, word32 keySz, int dir)
{
#ifdef WC_C_DYNAMIC_FALLBACK
word32* rk = aes->key_C_fallback;
#else
word32* rk = aes->key;
#endif
word32 temp;
unsigned int i = 0;
XMEMCPY(rk, key, keySz);
#if defined(LITTLE_ENDIAN_ORDER) && !defined(WOLFSSL_PIC32MZ_CRYPT) && \
(!defined(WOLFSSL_ESP32_CRYPT) || defined(NO_WOLFSSL_ESP32_CRYPT_AES))
/* Always reverse words when using only SW */
{
ByteReverseWords(rk, rk, keySz);
}
#else
/* Sometimes reverse words when using supported HW */
#if defined(WOLFSSL_ESPIDF)
/* Some platforms may need SW fallback (e.g. AES192) */
#if defined(NEED_AES_HW_FALLBACK)
{
ESP_LOGV(TAG, "wc_AesEncrypt fallback check");
if (wc_esp32AesSupportedKeyLen(aes)) {
/* don't reverse for HW supported key lengths */
}
else {
ByteReverseWords(rk, rk, keySz);
}
}
#else
/* If we don't need SW fallback, don't need to reverse words. */
#endif /* NEED_AES_HW_FALLBACK */
#endif /* WOLFSSL_ESPIDF */
#endif /* LITTLE_ENDIAN_ORDER, etc */
switch (keySz) {
#if defined(AES_MAX_KEY_SIZE) && AES_MAX_KEY_SIZE >= 128 && \
defined(WOLFSSL_AES_128)
case 16:
#ifdef WOLFSSL_CHECK_MEM_ZERO
temp = (word32)-1;
wc_MemZero_Add("wc_AesSetKeyLocal temp", &temp, sizeof(temp));
#endif
while (1)
{
temp = rk[3];
rk[4] = rk[0] ^
#ifndef WOLFSSL_AES_SMALL_TABLES
(GetTable(Te[2], GETBYTE(temp, 2)) & 0xff000000) ^
(GetTable(Te[3], GETBYTE(temp, 1)) & 0x00ff0000) ^
(GetTable(Te[0], GETBYTE(temp, 0)) & 0x0000ff00) ^
(GetTable(Te[1], GETBYTE(temp, 3)) & 0x000000ff) ^
#else
((word32)GetTable8(Tsbox, GETBYTE(temp, 2)) << 24) ^
((word32)GetTable8(Tsbox, GETBYTE(temp, 1)) << 16) ^
((word32)GetTable8(Tsbox, GETBYTE(temp, 0)) << 8) ^
((word32)GetTable8(Tsbox, GETBYTE(temp, 3))) ^
#endif
rcon[i];
rk[5] = rk[1] ^ rk[4];
rk[6] = rk[2] ^ rk[5];
rk[7] = rk[3] ^ rk[6];
if (++i == 10)
break;
rk += 4;
}
break;
#endif /* 128 */
#if defined(AES_MAX_KEY_SIZE) && AES_MAX_KEY_SIZE >= 192 && \
defined(WOLFSSL_AES_192)
case 24:
#ifdef WOLFSSL_CHECK_MEM_ZERO
temp = (word32)-1;
wc_MemZero_Add("wc_AesSetKeyLocal temp", &temp, sizeof(temp));
#endif
/* for (;;) here triggers a bug in VC60 SP4 w/ Pro Pack */
while (1)
{
temp = rk[ 5];
rk[ 6] = rk[ 0] ^
#ifndef WOLFSSL_AES_SMALL_TABLES
(GetTable(Te[2], GETBYTE(temp, 2)) & 0xff000000) ^
(GetTable(Te[3], GETBYTE(temp, 1)) & 0x00ff0000) ^
(GetTable(Te[0], GETBYTE(temp, 0)) & 0x0000ff00) ^
(GetTable(Te[1], GETBYTE(temp, 3)) & 0x000000ff) ^
#else
((word32)GetTable8(Tsbox, GETBYTE(temp, 2)) << 24) ^
((word32)GetTable8(Tsbox, GETBYTE(temp, 1)) << 16) ^
((word32)GetTable8(Tsbox, GETBYTE(temp, 0)) << 8) ^
((word32)GetTable8(Tsbox, GETBYTE(temp, 3))) ^
#endif
rcon[i];
rk[ 7] = rk[ 1] ^ rk[ 6];
rk[ 8] = rk[ 2] ^ rk[ 7];
rk[ 9] = rk[ 3] ^ rk[ 8];
if (++i == 8)
break;
rk[10] = rk[ 4] ^ rk[ 9];
rk[11] = rk[ 5] ^ rk[10];
rk += 6;
}
break;
#endif /* 192 */
#if defined(AES_MAX_KEY_SIZE) && AES_MAX_KEY_SIZE >= 256 && \
defined(WOLFSSL_AES_256)
case 32:
#ifdef WOLFSSL_CHECK_MEM_ZERO
temp = (word32)-1;
wc_MemZero_Add("wc_AesSetKeyLocal temp", &temp, sizeof(temp));
#endif
while (1)
{
temp = rk[ 7];
rk[ 8] = rk[ 0] ^
#ifndef WOLFSSL_AES_SMALL_TABLES
(GetTable(Te[2], GETBYTE(temp, 2)) & 0xff000000) ^
(GetTable(Te[3], GETBYTE(temp, 1)) & 0x00ff0000) ^
(GetTable(Te[0], GETBYTE(temp, 0)) & 0x0000ff00) ^
(GetTable(Te[1], GETBYTE(temp, 3)) & 0x000000ff) ^
#else
((word32)GetTable8(Tsbox, GETBYTE(temp, 2)) << 24) ^
((word32)GetTable8(Tsbox, GETBYTE(temp, 1)) << 16) ^
((word32)GetTable8(Tsbox, GETBYTE(temp, 0)) << 8) ^
((word32)GetTable8(Tsbox, GETBYTE(temp, 3))) ^
#endif
rcon[i];
rk[ 9] = rk[ 1] ^ rk[ 8];
rk[10] = rk[ 2] ^ rk[ 9];
rk[11] = rk[ 3] ^ rk[10];
if (++i == 7)
break;
temp = rk[11];
rk[12] = rk[ 4] ^
#ifndef WOLFSSL_AES_SMALL_TABLES
(GetTable(Te[2], GETBYTE(temp, 3)) & 0xff000000) ^
(GetTable(Te[3], GETBYTE(temp, 2)) & 0x00ff0000) ^
(GetTable(Te[0], GETBYTE(temp, 1)) & 0x0000ff00) ^
(GetTable(Te[1], GETBYTE(temp, 0)) & 0x000000ff);
#else
((word32)GetTable8(Tsbox, GETBYTE(temp, 3)) << 24) ^
((word32)GetTable8(Tsbox, GETBYTE(temp, 2)) << 16) ^
((word32)GetTable8(Tsbox, GETBYTE(temp, 1)) << 8) ^
((word32)GetTable8(Tsbox, GETBYTE(temp, 0)));
#endif
rk[13] = rk[ 5] ^ rk[12];
rk[14] = rk[ 6] ^ rk[13];
rk[15] = rk[ 7] ^ rk[14];
rk += 8;
}
break;
#endif /* 256 */
} /* switch */
ForceZero(&temp, sizeof(temp));
#if defined(HAVE_AES_DECRYPT)
if (dir == AES_DECRYPTION) {
unsigned int j;
#ifdef WC_C_DYNAMIC_FALLBACK
rk = aes->key_C_fallback;
#else
rk = aes->key;
#endif
/* invert the order of the round keys: */
for (i = 0, j = 4* aes->rounds; i < j; i += 4, j -= 4) {
temp = rk[i ]; rk[i ] = rk[j ]; rk[j ] = temp;
temp = rk[i + 1]; rk[i + 1] = rk[j + 1]; rk[j + 1] = temp;
temp = rk[i + 2]; rk[i + 2] = rk[j + 2]; rk[j + 2] = temp;
temp = rk[i + 3]; rk[i + 3] = rk[j + 3]; rk[j + 3] = temp;
}
ForceZero(&temp, sizeof(temp));
#if !defined(WOLFSSL_AES_SMALL_TABLES)
/* apply the inverse MixColumn transform to all round keys but the
first and the last: */
for (i = 1; i < aes->rounds; i++) {
rk += 4;
rk[0] =
GetTable(Td[0], GetTable(Te[1], GETBYTE(rk[0], 3)) & 0xff) ^
GetTable(Td[1], GetTable(Te[1], GETBYTE(rk[0], 2)) & 0xff) ^
GetTable(Td[2], GetTable(Te[1], GETBYTE(rk[0], 1)) & 0xff) ^
GetTable(Td[3], GetTable(Te[1], GETBYTE(rk[0], 0)) & 0xff);
rk[1] =
GetTable(Td[0], GetTable(Te[1], GETBYTE(rk[1], 3)) & 0xff) ^
GetTable(Td[1], GetTable(Te[1], GETBYTE(rk[1], 2)) & 0xff) ^
GetTable(Td[2], GetTable(Te[1], GETBYTE(rk[1], 1)) & 0xff) ^
GetTable(Td[3], GetTable(Te[1], GETBYTE(rk[1], 0)) & 0xff);
rk[2] =
GetTable(Td[0], GetTable(Te[1], GETBYTE(rk[2], 3)) & 0xff) ^
GetTable(Td[1], GetTable(Te[1], GETBYTE(rk[2], 2)) & 0xff) ^
GetTable(Td[2], GetTable(Te[1], GETBYTE(rk[2], 1)) & 0xff) ^
GetTable(Td[3], GetTable(Te[1], GETBYTE(rk[2], 0)) & 0xff);
rk[3] =
GetTable(Td[0], GetTable(Te[1], GETBYTE(rk[3], 3)) & 0xff) ^
GetTable(Td[1], GetTable(Te[1], GETBYTE(rk[3], 2)) & 0xff) ^
GetTable(Td[2], GetTable(Te[1], GETBYTE(rk[3], 1)) & 0xff) ^
GetTable(Td[3], GetTable(Te[1], GETBYTE(rk[3], 0)) & 0xff);
}
#endif
}
#else
(void)dir;
#endif /* HAVE_AES_DECRYPT */
#ifdef WOLFSSL_CHECK_MEM_ZERO
wc_MemZero_Check(&temp, sizeof(temp));
#else
(void)temp;
#endif
}
#else /* WC_AES_BITSLICED */
/* Set the AES key and expand.
*
* @param [in] aes AES object.
* @param [in] key Block to encrypt.
* @param [in] keySz Number of bytes in key.
* @param [in] dir Direction of crypt: AES_ENCRYPTION or AES_DECRYPTION.
*/
static void AesSetKey_C(Aes* aes, const byte* key, word32 keySz, int dir)
{
/* No need to invert when decrypting. */
(void)dir;
bs_set_key(aes->bs_key, key, keySz, aes->rounds);
}
#endif /* WC_AES_BITSLICED */
#endif /* NEED_AES_TABLES */
#ifndef WOLFSSL_RISCV_ASM
/* Software AES - SetKey */
static WARN_UNUSED_RESULT int wc_AesSetKeyLocal(
Aes* aes, const byte* userKey, word32 keylen, const byte* iv, int dir,
int checkKeyLen)
{
int ret;
#ifdef WOLFSSL_IMX6_CAAM_BLOB
byte local[32];
word32 localSz = 32;
#endif
if (aes == NULL)
return BAD_FUNC_ARG;
#ifdef WC_DEBUG_CIPHER_LIFECYCLE
ret = wc_debug_CipherLifecycleCheck(aes->CipherLifecycleTag, 0);
if (ret < 0)
return ret;
#endif
switch (keylen) {
#if defined(AES_MAX_KEY_SIZE) && AES_MAX_KEY_SIZE >= 128 && \
defined(WOLFSSL_AES_128)
case 16:
#endif
#if defined(AES_MAX_KEY_SIZE) && AES_MAX_KEY_SIZE >= 192 && \
defined(WOLFSSL_AES_192)
case 24:
#endif
#if defined(AES_MAX_KEY_SIZE) && AES_MAX_KEY_SIZE >= 256 && \
defined(WOLFSSL_AES_256)
case 32:
#endif
break;
default:
return BAD_FUNC_ARG;
}
#ifdef WOLFSSL_MAXQ10XX_CRYPTO
if (wc_MAXQ10XX_AesSetKey(aes, userKey, keylen) != 0) {
return WC_HW_E;
}
#endif
#ifdef WOLFSSL_IMX6_CAAM_BLOB
if (keylen == (16 + WC_CAAM_BLOB_SZ) ||
keylen == (24 + WC_CAAM_BLOB_SZ) ||
keylen == (32 + WC_CAAM_BLOB_SZ)) {
if (wc_caamOpenBlob((byte*)userKey, keylen, local, &localSz) != 0) {
return BAD_FUNC_ARG;
}
/* set local values */
userKey = local;
keylen = localSz;
}
#endif
#ifdef WOLFSSL_SECO_CAAM
/* if set to use hardware than import the key */
if (aes->devId == WOLFSSL_SECO_DEVID) {
int keyGroup = 1; /* group one was chosen arbitrarily */
unsigned int keyIdOut;
byte importiv[GCM_NONCE_MID_SZ];
int importivSz = GCM_NONCE_MID_SZ;
int keyType = 0;
WC_RNG rng;
if (wc_InitRng(&rng) != 0) {
WOLFSSL_MSG("RNG init for IV failed");
return WC_HW_E;
}
if (wc_RNG_GenerateBlock(&rng, importiv, importivSz) != 0) {
WOLFSSL_MSG("Generate IV failed");
wc_FreeRng(&rng);
return WC_HW_E;
}
wc_FreeRng(&rng);
if (iv)
XMEMCPY(aes->reg, iv, AES_BLOCK_SIZE);
else
XMEMSET(aes->reg, 0, AES_BLOCK_SIZE);
switch (keylen) {
case AES_128_KEY_SIZE: keyType = CAAM_KEYTYPE_AES128; break;
case AES_192_KEY_SIZE: keyType = CAAM_KEYTYPE_AES192; break;
case AES_256_KEY_SIZE: keyType = CAAM_KEYTYPE_AES256; break;
}
keyIdOut = wc_SECO_WrapKey(0, (byte*)userKey, keylen, importiv,
importivSz, keyType, CAAM_KEY_TRANSIENT, keyGroup);
if (keyIdOut == 0) {
return WC_HW_E;
}
aes->blackKey = keyIdOut;
return 0;
}
#endif
#if defined(WOLF_CRYPTO_CB) || (defined(WOLFSSL_DEVCRYPTO) && \
(defined(WOLFSSL_DEVCRYPTO_AES) || defined(WOLFSSL_DEVCRYPTO_CBC))) || \
(defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_AES))
#ifdef WOLF_CRYPTO_CB
if (aes->devId != INVALID_DEVID)
#endif
{
if (keylen > sizeof(aes->devKey)) {
return BAD_FUNC_ARG;
}
XMEMCPY(aes->devKey, userKey, keylen);
}
#endif
if (checkKeyLen) {
if (keylen != 16 && keylen != 24 && keylen != 32) {
return BAD_FUNC_ARG;
}
#if defined(AES_MAX_KEY_SIZE) && AES_MAX_KEY_SIZE < 256
/* Check key length only when AES_MAX_KEY_SIZE doesn't allow
* all key sizes. Otherwise this condition is never true. */
if (keylen > (AES_MAX_KEY_SIZE / 8)) {
return BAD_FUNC_ARG;
}
#endif
}
#if defined(WOLFSSL_AES_CFB) || defined(WOLFSSL_AES_COUNTER) || \
defined(WOLFSSL_AES_OFB)
aes->left = 0;
#endif
aes->keylen = (int)keylen;
aes->rounds = (keylen/4) + 6;
ret = wc_AesSetIV(aes, iv);
if (ret != 0)
return ret;
#ifdef WC_C_DYNAMIC_FALLBACK
#ifdef NEED_AES_TABLES
AesSetKey_C(aes, userKey, keylen, dir);
#endif /* NEED_AES_TABLES */
#endif /* WC_C_DYNAMIC_FALLBACK */
#ifdef WOLFSSL_AESNI
aes->use_aesni = 0;
if (checkedAESNI == 0) {
haveAESNI = Check_CPU_support_AES();
checkedAESNI = 1;
}
if (haveAESNI) {
#ifdef WOLFSSL_LINUXKM
/* runtime alignment check */
if ((wc_ptr_t)&aes->key & (wc_ptr_t)0xf) {
return BAD_ALIGN_E;
}
#endif /* WOLFSSL_LINUXKM */
ret = SAVE_VECTOR_REGISTERS2();
if (ret == 0) {
if (dir == AES_ENCRYPTION)
ret = AES_set_encrypt_key_AESNI(userKey, (int)keylen * 8, aes);
#ifdef HAVE_AES_DECRYPT
else
ret = AES_set_decrypt_key_AESNI(userKey, (int)keylen * 8, aes);
#endif
RESTORE_VECTOR_REGISTERS();
if (ret == 0)
aes->use_aesni = 1;
else {
#ifdef WC_C_DYNAMIC_FALLBACK
ret = 0;
#endif
}
return ret;
} else {
#ifdef WC_C_DYNAMIC_FALLBACK
return 0;
#else
return ret;
#endif
}
}
#endif /* WOLFSSL_AESNI */
#ifdef WOLFSSL_KCAPI_AES
XMEMCPY(aes->devKey, userKey, keylen);
if (aes->init != 0) {
kcapi_cipher_destroy(aes->handle);
aes->handle = NULL;
aes->init = 0;
}
(void)dir;
#endif
if (keylen > sizeof(aes->key)) {
return BAD_FUNC_ARG;
}
#if defined(WOLFSSL_HAVE_PSA) && !defined(WOLFSSL_PSA_NO_AES)
return wc_psa_aes_set_key(aes, userKey, keylen, (uint8_t*)iv,
((psa_algorithm_t)0), dir);
#endif
#if defined(WOLFSSL_SE050) && defined(WOLFSSL_SE050_CRYPT)
/* wolfSSL HostCrypto in SE05x SDK can request to use SW crypto
* instead of SE05x crypto by setting useSWCrypt */
if (aes->useSWCrypt == 0) {
ret = se050_aes_set_key(aes, userKey, keylen, iv, dir);
if (ret == 0) {
ret = wc_AesSetIV(aes, iv);
}
return ret;
}
#endif
XMEMCPY(aes->key, userKey, keylen);
#ifndef WC_AES_BITSLICED
#if defined(LITTLE_ENDIAN_ORDER) && !defined(WOLFSSL_PIC32MZ_CRYPT) && \
(!defined(WOLFSSL_ESP32_CRYPT) || \
defined(NO_WOLFSSL_ESP32_CRYPT_AES))
/* software */
ByteReverseWords(aes->key, aes->key, keylen);
#elif defined(WOLFSSL_ESP32_CRYPT) && !defined(NO_WOLFSSL_ESP32_CRYPT_AES)
if (wc_esp32AesSupportedKeyLen(aes)) {
/* supported lengths don't get reversed */
ESP_LOGV(TAG, "wc_AesSetKeyLocal (no ByteReverseWords)");
}
else {
word32* rk = aes->key;
/* For example, the ESP32-S3 does not support HW for len = 24,
* so fall back to SW */
#ifdef DEBUG_WOLFSSL
ESP_LOGW(TAG, "wc_AesSetKeyLocal ByteReverseWords");
#endif
XMEMCPY(rk, userKey, keylen);
/* When not ESP32 HW, we need to reverse endianness */
ByteReverseWords(rk, rk, keylen);
}
#endif
#ifdef WOLFSSL_IMXRT_DCP
{
/* Implemented in wolfcrypt/src/port/nxp/dcp_port.c */
word32 temp = 0;
if (keylen == 16)
temp = DCPAesSetKey(aes, userKey, keylen, iv, dir);
if (temp != 0)
return WC_HW_E;
}
#endif
#endif /* !WC_AES_BITSLICED */
#ifdef NEED_AES_TABLES
AesSetKey_C(aes, userKey, keylen, dir);
#endif /* NEED_AES_TABLES */
#if defined(WOLFSSL_SCE) && !defined(WOLFSSL_SCE_NO_AES)
XMEMCPY((byte*)aes->key, userKey, keylen);
if (WOLFSSL_SCE_GSCE_HANDLE.p_cfg->endian_flag == CRYPTO_WORD_ENDIAN_BIG) {
ByteReverseWords(aes->key, aes->key, 32);
}
#endif
ret = wc_AesSetIV(aes, iv);
#if defined(WOLFSSL_DEVCRYPTO) && \
(defined(WOLFSSL_DEVCRYPTO_AES) || defined(WOLFSSL_DEVCRYPTO_CBC))
aes->ctx.cfd = -1;
#endif
#ifdef WOLFSSL_IMX6_CAAM_BLOB
ForceZero(local, sizeof(local));
#endif
return ret;
} /* wc_AesSetKeyLocal */
int wc_AesSetKey(Aes* aes, const byte* userKey, word32 keylen,
const byte* iv, int dir)
{
if (aes == NULL) {
return BAD_FUNC_ARG;
}
if (keylen > sizeof(aes->key)) {
return BAD_FUNC_ARG;
}
/* sometimes hardware may not support all keylengths (e.g. ESP32-S3) */
#if defined(WOLFSSL_ESPIDF) && defined(NEED_AES_HW_FALLBACK)
ESP_LOGV(TAG, "wc_AesSetKey fallback check %d", keylen);
if (wc_esp32AesSupportedKeyLenValue(keylen)) {
ESP_LOGV(TAG, "wc_AesSetKey calling wc_AesSetKey_for_ESP32");
return wc_AesSetKey_for_ESP32(aes, userKey, keylen, iv, dir);
}
else {
#if defined(WOLFSSL_HW_METRICS)
/* It is interesting to know how many times we could not complete
* AES in hardware due to unsupported lengths. */
wc_esp32AesUnupportedLengthCountAdd();
#endif
#ifdef DEBUG_WOLFSSL
ESP_LOGW(TAG, "wc_AesSetKey HW Fallback, unsupported keylen = %d",
keylen);
#endif
}
#endif /* WOLFSSL_ESPIDF && NEED_AES_HW_FALLBACK */
return wc_AesSetKeyLocal(aes, userKey, keylen, iv, dir, 1);
} /* wc_AesSetKey() */
#endif
#if defined(WOLFSSL_AES_DIRECT) || defined(WOLFSSL_AES_COUNTER)
/* AES-CTR and AES-DIRECT need to use this for key setup */
/* This function allows key sizes that are not 128/192/256 bits */
int wc_AesSetKeyDirect(Aes* aes, const byte* userKey, word32 keylen,
const byte* iv, int dir)
{
if (aes == NULL) {
return BAD_FUNC_ARG;
}
if (keylen > sizeof(aes->key)) {
return BAD_FUNC_ARG;
}
return wc_AesSetKeyLocal(aes, userKey, keylen, iv, dir, 0);
}
#endif /* WOLFSSL_AES_DIRECT || WOLFSSL_AES_COUNTER */
#endif /* wc_AesSetKey block */
/* wc_AesSetIV is shared between software and hardware */
int wc_AesSetIV(Aes* aes, const byte* iv)
{
if (aes == NULL)
return BAD_FUNC_ARG;
#ifdef WC_DEBUG_CIPHER_LIFECYCLE
{
int ret = wc_debug_CipherLifecycleCheck(aes->CipherLifecycleTag, 0);
if (ret < 0)
return ret;
}
#endif
if (iv)
XMEMCPY(aes->reg, iv, AES_BLOCK_SIZE);
else
XMEMSET(aes->reg, 0, AES_BLOCK_SIZE);
#if defined(WOLFSSL_AES_COUNTER) || defined(WOLFSSL_AES_CFB) || \
defined(WOLFSSL_AES_OFB) || defined(WOLFSSL_AES_XTS)
/* Clear any unused bytes from last cipher op. */
aes->left = 0;
#endif
return 0;
}
#ifdef WOLFSSL_AESNI
#ifdef WC_C_DYNAMIC_FALLBACK
#define VECTOR_REGISTERS_PUSH { \
int orig_use_aesni = aes->use_aesni; \
if (aes->use_aesni && (SAVE_VECTOR_REGISTERS2() != 0)) { \
aes->use_aesni = 0; \
} \
WC_DO_NOTHING
#define VECTOR_REGISTERS_POP \
if (aes->use_aesni) \
RESTORE_VECTOR_REGISTERS(); \
else \
aes->use_aesni = orig_use_aesni; \
} \
WC_DO_NOTHING
#else
#define VECTOR_REGISTERS_PUSH { \
if (aes->use_aesni && ((ret = SAVE_VECTOR_REGISTERS2()) != 0)) { \
return ret; \
} \
WC_DO_NOTHING
#define VECTOR_REGISTERS_POP \
if (aes->use_aesni) { \
RESTORE_VECTOR_REGISTERS(); \
} \
} \
WC_DO_NOTHING
#endif
#else /* !WOLFSSL_AESNI */
#define VECTOR_REGISTERS_PUSH { WC_DO_NOTHING
#define VECTOR_REGISTERS_POP } WC_DO_NOTHING
#endif /* !WOLFSSL_AESNI */
/* AES-DIRECT */
#if defined(WOLFSSL_AES_DIRECT)
#if defined(HAVE_COLDFIRE_SEC)
#error "Coldfire SEC doesn't yet support AES direct"
#elif defined(WOLFSSL_IMX6_CAAM) && !defined(NO_IMX6_CAAM_AES) && \
!defined(WOLFSSL_QNX_CAAM)
/* implemented in wolfcrypt/src/port/caam/caam_aes.c */
#elif defined(WOLFSSL_AFALG)
/* implemented in wolfcrypt/src/port/af_alg/afalg_aes.c */
#elif defined(WOLFSSL_DEVCRYPTO_AES)
/* implemented in wolfcrypt/src/port/devcrypt/devcrypto_aes.c */
#else
/* Allow direct access to one block encrypt */
int wc_AesEncryptDirect(Aes* aes, byte* out, const byte* in)
{
int ret;
if (aes == NULL)
return BAD_FUNC_ARG;
VECTOR_REGISTERS_PUSH;
ret = wc_AesEncrypt(aes, in, out);
VECTOR_REGISTERS_POP;
return ret;
}
/* vector reg save/restore is explicit in all below calls to
* wc_Aes{En,De}cryptDirect(), so bypass the public version with a
* macro.
*/
#define wc_AesEncryptDirect(aes, out, in) wc_AesEncrypt(aes, in, out)
#ifdef HAVE_AES_DECRYPT
/* Allow direct access to one block decrypt */
int wc_AesDecryptDirect(Aes* aes, byte* out, const byte* in)
{
int ret;
if (aes == NULL)
return BAD_FUNC_ARG;
VECTOR_REGISTERS_PUSH;
ret = wc_AesDecrypt(aes, in, out);
VECTOR_REGISTERS_POP;
return ret;
}
#define wc_AesDecryptDirect(aes, out, in) wc_AesDecrypt(aes, in, out)
#endif /* HAVE_AES_DECRYPT */
#endif /* AES direct block */
#endif /* WOLFSSL_AES_DIRECT */
/* AES-CBC */
#ifdef HAVE_AES_CBC
#if defined(STM32_CRYPTO)
#ifdef WOLFSSL_STM32_CUBEMX
int wc_AesCbcEncrypt(Aes* aes, byte* out, const byte* in, word32 sz)
{
int ret = 0;
CRYP_HandleTypeDef hcryp;
word32 blocks = (sz / AES_BLOCK_SIZE);
#ifdef WOLFSSL_AES_CBC_LENGTH_CHECKS
if (sz % AES_BLOCK_SIZE) {
return BAD_LENGTH_E;
}
#endif
if (blocks == 0)
return 0;
ret = wc_Stm32_Aes_Init(aes, &hcryp);
if (ret != 0)
return ret;
ret = wolfSSL_CryptHwMutexLock();
if (ret != 0) {
return ret;
}
#if defined(STM32_HAL_V2)
hcryp.Init.Algorithm = CRYP_AES_CBC;
ByteReverseWords(aes->reg, aes->reg, AES_BLOCK_SIZE);
#elif defined(STM32_CRYPTO_AES_ONLY)
hcryp.Init.OperatingMode = CRYP_ALGOMODE_ENCRYPT;
hcryp.Init.ChainingMode = CRYP_CHAINMODE_AES_CBC;
hcryp.Init.KeyWriteFlag = CRYP_KEY_WRITE_ENABLE;
#endif
hcryp.Init.pInitVect = (STM_CRYPT_TYPE*)aes->reg;
HAL_CRYP_Init(&hcryp);
#if defined(STM32_HAL_V2)
ret = HAL_CRYP_Encrypt(&hcryp, (uint32_t*)in, blocks * AES_BLOCK_SIZE,
(uint32_t*)out, STM32_HAL_TIMEOUT);
#elif defined(STM32_CRYPTO_AES_ONLY)
ret = HAL_CRYPEx_AES(&hcryp, (uint8_t*)in, blocks * AES_BLOCK_SIZE,
out, STM32_HAL_TIMEOUT);
#else
ret = HAL_CRYP_AESCBC_Encrypt(&hcryp, (uint8_t*)in,
blocks * AES_BLOCK_SIZE,
out, STM32_HAL_TIMEOUT);
#endif
if (ret != HAL_OK) {
ret = WC_TIMEOUT_E;
}
/* store iv for next call */
XMEMCPY(aes->reg, out + sz - AES_BLOCK_SIZE, AES_BLOCK_SIZE);
HAL_CRYP_DeInit(&hcryp);
wolfSSL_CryptHwMutexUnLock();
wc_Stm32_Aes_Cleanup();
return ret;
}
#ifdef HAVE_AES_DECRYPT
int wc_AesCbcDecrypt(Aes* aes, byte* out, const byte* in, word32 sz)
{
int ret = 0;
CRYP_HandleTypeDef hcryp;
word32 blocks = (sz / AES_BLOCK_SIZE);
#ifdef WOLFSSL_AES_CBC_LENGTH_CHECKS
if (sz % AES_BLOCK_SIZE) {
return BAD_LENGTH_E;
}
#endif
if (blocks == 0)
return 0;
ret = wc_Stm32_Aes_Init(aes, &hcryp);
if (ret != 0)
return ret;
ret = wolfSSL_CryptHwMutexLock();
if (ret != 0) {
return ret;
}
/* if input and output same will overwrite input iv */
XMEMCPY(aes->tmp, in + sz - AES_BLOCK_SIZE, AES_BLOCK_SIZE);
#if defined(STM32_HAL_V2)
hcryp.Init.Algorithm = CRYP_AES_CBC;
ByteReverseWords(aes->reg, aes->reg, AES_BLOCK_SIZE);
#elif defined(STM32_CRYPTO_AES_ONLY)
hcryp.Init.OperatingMode = CRYP_ALGOMODE_KEYDERIVATION_DECRYPT;
hcryp.Init.ChainingMode = CRYP_CHAINMODE_AES_CBC;
hcryp.Init.KeyWriteFlag = CRYP_KEY_WRITE_ENABLE;
#endif
hcryp.Init.pInitVect = (STM_CRYPT_TYPE*)aes->reg;
HAL_CRYP_Init(&hcryp);
#if defined(STM32_HAL_V2)
ret = HAL_CRYP_Decrypt(&hcryp, (uint32_t*)in, blocks * AES_BLOCK_SIZE,
(uint32_t*)out, STM32_HAL_TIMEOUT);
#elif defined(STM32_CRYPTO_AES_ONLY)
ret = HAL_CRYPEx_AES(&hcryp, (uint8_t*)in, blocks * AES_BLOCK_SIZE,
out, STM32_HAL_TIMEOUT);
#else
ret = HAL_CRYP_AESCBC_Decrypt(&hcryp, (uint8_t*)in,
blocks * AES_BLOCK_SIZE,
out, STM32_HAL_TIMEOUT);
#endif
if (ret != HAL_OK) {
ret = WC_TIMEOUT_E;
}
/* store iv for next call */
XMEMCPY(aes->reg, aes->tmp, AES_BLOCK_SIZE);
HAL_CRYP_DeInit(&hcryp);
wolfSSL_CryptHwMutexUnLock();
wc_Stm32_Aes_Cleanup();
return ret;
}
#endif /* HAVE_AES_DECRYPT */
#else /* Standard Peripheral Library */
int wc_AesCbcEncrypt(Aes* aes, byte* out, const byte* in, word32 sz)
{
int ret;
word32 *iv;
CRYP_InitTypeDef cryptInit;
CRYP_KeyInitTypeDef keyInit;
CRYP_IVInitTypeDef ivInit;
word32 blocks = (sz / AES_BLOCK_SIZE);
#ifdef WOLFSSL_AES_CBC_LENGTH_CHECKS
if (sz % AES_BLOCK_SIZE) {
return BAD_LENGTH_E;
}
#endif
if (blocks == 0)
return 0;
ret = wc_Stm32_Aes_Init(aes, &cryptInit, &keyInit);
if (ret != 0)
return ret;
ret = wolfSSL_CryptHwMutexLock();
if (ret != 0) {
return ret;
}
/* reset registers to their default values */
CRYP_DeInit();
/* set key */
CRYP_KeyInit(&keyInit);
/* set iv */
iv = aes->reg;
CRYP_IVStructInit(&ivInit);
ByteReverseWords(iv, iv, AES_BLOCK_SIZE);
ivInit.CRYP_IV0Left = iv[0];
ivInit.CRYP_IV0Right = iv[1];
ivInit.CRYP_IV1Left = iv[2];
ivInit.CRYP_IV1Right = iv[3];
CRYP_IVInit(&ivInit);
/* set direction and mode */
cryptInit.CRYP_AlgoDir = CRYP_AlgoDir_Encrypt;
cryptInit.CRYP_AlgoMode = CRYP_AlgoMode_AES_CBC;
CRYP_Init(&cryptInit);
/* enable crypto processor */
CRYP_Cmd(ENABLE);
while (blocks--) {
/* flush IN/OUT FIFOs */
CRYP_FIFOFlush();
CRYP_DataIn(*(uint32_t*)&in[0]);
CRYP_DataIn(*(uint32_t*)&in[4]);
CRYP_DataIn(*(uint32_t*)&in[8]);
CRYP_DataIn(*(uint32_t*)&in[12]);
/* wait until the complete message has been processed */
while (CRYP_GetFlagStatus(CRYP_FLAG_BUSY) != RESET) {}
*(uint32_t*)&out[0] = CRYP_DataOut();
*(uint32_t*)&out[4] = CRYP_DataOut();
*(uint32_t*)&out[8] = CRYP_DataOut();
*(uint32_t*)&out[12] = CRYP_DataOut();
/* store iv for next call */
XMEMCPY(aes->reg, out + sz - AES_BLOCK_SIZE, AES_BLOCK_SIZE);
sz -= AES_BLOCK_SIZE;
in += AES_BLOCK_SIZE;
out += AES_BLOCK_SIZE;
}
/* disable crypto processor */
CRYP_Cmd(DISABLE);
wolfSSL_CryptHwMutexUnLock();
wc_Stm32_Aes_Cleanup();
return ret;
}
#ifdef HAVE_AES_DECRYPT
int wc_AesCbcDecrypt(Aes* aes, byte* out, const byte* in, word32 sz)
{
int ret;
word32 *iv;
CRYP_InitTypeDef cryptInit;
CRYP_KeyInitTypeDef keyInit;
CRYP_IVInitTypeDef ivInit;
word32 blocks = (sz / AES_BLOCK_SIZE);
#ifdef WOLFSSL_AES_CBC_LENGTH_CHECKS
if (sz % AES_BLOCK_SIZE) {
return BAD_LENGTH_E;
}
#endif
if (blocks == 0)
return 0;
ret = wc_Stm32_Aes_Init(aes, &cryptInit, &keyInit);
if (ret != 0)
return ret;
ret = wolfSSL_CryptHwMutexLock();
if (ret != 0) {
return ret;
}
/* if input and output same will overwrite input iv */
XMEMCPY(aes->tmp, in + sz - AES_BLOCK_SIZE, AES_BLOCK_SIZE);
/* reset registers to their default values */
CRYP_DeInit();
/* set direction and key */
CRYP_KeyInit(&keyInit);
cryptInit.CRYP_AlgoDir = CRYP_AlgoDir_Decrypt;
cryptInit.CRYP_AlgoMode = CRYP_AlgoMode_AES_Key;
CRYP_Init(&cryptInit);
/* enable crypto processor */
CRYP_Cmd(ENABLE);
/* wait until key has been prepared */
while (CRYP_GetFlagStatus(CRYP_FLAG_BUSY) != RESET) {}
/* set direction and mode */
cryptInit.CRYP_AlgoDir = CRYP_AlgoDir_Decrypt;
cryptInit.CRYP_AlgoMode = CRYP_AlgoMode_AES_CBC;
CRYP_Init(&cryptInit);
/* set iv */
iv = aes->reg;
CRYP_IVStructInit(&ivInit);
ByteReverseWords(iv, iv, AES_BLOCK_SIZE);
ivInit.CRYP_IV0Left = iv[0];
ivInit.CRYP_IV0Right = iv[1];
ivInit.CRYP_IV1Left = iv[2];
ivInit.CRYP_IV1Right = iv[3];
CRYP_IVInit(&ivInit);
/* enable crypto processor */
CRYP_Cmd(ENABLE);
while (blocks--) {
/* flush IN/OUT FIFOs */
CRYP_FIFOFlush();
CRYP_DataIn(*(uint32_t*)&in[0]);
CRYP_DataIn(*(uint32_t*)&in[4]);
CRYP_DataIn(*(uint32_t*)&in[8]);
CRYP_DataIn(*(uint32_t*)&in[12]);
/* wait until the complete message has been processed */
while (CRYP_GetFlagStatus(CRYP_FLAG_BUSY) != RESET) {}
*(uint32_t*)&out[0] = CRYP_DataOut();
*(uint32_t*)&out[4] = CRYP_DataOut();
*(uint32_t*)&out[8] = CRYP_DataOut();
*(uint32_t*)&out[12] = CRYP_DataOut();
/* store iv for next call */
XMEMCPY(aes->reg, aes->tmp, AES_BLOCK_SIZE);
in += AES_BLOCK_SIZE;
out += AES_BLOCK_SIZE;
}
/* disable crypto processor */
CRYP_Cmd(DISABLE);
wolfSSL_CryptHwMutexUnLock();
wc_Stm32_Aes_Cleanup();
return ret;
}
#endif /* HAVE_AES_DECRYPT */
#endif /* WOLFSSL_STM32_CUBEMX */
#elif defined(HAVE_COLDFIRE_SEC)
static WARN_UNUSED_RESULT int wc_AesCbcCrypt(
Aes* aes, byte* po, const byte* pi, word32 sz, word32 descHeader)
{
#ifdef DEBUG_WOLFSSL
int i; int stat1, stat2; int ret;
#endif
int size;
volatile int v;
if ((pi == NULL) || (po == NULL))
return BAD_FUNC_ARG; /*wrong pointer*/
#ifdef WOLFSSL_AES_CBC_LENGTH_CHECKS
if (sz % AES_BLOCK_SIZE) {
return BAD_LENGTH_E;
}
#endif
wc_LockMutex(&Mutex_AesSEC);
/* Set descriptor for SEC */
secDesc->length1 = 0x0;
secDesc->pointer1 = NULL;
secDesc->length2 = AES_BLOCK_SIZE;
secDesc->pointer2 = (byte *)secReg; /* Initial Vector */
switch(aes->rounds) {
case 10: secDesc->length3 = 16; break;
case 12: secDesc->length3 = 24; break;
case 14: secDesc->length3 = 32; break;
}
XMEMCPY(secKey, aes->key, secDesc->length3);
secDesc->pointer3 = (byte *)secKey;
secDesc->pointer4 = AESBuffIn;
secDesc->pointer5 = AESBuffOut;
secDesc->length6 = 0x0;
secDesc->pointer6 = NULL;
secDesc->length7 = 0x0;
secDesc->pointer7 = NULL;
secDesc->nextDescriptorPtr = NULL;
#ifdef WOLFSSL_AES_CBC_LENGTH_CHECKS
size = AES_BUFFER_SIZE;
#endif
while (sz) {
secDesc->header = descHeader;
XMEMCPY(secReg, aes->reg, AES_BLOCK_SIZE);
#ifdef WOLFSSL_AES_CBC_LENGTH_CHECKS
sz -= AES_BUFFER_SIZE;
#else
if (sz < AES_BUFFER_SIZE) {
size = sz;
sz = 0;
} else {
size = AES_BUFFER_SIZE;
sz -= AES_BUFFER_SIZE;
}
#endif
secDesc->length4 = size;
secDesc->length5 = size;
XMEMCPY(AESBuffIn, pi, size);
if(descHeader == SEC_DESC_AES_CBC_DECRYPT) {
XMEMCPY((void*)aes->tmp, (void*)&(pi[size-AES_BLOCK_SIZE]),
AES_BLOCK_SIZE);
}
/* Point SEC to the location of the descriptor */
MCF_SEC_FR0 = (uint32)secDesc;
/* Initialize SEC and wait for encryption to complete */
MCF_SEC_CCCR0 = 0x0000001a;
/* poll SISR to determine when channel is complete */
v=0;
while ((secDesc->header>> 24) != 0xff) v++;
#ifdef DEBUG_WOLFSSL
ret = MCF_SEC_SISRH;
stat1 = MCF_SEC_AESSR;
stat2 = MCF_SEC_AESISR;
if (ret & 0xe0000000) {
db_printf("Aes_Cbc(i=%d):ISRH=%08x, AESSR=%08x, "
"AESISR=%08x\n", i, ret, stat1, stat2);
}
#endif
XMEMCPY(po, AESBuffOut, size);
if (descHeader == SEC_DESC_AES_CBC_ENCRYPT) {
XMEMCPY((void*)aes->reg, (void*)&(po[size-AES_BLOCK_SIZE]),
AES_BLOCK_SIZE);
} else {
XMEMCPY((void*)aes->reg, (void*)aes->tmp, AES_BLOCK_SIZE);
}
pi += size;
po += size;
}
wc_UnLockMutex(&Mutex_AesSEC);
return 0;
}
int wc_AesCbcEncrypt(Aes* aes, byte* po, const byte* pi, word32 sz)
{
return (wc_AesCbcCrypt(aes, po, pi, sz, SEC_DESC_AES_CBC_ENCRYPT));
}
#ifdef HAVE_AES_DECRYPT
int wc_AesCbcDecrypt(Aes* aes, byte* po, const byte* pi, word32 sz)
{
return (wc_AesCbcCrypt(aes, po, pi, sz, SEC_DESC_AES_CBC_DECRYPT));
}
#endif /* HAVE_AES_DECRYPT */
#elif defined(FREESCALE_LTC)
int wc_AesCbcEncrypt(Aes* aes, byte* out, const byte* in, word32 sz)
{
word32 keySize;
status_t status;
byte *iv, *enc_key;
word32 blocks = (sz / AES_BLOCK_SIZE);
#ifdef WOLFSSL_AES_CBC_LENGTH_CHECKS
if (sz % AES_BLOCK_SIZE) {
return BAD_LENGTH_E;
}
#endif
if (blocks == 0)
return 0;
iv = (byte*)aes->reg;
enc_key = (byte*)aes->key;
status = wc_AesGetKeySize(aes, &keySize);
if (status != 0) {
return status;
}
status = wolfSSL_CryptHwMutexLock();
if (status != 0)
return status;
status = LTC_AES_EncryptCbc(LTC_BASE, in, out, blocks * AES_BLOCK_SIZE,
iv, enc_key, keySize);
wolfSSL_CryptHwMutexUnLock();
/* store iv for next call */
if (status == kStatus_Success) {
XMEMCPY(iv, out + sz - AES_BLOCK_SIZE, AES_BLOCK_SIZE);
}
return (status == kStatus_Success) ? 0 : -1;
}
#ifdef HAVE_AES_DECRYPT
int wc_AesCbcDecrypt(Aes* aes, byte* out, const byte* in, word32 sz)
{
word32 keySize;
status_t status;
byte* iv, *dec_key;
byte temp_block[AES_BLOCK_SIZE];
word32 blocks = (sz / AES_BLOCK_SIZE);
#ifdef WOLFSSL_AES_CBC_LENGTH_CHECKS
if (sz % AES_BLOCK_SIZE) {
return BAD_LENGTH_E;
}
#endif
if (blocks == 0)
return 0;
iv = (byte*)aes->reg;
dec_key = (byte*)aes->key;
status = wc_AesGetKeySize(aes, &keySize);
if (status != 0) {
return status;
}
/* get IV for next call */
XMEMCPY(temp_block, in + sz - AES_BLOCK_SIZE, AES_BLOCK_SIZE);
status = wolfSSL_CryptHwMutexLock();
if (status != 0)
return status;
status = LTC_AES_DecryptCbc(LTC_BASE, in, out, blocks * AES_BLOCK_SIZE,
iv, dec_key, keySize, kLTC_EncryptKey);
wolfSSL_CryptHwMutexUnLock();
/* store IV for next call */
if (status == kStatus_Success) {
XMEMCPY(iv, temp_block, AES_BLOCK_SIZE);
}
return (status == kStatus_Success) ? 0 : -1;
}
#endif /* HAVE_AES_DECRYPT */
#elif defined(FREESCALE_MMCAU)
int wc_AesCbcEncrypt(Aes* aes, byte* out, const byte* in, word32 sz)
{
int offset = 0;
byte *iv;
byte temp_block[AES_BLOCK_SIZE];
word32 blocks = (sz / AES_BLOCK_SIZE);
int ret;
#ifdef WOLFSSL_AES_CBC_LENGTH_CHECKS
if (sz % AES_BLOCK_SIZE) {
return BAD_LENGTH_E;
}
#endif
if (blocks == 0)
return 0;
iv = (byte*)aes->reg;
while (blocks--) {
XMEMCPY(temp_block, in + offset, AES_BLOCK_SIZE);
/* XOR block with IV for CBC */
xorbuf(temp_block, iv, AES_BLOCK_SIZE);
ret = wc_AesEncrypt(aes, temp_block, out + offset);
if (ret != 0)
return ret;
offset += AES_BLOCK_SIZE;
/* store IV for next block */
XMEMCPY(iv, out + offset - AES_BLOCK_SIZE, AES_BLOCK_SIZE);
}
return 0;
}
#ifdef HAVE_AES_DECRYPT
int wc_AesCbcDecrypt(Aes* aes, byte* out, const byte* in, word32 sz)
{
int ret;
int offset = 0;
byte* iv;
byte temp_block[AES_BLOCK_SIZE];
word32 blocks = (sz / AES_BLOCK_SIZE);
#ifdef WOLFSSL_AES_CBC_LENGTH_CHECKS
if (sz % AES_BLOCK_SIZE) {
return BAD_LENGTH_E;
}
#endif
if (blocks == 0)
return 0;
iv = (byte*)aes->reg;
while (blocks--) {
XMEMCPY(temp_block, in + offset, AES_BLOCK_SIZE);
ret = wc_AesDecrypt(aes, in + offset, out + offset);
if (ret != 0)
return ret;
/* XOR block with IV for CBC */
xorbuf(out + offset, iv, AES_BLOCK_SIZE);
/* store IV for next block */
XMEMCPY(iv, temp_block, AES_BLOCK_SIZE);
offset += AES_BLOCK_SIZE;
}
return 0;
}
#endif /* HAVE_AES_DECRYPT */
#elif defined(WOLFSSL_PIC32MZ_CRYPT)
int wc_AesCbcEncrypt(Aes* aes, byte* out, const byte* in, word32 sz)
{
int ret;
if (sz == 0)
return 0;
/* hardware fails on input that is not a multiple of AES block size */
if (sz % AES_BLOCK_SIZE != 0) {
#ifdef WOLFSSL_AES_CBC_LENGTH_CHECKS
return BAD_LENGTH_E;
#else
return BAD_FUNC_ARG;
#endif
}
ret = wc_Pic32AesCrypt(
aes->key, aes->keylen, aes->reg, AES_BLOCK_SIZE,
out, in, sz, PIC32_ENCRYPTION,
PIC32_ALGO_AES, PIC32_CRYPTOALGO_RCBC);
/* store iv for next call */
if (ret == 0) {
XMEMCPY(aes->reg, out + sz - AES_BLOCK_SIZE, AES_BLOCK_SIZE);
}
return ret;
}
#ifdef HAVE_AES_DECRYPT
int wc_AesCbcDecrypt(Aes* aes, byte* out, const byte* in, word32 sz)
{
int ret;
byte scratch[AES_BLOCK_SIZE];
if (sz == 0)
return 0;
/* hardware fails on input that is not a multiple of AES block size */
if (sz % AES_BLOCK_SIZE != 0) {
#ifdef WOLFSSL_AES_CBC_LENGTH_CHECKS
return BAD_LENGTH_E;
#else
return BAD_FUNC_ARG;
#endif
}
XMEMCPY(scratch, in + sz - AES_BLOCK_SIZE, AES_BLOCK_SIZE);
ret = wc_Pic32AesCrypt(
aes->key, aes->keylen, aes->reg, AES_BLOCK_SIZE,
out, in, sz, PIC32_DECRYPTION,
PIC32_ALGO_AES, PIC32_CRYPTOALGO_RCBC);
/* store iv for next call */
if (ret == 0) {
XMEMCPY((byte*)aes->reg, scratch, AES_BLOCK_SIZE);
}
return ret;
}
#endif /* HAVE_AES_DECRYPT */
#elif defined(WOLFSSL_ESP32_CRYPT) && \
!defined(NO_WOLFSSL_ESP32_CRYPT_AES)
/* We'll use SW for fall back:
* unsupported key lengths
* hardware busy */
#define NEED_SW_AESCBC
#define NEED_AESCBC_HW_FALLBACK
#elif defined(WOLFSSL_CRYPTOCELL) && defined(WOLFSSL_CRYPTOCELL_AES)
int wc_AesCbcEncrypt(Aes* aes, byte* out, const byte* in, word32 sz)
{
return SaSi_AesBlock(&aes->ctx.user_ctx, (uint8_t*)in, sz, out);
}
int wc_AesCbcDecrypt(Aes* aes, byte* out, const byte* in, word32 sz)
{
return SaSi_AesBlock(&aes->ctx.user_ctx, (uint8_t*)in, sz, out);
}
#elif defined(WOLFSSL_IMX6_CAAM) && !defined(NO_IMX6_CAAM_AES) && \
!defined(WOLFSSL_QNX_CAAM)
/* implemented in wolfcrypt/src/port/caam/caam_aes.c */
#elif defined(WOLFSSL_AFALG)
/* implemented in wolfcrypt/src/port/af_alg/afalg_aes.c */
#elif defined(WOLFSSL_KCAPI_AES) && !defined(WOLFSSL_NO_KCAPI_AES_CBC)
/* implemented in wolfcrypt/src/port/kcapi/kcapi_aes.c */
#elif defined(WOLFSSL_DEVCRYPTO_CBC)
/* implemented in wolfcrypt/src/port/devcrypt/devcrypto_aes.c */
#elif defined(WOLFSSL_SILABS_SE_ACCEL)
/* implemented in wolfcrypt/src/port/silabs/silabs_aes.c */
#elif defined(WOLFSSL_HAVE_PSA) && !defined(WOLFSSL_PSA_NO_AES)
/* implemented in wolfcrypt/src/port/psa/psa_aes.c */
#else
/* Reminder: Some HW implementations may also define this as needed.
* (e.g. for unsupported key length fallback) */
#define NEED_SW_AESCBC
#endif
#ifdef NEED_SW_AESCBC
/* Software AES - CBC Encrypt */
int wc_AesCbcEncrypt(Aes* aes, byte* out, const byte* in, word32 sz)
{
word32 blocks;
int ret;
if (aes == NULL || out == NULL || in == NULL) {
return BAD_FUNC_ARG;
}
if (sz == 0) {
return 0;
}
blocks = sz / AES_BLOCK_SIZE;
#ifdef WOLFSSL_AES_CBC_LENGTH_CHECKS
if (sz % AES_BLOCK_SIZE) {
WOLFSSL_ERROR_VERBOSE(BAD_LENGTH_E);
return BAD_LENGTH_E;
}
#endif
#ifdef WOLFSSL_IMXRT_DCP
/* Implemented in wolfcrypt/src/port/nxp/dcp_port.c */
if (aes->keylen == 16)
return DCPAesCbcEncrypt(aes, out, in, sz);
#endif
#ifdef WOLF_CRYPTO_CB
#ifndef WOLF_CRYPTO_CB_FIND
if (aes->devId != INVALID_DEVID)
#endif
{
int crypto_cb_ret = wc_CryptoCb_AesCbcEncrypt(aes, out, in, sz);
if (crypto_cb_ret != WC_NO_ERR_TRACE(CRYPTOCB_UNAVAILABLE))
return crypto_cb_ret;
/* fall-through when unavailable */
}
#endif
#if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_AES)
/* if async and byte count above threshold */
if (aes->asyncDev.marker == WOLFSSL_ASYNC_MARKER_AES &&
sz >= WC_ASYNC_THRESH_AES_CBC) {
#if defined(HAVE_CAVIUM)
return NitroxAesCbcEncrypt(aes, out, in, sz);
#elif defined(HAVE_INTEL_QA)
return IntelQaSymAesCbcEncrypt(&aes->asyncDev, out, in, sz,
(const byte*)aes->devKey, aes->keylen,
(byte*)aes->reg, AES_BLOCK_SIZE);
#elif defined(WOLFSSL_ASYNC_CRYPT_SW)
if (wc_AsyncSwInit(&aes->asyncDev, ASYNC_SW_AES_CBC_ENCRYPT)) {
WC_ASYNC_SW* sw = &aes->asyncDev.sw;
sw->aes.aes = aes;
sw->aes.out = out;
sw->aes.in = in;
sw->aes.sz = sz;
return WC_PENDING_E;
}
#endif
}
#endif /* WOLFSSL_ASYNC_CRYPT */
#if defined(WOLFSSL_SE050) && defined(WOLFSSL_SE050_CRYPT)
/* Implemented in wolfcrypt/src/port/nxp/se050_port.c */
if (aes->useSWCrypt == 0) {
return se050_aes_crypt(aes, in, out, sz, AES_ENCRYPTION,
kAlgorithm_SSS_AES_CBC);
}
else
#elif defined(WOLFSSL_ESPIDF) && defined(NEED_AESCBC_HW_FALLBACK)
if (wc_esp32AesSupportedKeyLen(aes)) {
ESP_LOGV(TAG, "wc_AesCbcEncrypt calling wc_esp32AesCbcEncrypt");
return wc_esp32AesCbcEncrypt(aes, out, in, sz);
}
else {
/* For example, the ESP32-S3 does not support HW for len = 24,
* so fall back to SW */
#ifdef DEBUG_WOLFSSL
ESP_LOGW(TAG, "wc_AesCbcEncrypt HW Falling back, "
"unsupported keylen = %d", aes->keylen);
#endif
}
#elif defined(WOLFSSL_AESNI)
VECTOR_REGISTERS_PUSH;
if (aes->use_aesni) {
#ifdef DEBUG_AESNI
printf("about to aes cbc encrypt\n");
printf("in = %p\n", in);
printf("out = %p\n", out);
printf("aes->key = %p\n", aes->key);
printf("aes->reg = %p\n", aes->reg);
printf("aes->rounds = %d\n", aes->rounds);
printf("sz = %d\n", sz);
#endif
/* check alignment, decrypt doesn't need alignment */
if ((wc_ptr_t)in % AESNI_ALIGN) {
#ifndef NO_WOLFSSL_ALLOC_ALIGN
byte* tmp = (byte*)XMALLOC(sz + AES_BLOCK_SIZE + AESNI_ALIGN,
aes->heap, DYNAMIC_TYPE_TMP_BUFFER);
byte* tmp_align;
if (tmp == NULL)
ret = MEMORY_E;
else {
tmp_align = tmp + (AESNI_ALIGN - ((wc_ptr_t)tmp % AESNI_ALIGN));
XMEMCPY(tmp_align, in, sz);
AES_CBC_encrypt_AESNI(tmp_align, tmp_align, (byte*)aes->reg, sz,
(byte*)aes->key, (int)aes->rounds);
/* store iv for next call */
XMEMCPY(aes->reg, tmp_align + sz - AES_BLOCK_SIZE, AES_BLOCK_SIZE);
XMEMCPY(out, tmp_align, sz);
XFREE(tmp, aes->heap, DYNAMIC_TYPE_TMP_BUFFER);
ret = 0;
}
#else
WOLFSSL_MSG("AES-CBC encrypt with bad alignment");
WOLFSSL_ERROR_VERBOSE(BAD_ALIGN_E);
ret = BAD_ALIGN_E;
#endif
} else {
AES_CBC_encrypt_AESNI(in, out, (byte*)aes->reg, sz, (byte*)aes->key,
(int)aes->rounds);
/* store iv for next call */
XMEMCPY(aes->reg, out + sz - AES_BLOCK_SIZE, AES_BLOCK_SIZE);
ret = 0;
}
}
else
#endif
{
ret = 0;
while (blocks--) {
xorbuf((byte*)aes->reg, in, AES_BLOCK_SIZE);
ret = wc_AesEncrypt(aes, (byte*)aes->reg, (byte*)aes->reg);
if (ret != 0)
break;
XMEMCPY(out, aes->reg, AES_BLOCK_SIZE);
out += AES_BLOCK_SIZE;
in += AES_BLOCK_SIZE;
}
}
#ifdef WOLFSSL_AESNI
VECTOR_REGISTERS_POP;
#endif
return ret;
} /* wc_AesCbcEncrypt */
#ifdef HAVE_AES_DECRYPT
/* Software AES - CBC Decrypt */
int wc_AesCbcDecrypt(Aes* aes, byte* out, const byte* in, word32 sz)
{
word32 blocks;
int ret;
if (aes == NULL || out == NULL || in == NULL) {
return BAD_FUNC_ARG;
}
if (sz == 0) {
return 0;
}
#if defined(WOLFSSL_ESPIDF) && defined(NEED_AESCBC_HW_FALLBACK)
if (wc_esp32AesSupportedKeyLen(aes)) {
ESP_LOGV(TAG, "wc_AesCbcDecrypt calling wc_esp32AesCbcDecrypt");
return wc_esp32AesCbcDecrypt(aes, out, in, sz);
}
else {
/* For example, the ESP32-S3 does not support HW for len = 24,
* so fall back to SW */
#ifdef DEBUG_WOLFSSL
ESP_LOGW(TAG, "wc_AesCbcDecrypt HW Falling back, "
"unsupported keylen = %d", aes->keylen);
#endif
}
#endif
blocks = sz / AES_BLOCK_SIZE;
if (sz % AES_BLOCK_SIZE) {
#ifdef WOLFSSL_AES_CBC_LENGTH_CHECKS
return BAD_LENGTH_E;
#else
return BAD_FUNC_ARG;
#endif
}
#ifdef WOLFSSL_IMXRT_DCP
/* Implemented in wolfcrypt/src/port/nxp/dcp_port.c */
if (aes->keylen == 16)
return DCPAesCbcDecrypt(aes, out, in, sz);
#endif
#ifdef WOLF_CRYPTO_CB
#ifndef WOLF_CRYPTO_CB_FIND
if (aes->devId != INVALID_DEVID)
#endif
{
int crypto_cb_ret = wc_CryptoCb_AesCbcDecrypt(aes, out, in, sz);
if (crypto_cb_ret != WC_NO_ERR_TRACE(CRYPTOCB_UNAVAILABLE))
return crypto_cb_ret;
/* fall-through when unavailable */
}
#endif
#if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_AES)
/* if async and byte count above threshold */
if (aes->asyncDev.marker == WOLFSSL_ASYNC_MARKER_AES &&
sz >= WC_ASYNC_THRESH_AES_CBC) {
#if defined(HAVE_CAVIUM)
return NitroxAesCbcDecrypt(aes, out, in, sz);
#elif defined(HAVE_INTEL_QA)
return IntelQaSymAesCbcDecrypt(&aes->asyncDev, out, in, sz,
(const byte*)aes->devKey, aes->keylen,
(byte*)aes->reg, AES_BLOCK_SIZE);
#elif defined(WOLFSSL_ASYNC_CRYPT_SW)
if (wc_AsyncSwInit(&aes->asyncDev, ASYNC_SW_AES_CBC_DECRYPT)) {
WC_ASYNC_SW* sw = &aes->asyncDev.sw;
sw->aes.aes = aes;
sw->aes.out = out;
sw->aes.in = in;
sw->aes.sz = sz;
return WC_PENDING_E;
}
#endif
}
#endif
#if defined(WOLFSSL_SE050) && defined(WOLFSSL_SE050_CRYPT)
/* Implemented in wolfcrypt/src/port/nxp/se050_port.c */
if (aes->useSWCrypt == 0) {
return se050_aes_crypt(aes, in, out, sz, AES_DECRYPTION,
kAlgorithm_SSS_AES_CBC);
}
#endif
VECTOR_REGISTERS_PUSH;
#ifdef WOLFSSL_AESNI
if (aes->use_aesni) {
#ifdef DEBUG_AESNI
printf("about to aes cbc decrypt\n");
printf("in = %p\n", in);
printf("out = %p\n", out);
printf("aes->key = %p\n", aes->key);
printf("aes->reg = %p\n", aes->reg);
printf("aes->rounds = %d\n", aes->rounds);
printf("sz = %d\n", sz);
#endif
/* if input and output same will overwrite input iv */
XMEMCPY(aes->tmp, in + sz - AES_BLOCK_SIZE, AES_BLOCK_SIZE);
#if defined(WOLFSSL_AESNI_BY4) || defined(WOLFSSL_X86_BUILD)
AES_CBC_decrypt_AESNI_by4(in, out, (byte*)aes->reg, sz, (byte*)aes->key,
aes->rounds);
#elif defined(WOLFSSL_AESNI_BY6)
AES_CBC_decrypt_AESNI_by6(in, out, (byte*)aes->reg, sz, (byte*)aes->key,
aes->rounds);
#else /* WOLFSSL_AESNI_BYx */
AES_CBC_decrypt_AESNI_by8(in, out, (byte*)aes->reg, sz, (byte*)aes->key,
(int)aes->rounds);
#endif /* WOLFSSL_AESNI_BYx */
/* store iv for next call */
XMEMCPY(aes->reg, aes->tmp, AES_BLOCK_SIZE);
ret = 0;
}
else
#endif
{
ret = 0;
#ifdef WC_AES_BITSLICED
if (in != out) {
unsigned char dec[AES_BLOCK_SIZE * BS_WORD_SIZE];
while (blocks > BS_WORD_SIZE) {
AesDecryptBlocks_C(aes, in, dec, AES_BLOCK_SIZE * BS_WORD_SIZE);
xorbufout(out, dec, aes->reg, AES_BLOCK_SIZE);
xorbufout(out + AES_BLOCK_SIZE, dec + AES_BLOCK_SIZE, in,
AES_BLOCK_SIZE * (BS_WORD_SIZE - 1));
XMEMCPY(aes->reg, in + (AES_BLOCK_SIZE * (BS_WORD_SIZE - 1)),
AES_BLOCK_SIZE);
in += AES_BLOCK_SIZE * BS_WORD_SIZE;
out += AES_BLOCK_SIZE * BS_WORD_SIZE;
blocks -= BS_WORD_SIZE;
}
if (blocks > 0) {
AesDecryptBlocks_C(aes, in, dec, blocks * AES_BLOCK_SIZE);
xorbufout(out, dec, aes->reg, AES_BLOCK_SIZE);
xorbufout(out + AES_BLOCK_SIZE, dec + AES_BLOCK_SIZE, in,
AES_BLOCK_SIZE * (blocks - 1));
XMEMCPY(aes->reg, in + (AES_BLOCK_SIZE * (blocks - 1)),
AES_BLOCK_SIZE);
blocks = 0;
}
}
else {
unsigned char dec[AES_BLOCK_SIZE * BS_WORD_SIZE];
int i;
while (blocks > BS_WORD_SIZE) {
AesDecryptBlocks_C(aes, in, dec, AES_BLOCK_SIZE * BS_WORD_SIZE);
XMEMCPY(aes->tmp, in + (BS_WORD_SIZE - 1) * AES_BLOCK_SIZE,
AES_BLOCK_SIZE);
for (i = BS_WORD_SIZE-1; i >= 1; i--) {
xorbufout(out + i * AES_BLOCK_SIZE,
dec + i * AES_BLOCK_SIZE, in + (i - 1) * AES_BLOCK_SIZE,
AES_BLOCK_SIZE);
}
xorbufout(out, dec, aes->reg, AES_BLOCK_SIZE);
XMEMCPY(aes->reg, aes->tmp, AES_BLOCK_SIZE);
in += AES_BLOCK_SIZE * BS_WORD_SIZE;
out += AES_BLOCK_SIZE * BS_WORD_SIZE;
blocks -= BS_WORD_SIZE;
}
if (blocks > 0) {
AesDecryptBlocks_C(aes, in, dec, blocks * AES_BLOCK_SIZE);
XMEMCPY(aes->tmp, in + (blocks - 1) * AES_BLOCK_SIZE,
AES_BLOCK_SIZE);
for (i = blocks-1; i >= 1; i--) {
xorbufout(out + i * AES_BLOCK_SIZE,
dec + i * AES_BLOCK_SIZE, in + (i - 1) * AES_BLOCK_SIZE,
AES_BLOCK_SIZE);
}
xorbufout(out, dec, aes->reg, AES_BLOCK_SIZE);
XMEMCPY(aes->reg, aes->tmp, AES_BLOCK_SIZE);
blocks = 0;
}
}
#else
while (blocks--) {
XMEMCPY(aes->tmp, in, AES_BLOCK_SIZE);
ret = wc_AesDecrypt(aes, in, out);
if (ret != 0)
return ret;
xorbuf(out, (byte*)aes->reg, AES_BLOCK_SIZE);
/* store iv for next call */
XMEMCPY(aes->reg, aes->tmp, AES_BLOCK_SIZE);
out += AES_BLOCK_SIZE;
in += AES_BLOCK_SIZE;
}
#endif
}
VECTOR_REGISTERS_POP;
return ret;
}
#endif /* HAVE_AES_DECRYPT */
#endif /* AES-CBC block */
#endif /* HAVE_AES_CBC */
/* AES-CTR */
#if defined(WOLFSSL_AES_COUNTER)
#ifdef STM32_CRYPTO
#define NEED_AES_CTR_SOFT
#define XTRANSFORM_AESCTRBLOCK wc_AesCtrEncryptBlock
int wc_AesCtrEncryptBlock(Aes* aes, byte* out, const byte* in)
{
int ret = 0;
#ifdef WOLFSSL_STM32_CUBEMX
CRYP_HandleTypeDef hcryp;
#ifdef STM32_HAL_V2
word32 iv[AES_BLOCK_SIZE/sizeof(word32)];
#endif
#else
word32 *iv;
CRYP_InitTypeDef cryptInit;
CRYP_KeyInitTypeDef keyInit;
CRYP_IVInitTypeDef ivInit;
#endif
#ifdef WOLFSSL_STM32_CUBEMX
ret = wc_Stm32_Aes_Init(aes, &hcryp);
if (ret != 0) {
return ret;
}
ret = wolfSSL_CryptHwMutexLock();
if (ret != 0) {
return ret;
}
#if defined(STM32_HAL_V2)
hcryp.Init.Algorithm = CRYP_AES_CTR;
ByteReverseWords(iv, aes->reg, AES_BLOCK_SIZE);
hcryp.Init.pInitVect = (STM_CRYPT_TYPE*)iv;
#elif defined(STM32_CRYPTO_AES_ONLY)
hcryp.Init.OperatingMode = CRYP_ALGOMODE_ENCRYPT;
hcryp.Init.ChainingMode = CRYP_CHAINMODE_AES_CTR;
hcryp.Init.KeyWriteFlag = CRYP_KEY_WRITE_ENABLE;
hcryp.Init.pInitVect = (STM_CRYPT_TYPE*)aes->reg;
#else
hcryp.Init.pInitVect = (STM_CRYPT_TYPE*)aes->reg;
#endif
HAL_CRYP_Init(&hcryp);
#if defined(STM32_HAL_V2)
ret = HAL_CRYP_Encrypt(&hcryp, (uint32_t*)in, AES_BLOCK_SIZE,
(uint32_t*)out, STM32_HAL_TIMEOUT);
#elif defined(STM32_CRYPTO_AES_ONLY)
ret = HAL_CRYPEx_AES(&hcryp, (byte*)in, AES_BLOCK_SIZE,
out, STM32_HAL_TIMEOUT);
#else
ret = HAL_CRYP_AESCTR_Encrypt(&hcryp, (byte*)in, AES_BLOCK_SIZE,
out, STM32_HAL_TIMEOUT);
#endif
if (ret != HAL_OK) {
ret = WC_TIMEOUT_E;
}
HAL_CRYP_DeInit(&hcryp);
#else /* Standard Peripheral Library */
ret = wc_Stm32_Aes_Init(aes, &cryptInit, &keyInit);
if (ret != 0) {
return ret;
}
ret = wolfSSL_CryptHwMutexLock();
if (ret != 0) {
return ret;
}
/* reset registers to their default values */
CRYP_DeInit();
/* set key */
CRYP_KeyInit(&keyInit);
/* set iv */
iv = aes->reg;
CRYP_IVStructInit(&ivInit);
ivInit.CRYP_IV0Left = ByteReverseWord32(iv[0]);
ivInit.CRYP_IV0Right = ByteReverseWord32(iv[1]);
ivInit.CRYP_IV1Left = ByteReverseWord32(iv[2]);
ivInit.CRYP_IV1Right = ByteReverseWord32(iv[3]);
CRYP_IVInit(&ivInit);
/* set direction and mode */
cryptInit.CRYP_AlgoDir = CRYP_AlgoDir_Encrypt;
cryptInit.CRYP_AlgoMode = CRYP_AlgoMode_AES_CTR;
CRYP_Init(&cryptInit);
/* enable crypto processor */
CRYP_Cmd(ENABLE);
/* flush IN/OUT FIFOs */
CRYP_FIFOFlush();
CRYP_DataIn(*(uint32_t*)&in[0]);
CRYP_DataIn(*(uint32_t*)&in[4]);
CRYP_DataIn(*(uint32_t*)&in[8]);
CRYP_DataIn(*(uint32_t*)&in[12]);
/* wait until the complete message has been processed */
while (CRYP_GetFlagStatus(CRYP_FLAG_BUSY) != RESET) {}
*(uint32_t*)&out[0] = CRYP_DataOut();
*(uint32_t*)&out[4] = CRYP_DataOut();
*(uint32_t*)&out[8] = CRYP_DataOut();
*(uint32_t*)&out[12] = CRYP_DataOut();
/* disable crypto processor */
CRYP_Cmd(DISABLE);
#endif /* WOLFSSL_STM32_CUBEMX */
wolfSSL_CryptHwMutexUnLock();
wc_Stm32_Aes_Cleanup();
return ret;
}
#elif defined(WOLFSSL_PIC32MZ_CRYPT)
#define NEED_AES_CTR_SOFT
#define XTRANSFORM_AESCTRBLOCK wc_AesCtrEncryptBlock
int wc_AesCtrEncryptBlock(Aes* aes, byte* out, const byte* in)
{
word32 tmpIv[AES_BLOCK_SIZE / sizeof(word32)];
XMEMCPY(tmpIv, aes->reg, AES_BLOCK_SIZE);
return wc_Pic32AesCrypt(
aes->key, aes->keylen, tmpIv, AES_BLOCK_SIZE,
out, in, AES_BLOCK_SIZE,
PIC32_ENCRYPTION, PIC32_ALGO_AES, PIC32_CRYPTOALGO_RCTR);
}
#elif defined(HAVE_COLDFIRE_SEC)
#error "Coldfire SEC doesn't currently support AES-CTR mode"
#elif defined(FREESCALE_LTC)
int wc_AesCtrEncrypt(Aes* aes, byte* out, const byte* in, word32 sz)
{
int ret = 0;
word32 keySize;
byte *iv, *enc_key;
byte* tmp;
if (aes == NULL || out == NULL || in == NULL) {
return BAD_FUNC_ARG;
}
/* consume any unused bytes left in aes->tmp */
tmp = (byte*)aes->tmp + AES_BLOCK_SIZE - aes->left;
while (aes->left && sz) {
*(out++) = *(in++) ^ *(tmp++);
aes->left--;
sz--;
}
if (sz) {
iv = (byte*)aes->reg;
enc_key = (byte*)aes->key;
ret = wc_AesGetKeySize(aes, &keySize);
if (ret != 0)
return ret;
ret = wolfSSL_CryptHwMutexLock();
if (ret != 0)
return ret;
LTC_AES_CryptCtr(LTC_BASE, in, out, sz,
iv, enc_key, keySize, (byte*)aes->tmp,
(uint32_t*)&aes->left);
wolfSSL_CryptHwMutexUnLock();
}
return ret;
}
#elif defined(WOLFSSL_IMX6_CAAM) && !defined(NO_IMX6_CAAM_AES) && \
!defined(WOLFSSL_QNX_CAAM)
/* implemented in wolfcrypt/src/port/caam/caam_aes.c */
#elif defined(WOLFSSL_AFALG)
/* implemented in wolfcrypt/src/port/af_alg/afalg_aes.c */
#elif defined(WOLFSSL_DEVCRYPTO_AES)
/* implemented in wolfcrypt/src/port/devcrypt/devcrypto_aes.c */
#elif defined(WOLFSSL_ESP32_CRYPT) && \
!defined(NO_WOLFSSL_ESP32_CRYPT_AES)
/* esp32 doesn't support CRT mode by hw. */
/* use aes ecnryption plus sw implementation */
#define NEED_AES_CTR_SOFT
#elif defined(WOLFSSL_HAVE_PSA) && !defined(WOLFSSL_PSA_NO_AES)
/* implemented in wolfcrypt/src/port/psa/psa_aes.c */
#else
/* Use software based AES counter */
#define NEED_AES_CTR_SOFT
#endif
#ifdef NEED_AES_CTR_SOFT
/* Increment AES counter */
static WC_INLINE void IncrementAesCounter(byte* inOutCtr)
{
/* in network byte order so start at end and work back */
int i;
for (i = AES_BLOCK_SIZE - 1; i >= 0; i--) {
if (++inOutCtr[i]) /* we're done unless we overflow */
return;
}
}
/* Software AES - CTR Encrypt */
int wc_AesCtrEncrypt(Aes* aes, byte* out, const byte* in, word32 sz)
{
byte scratch[AES_BLOCK_SIZE];
int ret = 0;
word32 processed;
XMEMSET(scratch, 0, sizeof(scratch));
if (aes == NULL || out == NULL || in == NULL) {
return BAD_FUNC_ARG;
}
#ifdef WOLF_CRYPTO_CB
#ifndef WOLF_CRYPTO_CB_FIND
if (aes->devId != INVALID_DEVID)
#endif
{
int crypto_cb_ret = wc_CryptoCb_AesCtrEncrypt(aes, out, in, sz);
if (crypto_cb_ret != WC_NO_ERR_TRACE(CRYPTOCB_UNAVAILABLE))
return crypto_cb_ret;
/* fall-through when unavailable */
}
#endif
/* consume any unused bytes left in aes->tmp */
processed = min(aes->left, sz);
xorbufout(out, in, (byte*)aes->tmp + AES_BLOCK_SIZE - aes->left,
processed);
out += processed;
in += processed;
aes->left -= processed;
sz -= processed;
VECTOR_REGISTERS_PUSH;
#if defined(HAVE_AES_ECB) && !defined(WOLFSSL_PIC32MZ_CRYPT) && \
!defined(XTRANSFORM_AESCTRBLOCK)
if (in != out && sz >= AES_BLOCK_SIZE) {
word32 blocks = sz / AES_BLOCK_SIZE;
byte* counter = (byte*)aes->reg;
byte* c = out;
while (blocks--) {
XMEMCPY(c, counter, AES_BLOCK_SIZE);
c += AES_BLOCK_SIZE;
IncrementAesCounter(counter);
}
/* reset number of blocks and then do encryption */
blocks = sz / AES_BLOCK_SIZE;
wc_AesEcbEncrypt(aes, out, out, AES_BLOCK_SIZE * blocks);
xorbuf(out, in, AES_BLOCK_SIZE * blocks);
in += AES_BLOCK_SIZE * blocks;
out += AES_BLOCK_SIZE * blocks;
sz -= blocks * AES_BLOCK_SIZE;
}
else
#endif
{
#ifdef WOLFSSL_CHECK_MEM_ZERO
wc_MemZero_Add("wc_AesCtrEncrypt scratch", scratch,
AES_BLOCK_SIZE);
#endif
/* do as many block size ops as possible */
while (sz >= AES_BLOCK_SIZE) {
#ifdef XTRANSFORM_AESCTRBLOCK
XTRANSFORM_AESCTRBLOCK(aes, out, in);
#else
ret = wc_AesEncrypt(aes, (byte*)aes->reg, scratch);
if (ret != 0)
break;
xorbuf(scratch, in, AES_BLOCK_SIZE);
XMEMCPY(out, scratch, AES_BLOCK_SIZE);
#endif
IncrementAesCounter((byte*)aes->reg);
out += AES_BLOCK_SIZE;
in += AES_BLOCK_SIZE;
sz -= AES_BLOCK_SIZE;
aes->left = 0;
}
ForceZero(scratch, AES_BLOCK_SIZE);
}
/* handle non block size remaining and store unused byte count in left */
if ((ret == 0) && sz) {
ret = wc_AesEncrypt(aes, (byte*)aes->reg, (byte*)aes->tmp);
if (ret == 0) {
IncrementAesCounter((byte*)aes->reg);
aes->left = AES_BLOCK_SIZE - sz;
xorbufout(out, in, aes->tmp, sz);
}
}
if (ret < 0)
ForceZero(scratch, AES_BLOCK_SIZE);
#ifdef WOLFSSL_CHECK_MEM_ZERO
wc_MemZero_Check(scratch, AES_BLOCK_SIZE);
#endif
VECTOR_REGISTERS_POP;
return ret;
}
int wc_AesCtrSetKey(Aes* aes, const byte* key, word32 len,
const byte* iv, int dir)
{
if (aes == NULL) {
return BAD_FUNC_ARG;
}
if (len > sizeof(aes->key)) {
return BAD_FUNC_ARG;
}
return wc_AesSetKey(aes, key, len, iv, dir);
}
#endif /* NEED_AES_CTR_SOFT */
#endif /* WOLFSSL_AES_COUNTER */
#endif /* !WOLFSSL_ARMASM && ! WOLFSSL_RISCV_ASM */
/*
* The IV for AES GCM and CCM, stored in struct Aes's member reg, is comprised
* of two parts in order:
* 1. The fixed field which may be 0 or 4 bytes long. In TLS, this is set
* to the implicit IV.
* 2. The explicit IV is generated by wolfCrypt. It needs to be managed
* by wolfCrypt to ensure the IV is unique for each call to encrypt.
* The IV may be a 96-bit random value, or the 32-bit fixed value and a
* 64-bit set of 0 or random data. The final 32-bits of reg is used as a
* block counter during the encryption.
*/
#if (defined(HAVE_AESGCM) && !defined(WC_NO_RNG)) || defined(HAVE_AESCCM)
static WC_INLINE void IncCtr(byte* ctr, word32 ctrSz)
{
int i;
for (i = (int)ctrSz - 1; i >= 0; i--) {
if (++ctr[i])
break;
}
}
#endif /* HAVE_AESGCM || HAVE_AESCCM */
#ifdef HAVE_AESGCM
#ifdef WOLFSSL_AESGCM_STREAM
/* Access initialization counter data. */
#define AES_INITCTR(aes) ((aes)->streamData + 0 * AES_BLOCK_SIZE)
/* Access counter data. */
#define AES_COUNTER(aes) ((aes)->streamData + 1 * AES_BLOCK_SIZE)
/* Access tag data. */
#define AES_TAG(aes) ((aes)->streamData + 2 * AES_BLOCK_SIZE)
/* Access last GHASH block. */
#define AES_LASTGBLOCK(aes) ((aes)->streamData + 3 * AES_BLOCK_SIZE)
/* Access last encrypted block. */
#define AES_LASTBLOCK(aes) ((aes)->streamData + 4 * AES_BLOCK_SIZE)
#endif
#if defined(HAVE_COLDFIRE_SEC)
#error "Coldfire SEC doesn't currently support AES-GCM mode"
#endif
#ifdef WOLFSSL_ARMASM
/* implementation is located in wolfcrypt/src/port/arm/armv8-aes.c */
#elif defined(WOLFSSL_RISCV_ASM)
/* implemented in wolfcrypt/src/port/risc-v/riscv-64-aes.c */
#elif defined(WOLFSSL_AFALG)
/* implemented in wolfcrypt/src/port/afalg/afalg_aes.c */
#elif defined(WOLFSSL_KCAPI_AES)
/* implemented in wolfcrypt/src/port/kcapi/kcapi_aes.c */
#elif defined(WOLFSSL_DEVCRYPTO_AES)
/* implemented in wolfcrypt/src/port/devcrypt/devcrypto_aes.c */
#else /* software + AESNI implementation */
#if !defined(FREESCALE_LTC_AES_GCM)
static WC_INLINE void IncrementGcmCounter(byte* inOutCtr)
{
int i;
/* in network byte order so start at end and work back */
for (i = AES_BLOCK_SIZE - 1; i >= AES_BLOCK_SIZE - CTR_SZ; i--) {
if (++inOutCtr[i]) /* we're done unless we overflow */
return;
}
}
#endif /* !FREESCALE_LTC_AES_GCM */
#if defined(GCM_SMALL) || defined(GCM_TABLE) || defined(GCM_TABLE_4BIT)
static WC_INLINE void FlattenSzInBits(byte* buf, word32 sz)
{
/* Multiply the sz by 8 */
word32 szHi = (sz >> (8*sizeof(sz) - 3));
sz <<= 3;
/* copy over the words of the sz into the destination buffer */
buf[0] = (byte)(szHi >> 24);
buf[1] = (byte)(szHi >> 16);
buf[2] = (byte)(szHi >> 8);
buf[3] = (byte)szHi;
buf[4] = (byte)(sz >> 24);
buf[5] = (byte)(sz >> 16);
buf[6] = (byte)(sz >> 8);
buf[7] = (byte)sz;
}
static WC_INLINE void RIGHTSHIFTX(byte* x)
{
int i;
int carryIn = 0;
byte borrow = (0x00 - (x[15] & 0x01)) & 0xE1;
for (i = 0; i < AES_BLOCK_SIZE; i++) {
int carryOut = (x[i] & 0x01) << 7;
x[i] = (byte) ((x[i] >> 1) | carryIn);
carryIn = carryOut;
}
x[0] ^= borrow;
}
#endif /* defined(GCM_SMALL) || defined(GCM_TABLE) || defined(GCM_TABLE_4BIT) */
#ifdef GCM_TABLE
void GenerateM0(Gcm* gcm)
{
int i, j;
byte (*m)[AES_BLOCK_SIZE] = gcm->M0;
XMEMCPY(m[128], gcm->H, AES_BLOCK_SIZE);
for (i = 64; i > 0; i /= 2) {
XMEMCPY(m[i], m[i*2], AES_BLOCK_SIZE);
RIGHTSHIFTX(m[i]);
}
for (i = 2; i < 256; i *= 2) {
for (j = 1; j < i; j++) {
XMEMCPY(m[i+j], m[i], AES_BLOCK_SIZE);
xorbuf(m[i+j], m[j], AES_BLOCK_SIZE);
}
}
XMEMSET(m[0], 0, AES_BLOCK_SIZE);
}
#elif defined(GCM_TABLE_4BIT)
#if !defined(BIG_ENDIAN_ORDER) && !defined(WC_16BIT_CPU)
static WC_INLINE void Shift4_M0(byte *r8, byte *z8)
{
int i;
for (i = 15; i > 0; i--)
r8[i] = (byte)(z8[i-1] << 4) | (byte)(z8[i] >> 4);
r8[0] = (byte)(z8[0] >> 4);
}
#endif
void GenerateM0(Gcm* gcm)
{
#if !defined(BIG_ENDIAN_ORDER) && !defined(WC_16BIT_CPU)
int i;
#endif
byte (*m)[AES_BLOCK_SIZE] = gcm->M0;
/* 0 times -> 0x0 */
XMEMSET(m[0x0], 0, AES_BLOCK_SIZE);
/* 1 times -> 0x8 */
XMEMCPY(m[0x8], gcm->H, AES_BLOCK_SIZE);
/* 2 times -> 0x4 */
XMEMCPY(m[0x4], m[0x8], AES_BLOCK_SIZE);
RIGHTSHIFTX(m[0x4]);
/* 4 times -> 0x2 */
XMEMCPY(m[0x2], m[0x4], AES_BLOCK_SIZE);
RIGHTSHIFTX(m[0x2]);
/* 8 times -> 0x1 */
XMEMCPY(m[0x1], m[0x2], AES_BLOCK_SIZE);
RIGHTSHIFTX(m[0x1]);
/* 0x3 */
XMEMCPY(m[0x3], m[0x2], AES_BLOCK_SIZE);
xorbuf (m[0x3], m[0x1], AES_BLOCK_SIZE);
/* 0x5 -> 0x7 */
XMEMCPY(m[0x5], m[0x4], AES_BLOCK_SIZE);
xorbuf (m[0x5], m[0x1], AES_BLOCK_SIZE);
XMEMCPY(m[0x6], m[0x4], AES_BLOCK_SIZE);
xorbuf (m[0x6], m[0x2], AES_BLOCK_SIZE);
XMEMCPY(m[0x7], m[0x4], AES_BLOCK_SIZE);
xorbuf (m[0x7], m[0x3], AES_BLOCK_SIZE);
/* 0x9 -> 0xf */
XMEMCPY(m[0x9], m[0x8], AES_BLOCK_SIZE);
xorbuf (m[0x9], m[0x1], AES_BLOCK_SIZE);
XMEMCPY(m[0xa], m[0x8], AES_BLOCK_SIZE);
xorbuf (m[0xa], m[0x2], AES_BLOCK_SIZE);
XMEMCPY(m[0xb], m[0x8], AES_BLOCK_SIZE);
xorbuf (m[0xb], m[0x3], AES_BLOCK_SIZE);
XMEMCPY(m[0xc], m[0x8], AES_BLOCK_SIZE);
xorbuf (m[0xc], m[0x4], AES_BLOCK_SIZE);
XMEMCPY(m[0xd], m[0x8], AES_BLOCK_SIZE);
xorbuf (m[0xd], m[0x5], AES_BLOCK_SIZE);
XMEMCPY(m[0xe], m[0x8], AES_BLOCK_SIZE);
xorbuf (m[0xe], m[0x6], AES_BLOCK_SIZE);
XMEMCPY(m[0xf], m[0x8], AES_BLOCK_SIZE);
xorbuf (m[0xf], m[0x7], AES_BLOCK_SIZE);
#if !defined(BIG_ENDIAN_ORDER) && !defined(WC_16BIT_CPU)
for (i = 0; i < 16; i++) {
Shift4_M0(m[16+i], m[i]);
}
#endif
}
#endif /* GCM_TABLE */
/* Software AES - GCM SetKey */
int wc_AesGcmSetKey(Aes* aes, const byte* key, word32 len)
{
int ret;
byte iv[AES_BLOCK_SIZE];
#ifdef WOLFSSL_IMX6_CAAM_BLOB
byte local[32];
word32 localSz = 32;
if (len == (16 + WC_CAAM_BLOB_SZ) ||
len == (24 + WC_CAAM_BLOB_SZ) ||
len == (32 + WC_CAAM_BLOB_SZ)) {
if (wc_caamOpenBlob((byte*)key, len, local, &localSz) != 0) {
return BAD_FUNC_ARG;
}
/* set local values */
key = local;
len = localSz;
}
#endif
if (!((len == 16) || (len == 24) || (len == 32)))
return BAD_FUNC_ARG;
if (aes == NULL || key == NULL) {
#ifdef WOLFSSL_IMX6_CAAM_BLOB
ForceZero(local, sizeof(local));
#endif
return BAD_FUNC_ARG;
}
#ifdef OPENSSL_EXTRA
XMEMSET(aes->gcm.aadH, 0, sizeof(aes->gcm.aadH));
aes->gcm.aadLen = 0;
#endif
XMEMSET(iv, 0, AES_BLOCK_SIZE);
ret = wc_AesSetKey(aes, key, len, iv, AES_ENCRYPTION);
#ifdef WOLFSSL_AESGCM_STREAM
aes->gcmKeySet = 1;
#endif
#if defined(WOLFSSL_SECO_CAAM)
if (aes->devId == WOLFSSL_SECO_DEVID) {
return ret;
}
#endif /* WOLFSSL_SECO_CAAM */
#if defined(WOLFSSL_RENESAS_FSPSM_CRYPTONLY) && \
!defined(NO_WOLFSSL_RENESAS_FSPSM_AES)
return ret;
#endif /* WOLFSSL_RENESAS_RSIP && WOLFSSL_RENESAS_FSPSM_CRYPTONLY*/
#if !defined(FREESCALE_LTC_AES_GCM)
if (ret == 0) {
VECTOR_REGISTERS_PUSH;
/* AES-NI code generates its own H value, but generate it here too, to
* assure pure-C fallback is always usable.
*/
ret = wc_AesEncrypt(aes, iv, aes->gcm.H);
VECTOR_REGISTERS_POP;
}
if (ret == 0) {
#if defined(GCM_TABLE) || defined(GCM_TABLE_4BIT)
GenerateM0(&aes->gcm);
#endif /* GCM_TABLE */
}
#endif /* FREESCALE_LTC_AES_GCM */
#if defined(WOLFSSL_XILINX_CRYPT) || defined(WOLFSSL_AFALG_XILINX_AES)
wc_AesGcmSetKey_ex(aes, key, len, WOLFSSL_XILINX_AES_KEY_SRC);
#endif
#ifdef WOLF_CRYPTO_CB
if (aes->devId != INVALID_DEVID) {
XMEMCPY(aes->devKey, key, len);
}
#endif
#ifdef WOLFSSL_IMX6_CAAM_BLOB
ForceZero(local, sizeof(local));
#endif
return ret;
}
#ifdef WOLFSSL_AESNI
#if defined(USE_INTEL_SPEEDUP)
#define HAVE_INTEL_AVX1
#define HAVE_INTEL_AVX2
#endif /* USE_INTEL_SPEEDUP */
void AES_GCM_encrypt_aesni(const unsigned char *in, unsigned char *out,
const unsigned char* addt, const unsigned char* ivec,
unsigned char *tag, word32 nbytes,
word32 abytes, word32 ibytes,
word32 tbytes, const unsigned char* key, int nr)
XASM_LINK("AES_GCM_encrypt_aesni");
#ifdef HAVE_INTEL_AVX1
void AES_GCM_encrypt_avx1(const unsigned char *in, unsigned char *out,
const unsigned char* addt, const unsigned char* ivec,
unsigned char *tag, word32 nbytes,
word32 abytes, word32 ibytes,
word32 tbytes, const unsigned char* key,
int nr)
XASM_LINK("AES_GCM_encrypt_avx1");
#ifdef HAVE_INTEL_AVX2
void AES_GCM_encrypt_avx2(const unsigned char *in, unsigned char *out,
const unsigned char* addt, const unsigned char* ivec,
unsigned char *tag, word32 nbytes,
word32 abytes, word32 ibytes,
word32 tbytes, const unsigned char* key,
int nr)
XASM_LINK("AES_GCM_encrypt_avx2");
#endif /* HAVE_INTEL_AVX2 */
#endif /* HAVE_INTEL_AVX1 */
#ifdef HAVE_AES_DECRYPT
void AES_GCM_decrypt_aesni(const unsigned char *in, unsigned char *out,
const unsigned char* addt, const unsigned char* ivec,
const unsigned char *tag, word32 nbytes, word32 abytes,
word32 ibytes, word32 tbytes, const unsigned char* key,
int nr, int* res)
XASM_LINK("AES_GCM_decrypt_aesni");
#ifdef HAVE_INTEL_AVX1
void AES_GCM_decrypt_avx1(const unsigned char *in, unsigned char *out,
const unsigned char* addt, const unsigned char* ivec,
const unsigned char *tag, word32 nbytes,
word32 abytes, word32 ibytes, word32 tbytes,
const unsigned char* key, int nr, int* res)
XASM_LINK("AES_GCM_decrypt_avx1");
#ifdef HAVE_INTEL_AVX2
void AES_GCM_decrypt_avx2(const unsigned char *in, unsigned char *out,
const unsigned char* addt, const unsigned char* ivec,
const unsigned char *tag, word32 nbytes,
word32 abytes, word32 ibytes, word32 tbytes,
const unsigned char* key, int nr, int* res)
XASM_LINK("AES_GCM_decrypt_avx2");
#endif /* HAVE_INTEL_AVX2 */
#endif /* HAVE_INTEL_AVX1 */
#endif /* HAVE_AES_DECRYPT */
#endif /* WOLFSSL_AESNI */
#if defined(GCM_SMALL)
static void GMULT(byte* X, byte* Y)
{
byte Z[AES_BLOCK_SIZE];
byte V[AES_BLOCK_SIZE];
int i, j;
XMEMSET(Z, 0, AES_BLOCK_SIZE);
XMEMCPY(V, X, AES_BLOCK_SIZE);
for (i = 0; i < AES_BLOCK_SIZE; i++)
{
byte y = Y[i];
for (j = 0; j < 8; j++)
{
if (y & 0x80) {
xorbuf(Z, V, AES_BLOCK_SIZE);
}
RIGHTSHIFTX(V);
y = y << 1;
}
}
XMEMCPY(X, Z, AES_BLOCK_SIZE);
}
void GHASH(Gcm* gcm, const byte* a, word32 aSz, const byte* c,
word32 cSz, byte* s, word32 sSz)
{
byte x[AES_BLOCK_SIZE];
byte scratch[AES_BLOCK_SIZE];
word32 blocks, partial;
byte* h;
if (gcm == NULL) {
return;
}
h = gcm->H;
XMEMSET(x, 0, AES_BLOCK_SIZE);
/* Hash in A, the Additional Authentication Data */
if (aSz != 0 && a != NULL) {
blocks = aSz / AES_BLOCK_SIZE;
partial = aSz % AES_BLOCK_SIZE;
while (blocks--) {
xorbuf(x, a, AES_BLOCK_SIZE);
GMULT(x, h);
a += AES_BLOCK_SIZE;
}
if (partial != 0) {
XMEMSET(scratch, 0, AES_BLOCK_SIZE);
XMEMCPY(scratch, a, partial);
xorbuf(x, scratch, AES_BLOCK_SIZE);
GMULT(x, h);
}
}
/* Hash in C, the Ciphertext */
if (cSz != 0 && c != NULL) {
blocks = cSz / AES_BLOCK_SIZE;
partial = cSz % AES_BLOCK_SIZE;
while (blocks--) {
xorbuf(x, c, AES_BLOCK_SIZE);
GMULT(x, h);
c += AES_BLOCK_SIZE;
}
if (partial != 0) {
XMEMSET(scratch, 0, AES_BLOCK_SIZE);
XMEMCPY(scratch, c, partial);
xorbuf(x, scratch, AES_BLOCK_SIZE);
GMULT(x, h);
}
}
/* Hash in the lengths of A and C in bits */
FlattenSzInBits(&scratch[0], aSz);
FlattenSzInBits(&scratch[8], cSz);
xorbuf(x, scratch, AES_BLOCK_SIZE);
GMULT(x, h);
/* Copy the result into s. */
XMEMCPY(s, x, sSz);
}
#ifdef WOLFSSL_AESGCM_STREAM
/* No extra initialization for small implementation.
*
* @param [in] aes AES GCM object.
*/
#define GHASH_INIT_EXTRA(aes) WC_DO_NOTHING
/* GHASH one block of data..
*
* XOR block into tag and GMULT with H.
*
* @param [in, out] aes AES GCM object.
* @param [in] block Block of AAD or cipher text.
*/
#define GHASH_ONE_BLOCK(aes, block) \
do { \
xorbuf(AES_TAG(aes), block, AES_BLOCK_SIZE); \
GMULT(AES_TAG(aes), aes->gcm.H); \
} \
while (0)
#endif /* WOLFSSL_AESGCM_STREAM */
/* end GCM_SMALL */
#elif defined(GCM_TABLE)
ALIGN16 static const byte R[256][2] = {
{0x00, 0x00}, {0x01, 0xc2}, {0x03, 0x84}, {0x02, 0x46},
{0x07, 0x08}, {0x06, 0xca}, {0x04, 0x8c}, {0x05, 0x4e},
{0x0e, 0x10}, {0x0f, 0xd2}, {0x0d, 0x94}, {0x0c, 0x56},
{0x09, 0x18}, {0x08, 0xda}, {0x0a, 0x9c}, {0x0b, 0x5e},
{0x1c, 0x20}, {0x1d, 0xe2}, {0x1f, 0xa4}, {0x1e, 0x66},
{0x1b, 0x28}, {0x1a, 0xea}, {0x18, 0xac}, {0x19, 0x6e},
{0x12, 0x30}, {0x13, 0xf2}, {0x11, 0xb4}, {0x10, 0x76},
{0x15, 0x38}, {0x14, 0xfa}, {0x16, 0xbc}, {0x17, 0x7e},
{0x38, 0x40}, {0x39, 0x82}, {0x3b, 0xc4}, {0x3a, 0x06},
{0x3f, 0x48}, {0x3e, 0x8a}, {0x3c, 0xcc}, {0x3d, 0x0e},
{0x36, 0x50}, {0x37, 0x92}, {0x35, 0xd4}, {0x34, 0x16},
{0x31, 0x58}, {0x30, 0x9a}, {0x32, 0xdc}, {0x33, 0x1e},
{0x24, 0x60}, {0x25, 0xa2}, {0x27, 0xe4}, {0x26, 0x26},
{0x23, 0x68}, {0x22, 0xaa}, {0x20, 0xec}, {0x21, 0x2e},
{0x2a, 0x70}, {0x2b, 0xb2}, {0x29, 0xf4}, {0x28, 0x36},
{0x2d, 0x78}, {0x2c, 0xba}, {0x2e, 0xfc}, {0x2f, 0x3e},
{0x70, 0x80}, {0x71, 0x42}, {0x73, 0x04}, {0x72, 0xc6},
{0x77, 0x88}, {0x76, 0x4a}, {0x74, 0x0c}, {0x75, 0xce},
{0x7e, 0x90}, {0x7f, 0x52}, {0x7d, 0x14}, {0x7c, 0xd6},
{0x79, 0x98}, {0x78, 0x5a}, {0x7a, 0x1c}, {0x7b, 0xde},
{0x6c, 0xa0}, {0x6d, 0x62}, {0x6f, 0x24}, {0x6e, 0xe6},
{0x6b, 0xa8}, {0x6a, 0x6a}, {0x68, 0x2c}, {0x69, 0xee},
{0x62, 0xb0}, {0x63, 0x72}, {0x61, 0x34}, {0x60, 0xf6},
{0x65, 0xb8}, {0x64, 0x7a}, {0x66, 0x3c}, {0x67, 0xfe},
{0x48, 0xc0}, {0x49, 0x02}, {0x4b, 0x44}, {0x4a, 0x86},
{0x4f, 0xc8}, {0x4e, 0x0a}, {0x4c, 0x4c}, {0x4d, 0x8e},
{0x46, 0xd0}, {0x47, 0x12}, {0x45, 0x54}, {0x44, 0x96},
{0x41, 0xd8}, {0x40, 0x1a}, {0x42, 0x5c}, {0x43, 0x9e},
{0x54, 0xe0}, {0x55, 0x22}, {0x57, 0x64}, {0x56, 0xa6},
{0x53, 0xe8}, {0x52, 0x2a}, {0x50, 0x6c}, {0x51, 0xae},
{0x5a, 0xf0}, {0x5b, 0x32}, {0x59, 0x74}, {0x58, 0xb6},
{0x5d, 0xf8}, {0x5c, 0x3a}, {0x5e, 0x7c}, {0x5f, 0xbe},
{0xe1, 0x00}, {0xe0, 0xc2}, {0xe2, 0x84}, {0xe3, 0x46},
{0xe6, 0x08}, {0xe7, 0xca}, {0xe5, 0x8c}, {0xe4, 0x4e},
{0xef, 0x10}, {0xee, 0xd2}, {0xec, 0x94}, {0xed, 0x56},
{0xe8, 0x18}, {0xe9, 0xda}, {0xeb, 0x9c}, {0xea, 0x5e},
{0xfd, 0x20}, {0xfc, 0xe2}, {0xfe, 0xa4}, {0xff, 0x66},
{0xfa, 0x28}, {0xfb, 0xea}, {0xf9, 0xac}, {0xf8, 0x6e},
{0xf3, 0x30}, {0xf2, 0xf2}, {0xf0, 0xb4}, {0xf1, 0x76},
{0xf4, 0x38}, {0xf5, 0xfa}, {0xf7, 0xbc}, {0xf6, 0x7e},
{0xd9, 0x40}, {0xd8, 0x82}, {0xda, 0xc4}, {0xdb, 0x06},
{0xde, 0x48}, {0xdf, 0x8a}, {0xdd, 0xcc}, {0xdc, 0x0e},
{0xd7, 0x50}, {0xd6, 0x92}, {0xd4, 0xd4}, {0xd5, 0x16},
{0xd0, 0x58}, {0xd1, 0x9a}, {0xd3, 0xdc}, {0xd2, 0x1e},
{0xc5, 0x60}, {0xc4, 0xa2}, {0xc6, 0xe4}, {0xc7, 0x26},
{0xc2, 0x68}, {0xc3, 0xaa}, {0xc1, 0xec}, {0xc0, 0x2e},
{0xcb, 0x70}, {0xca, 0xb2}, {0xc8, 0xf4}, {0xc9, 0x36},
{0xcc, 0x78}, {0xcd, 0xba}, {0xcf, 0xfc}, {0xce, 0x3e},
{0x91, 0x80}, {0x90, 0x42}, {0x92, 0x04}, {0x93, 0xc6},
{0x96, 0x88}, {0x97, 0x4a}, {0x95, 0x0c}, {0x94, 0xce},
{0x9f, 0x90}, {0x9e, 0x52}, {0x9c, 0x14}, {0x9d, 0xd6},
{0x98, 0x98}, {0x99, 0x5a}, {0x9b, 0x1c}, {0x9a, 0xde},
{0x8d, 0xa0}, {0x8c, 0x62}, {0x8e, 0x24}, {0x8f, 0xe6},
{0x8a, 0xa8}, {0x8b, 0x6a}, {0x89, 0x2c}, {0x88, 0xee},
{0x83, 0xb0}, {0x82, 0x72}, {0x80, 0x34}, {0x81, 0xf6},
{0x84, 0xb8}, {0x85, 0x7a}, {0x87, 0x3c}, {0x86, 0xfe},
{0xa9, 0xc0}, {0xa8, 0x02}, {0xaa, 0x44}, {0xab, 0x86},
{0xae, 0xc8}, {0xaf, 0x0a}, {0xad, 0x4c}, {0xac, 0x8e},
{0xa7, 0xd0}, {0xa6, 0x12}, {0xa4, 0x54}, {0xa5, 0x96},
{0xa0, 0xd8}, {0xa1, 0x1a}, {0xa3, 0x5c}, {0xa2, 0x9e},
{0xb5, 0xe0}, {0xb4, 0x22}, {0xb6, 0x64}, {0xb7, 0xa6},
{0xb2, 0xe8}, {0xb3, 0x2a}, {0xb1, 0x6c}, {0xb0, 0xae},
{0xbb, 0xf0}, {0xba, 0x32}, {0xb8, 0x74}, {0xb9, 0xb6},
{0xbc, 0xf8}, {0xbd, 0x3a}, {0xbf, 0x7c}, {0xbe, 0xbe} };
static void GMULT(byte *x, byte m[256][AES_BLOCK_SIZE])
{
#if !defined(WORD64_AVAILABLE) || defined(BIG_ENDIAN_ORDER)
int i, j;
byte Z[AES_BLOCK_SIZE];
byte a;
XMEMSET(Z, 0, sizeof(Z));
for (i = 15; i > 0; i--) {
xorbuf(Z, m[x[i]], AES_BLOCK_SIZE);
a = Z[15];
for (j = 15; j > 0; j--) {
Z[j] = Z[j-1];
}
Z[0] = R[a][0];
Z[1] ^= R[a][1];
}
xorbuf(Z, m[x[0]], AES_BLOCK_SIZE);
XMEMCPY(x, Z, AES_BLOCK_SIZE);
#elif defined(WC_32BIT_CPU)
byte Z[AES_BLOCK_SIZE + AES_BLOCK_SIZE];
byte a;
word32* pZ;
word32* pm;
word32* px = (word32*)(x);
int i;
pZ = (word32*)(Z + 15 + 1);
pm = (word32*)(m[x[15]]);
pZ[0] = pm[0];
pZ[1] = pm[1];
pZ[2] = pm[2];
pZ[3] = pm[3];
a = Z[16 + 15];
Z[15] = R[a][0];
Z[16] ^= R[a][1];
for (i = 14; i > 0; i--) {
pZ = (word32*)(Z + i + 1);
pm = (word32*)(m[x[i]]);
pZ[0] ^= pm[0];
pZ[1] ^= pm[1];
pZ[2] ^= pm[2];
pZ[3] ^= pm[3];
a = Z[16 + i];
Z[i] = R[a][0];
Z[i+1] ^= R[a][1];
}
pZ = (word32*)(Z + 1);
pm = (word32*)(m[x[0]]);
px[0] = pZ[0] ^ pm[0]; px[1] = pZ[1] ^ pm[1];
px[2] = pZ[2] ^ pm[2]; px[3] = pZ[3] ^ pm[3];
#else
byte Z[AES_BLOCK_SIZE + AES_BLOCK_SIZE];
byte a;
word64* pZ;
word64* pm;
word64* px = (word64*)(x);
int i;
pZ = (word64*)(Z + 15 + 1);
pm = (word64*)(m[x[15]]);
pZ[0] = pm[0];
pZ[1] = pm[1];
a = Z[16 + 15];
Z[15] = R[a][0];
Z[16] ^= R[a][1];
for (i = 14; i > 0; i--) {
pZ = (word64*)(Z + i + 1);
pm = (word64*)(m[x[i]]);
pZ[0] ^= pm[0];
pZ[1] ^= pm[1];
a = Z[16 + i];
Z[i] = R[a][0];
Z[i+1] ^= R[a][1];
}
pZ = (word64*)(Z + 1);
pm = (word64*)(m[x[0]]);
px[0] = pZ[0] ^ pm[0]; px[1] = pZ[1] ^ pm[1];
#endif
}
void GHASH(Gcm* gcm, const byte* a, word32 aSz, const byte* c,
word32 cSz, byte* s, word32 sSz)
{
byte x[AES_BLOCK_SIZE];
byte scratch[AES_BLOCK_SIZE];
word32 blocks, partial;
if (gcm == NULL) {
return;
}
XMEMSET(x, 0, AES_BLOCK_SIZE);
/* Hash in A, the Additional Authentication Data */
if (aSz != 0 && a != NULL) {
blocks = aSz / AES_BLOCK_SIZE;
partial = aSz % AES_BLOCK_SIZE;
while (blocks--) {
xorbuf(x, a, AES_BLOCK_SIZE);
GMULT(x, gcm->M0);
a += AES_BLOCK_SIZE;
}
if (partial != 0) {
XMEMSET(scratch, 0, AES_BLOCK_SIZE);
XMEMCPY(scratch, a, partial);
xorbuf(x, scratch, AES_BLOCK_SIZE);
GMULT(x, gcm->M0);
}
}
/* Hash in C, the Ciphertext */
if (cSz != 0 && c != NULL) {
blocks = cSz / AES_BLOCK_SIZE;
partial = cSz % AES_BLOCK_SIZE;
while (blocks--) {
xorbuf(x, c, AES_BLOCK_SIZE);
GMULT(x, gcm->M0);
c += AES_BLOCK_SIZE;
}
if (partial != 0) {
XMEMSET(scratch, 0, AES_BLOCK_SIZE);
XMEMCPY(scratch, c, partial);
xorbuf(x, scratch, AES_BLOCK_SIZE);
GMULT(x, gcm->M0);
}
}
/* Hash in the lengths of A and C in bits */
FlattenSzInBits(&scratch[0], aSz);
FlattenSzInBits(&scratch[8], cSz);
xorbuf(x, scratch, AES_BLOCK_SIZE);
GMULT(x, gcm->M0);
/* Copy the result into s. */
XMEMCPY(s, x, sSz);
}
#ifdef WOLFSSL_AESGCM_STREAM
/* No extra initialization for table implementation.
*
* @param [in] aes AES GCM object.
*/
#define GHASH_INIT_EXTRA(aes) WC_DO_NOTHING
/* GHASH one block of data..
*
* XOR block into tag and GMULT with H using pre-computed table.
*
* @param [in, out] aes AES GCM object.
* @param [in] block Block of AAD or cipher text.
*/
#define GHASH_ONE_BLOCK(aes, block) \
do { \
xorbuf(AES_TAG(aes), block, AES_BLOCK_SIZE); \
GMULT(AES_TAG(aes), aes->gcm.M0); \
} \
while (0)
#endif /* WOLFSSL_AESGCM_STREAM */
/* end GCM_TABLE */
#elif defined(GCM_TABLE_4BIT)
/* remainder = x^7 + x^2 + x^1 + 1 => 0xe1
* R shifts right a reverse bit pair of bytes such that:
* R(b0, b1) => b1 = (b1 >> 1) | (b0 << 7); b0 >>= 1
* 0 => 0, 0, 0, 0 => R(R(R(00,00) ^ 00,00) ^ 00,00) ^ 00,00 = 00,00
* 8 => 0, 0, 0, 1 => R(R(R(00,00) ^ 00,00) ^ 00,00) ^ e1,00 = e1,00
* 4 => 0, 0, 1, 0 => R(R(R(00,00) ^ 00,00) ^ e1,00) ^ 00,00 = 70,80
* 2 => 0, 1, 0, 0 => R(R(R(00,00) ^ e1,00) ^ 00,00) ^ 00,00 = 38,40
* 1 => 1, 0, 0, 0 => R(R(R(e1,00) ^ 00,00) ^ 00,00) ^ 00,00 = 1c,20
* To calculate te rest, XOR result for each bit.
* e.g. 6 = 4 ^ 2 => 48,c0
*
* Second half is same values rotated by 4-bits.
*/
#if defined(BIG_ENDIAN_ORDER) || defined(WC_16BIT_CPU)
static const byte R[16][2] = {
{0x00, 0x00}, {0x1c, 0x20}, {0x38, 0x40}, {0x24, 0x60},
{0x70, 0x80}, {0x6c, 0xa0}, {0x48, 0xc0}, {0x54, 0xe0},
{0xe1, 0x00}, {0xfd, 0x20}, {0xd9, 0x40}, {0xc5, 0x60},
{0x91, 0x80}, {0x8d, 0xa0}, {0xa9, 0xc0}, {0xb5, 0xe0},
};
#else
static const word16 R[32] = {
0x0000, 0x201c, 0x4038, 0x6024,
0x8070, 0xa06c, 0xc048, 0xe054,
0x00e1, 0x20fd, 0x40d9, 0x60c5,
0x8091, 0xa08d, 0xc0a9, 0xe0b5,
0x0000, 0xc201, 0x8403, 0x4602,
0x0807, 0xca06, 0x8c04, 0x4e05,
0x100e, 0xd20f, 0x940d, 0x560c,
0x1809, 0xda08, 0x9c0a, 0x5e0b,
};
#endif
/* Multiply in GF(2^128) defined by polynomial:
* x^128 + x^7 + x^2 + x^1 + 1.
*
* H: hash key = encrypt(key, 0)
* x = x * H in field
*
* x: cumulative result
* m: 4-bit table
* [0..15] * H
*/
#if defined(BIG_ENDIAN_ORDER) || defined(WC_16BIT_CPU)
static void GMULT(byte *x, byte m[16][AES_BLOCK_SIZE])
{
int i, j, n;
byte Z[AES_BLOCK_SIZE];
byte a;
XMEMSET(Z, 0, sizeof(Z));
for (i = 15; i >= 0; i--) {
for (n = 0; n < 2; n++) {
if (n == 0)
xorbuf(Z, m[x[i] & 0xf], AES_BLOCK_SIZE);
else {
xorbuf(Z, m[x[i] >> 4], AES_BLOCK_SIZE);
if (i == 0)
break;
}
a = Z[15] & 0xf;
for (j = 15; j > 0; j--)
Z[j] = (Z[j-1] << 4) | (Z[j] >> 4);
Z[0] >>= 4;
Z[0] ^= R[a][0];
Z[1] ^= R[a][1];
}
}
XMEMCPY(x, Z, AES_BLOCK_SIZE);
}
#elif defined(WC_32BIT_CPU)
static WC_INLINE void GMULT(byte *x, byte m[32][AES_BLOCK_SIZE])
{
int i;
word32 z8[4] = {0, 0, 0, 0};
byte a;
word32* x8 = (word32*)x;
word32* m8;
byte xi;
word32 n7, n6, n5, n4, n3, n2, n1, n0;
for (i = 15; i > 0; i--) {
xi = x[i];
/* XOR in (msn * H) */
m8 = (word32*)m[xi & 0xf];
z8[0] ^= m8[0]; z8[1] ^= m8[1]; z8[2] ^= m8[2]; z8[3] ^= m8[3];
/* Cache top byte for remainder calculations - lost in rotate. */
a = (byte)(z8[3] >> 24);
/* Rotate Z by 8-bits */
z8[3] = (z8[2] >> 24) | (z8[3] << 8);
z8[2] = (z8[1] >> 24) | (z8[2] << 8);
z8[1] = (z8[0] >> 24) | (z8[1] << 8);
z8[0] <<= 8;
/* XOR in (msn * remainder) [pre-rotated by 4 bits] */
z8[0] ^= (word32)R[16 + (a & 0xf)];
xi >>= 4;
/* XOR in next significant nibble (XORed with H) * remainder */
m8 = (word32*)m[xi];
a ^= (byte)(m8[3] >> 20);
z8[0] ^= (word32)R[a >> 4];
/* XOR in (next significant nibble * H) [pre-rotated by 4 bits] */
m8 = (word32*)m[16 + xi];
z8[0] ^= m8[0]; z8[1] ^= m8[1];
z8[2] ^= m8[2]; z8[3] ^= m8[3];
}
xi = x[0];
/* XOR in most significant nibble * H */
m8 = (word32*)m[xi & 0xf];
z8[0] ^= m8[0]; z8[1] ^= m8[1]; z8[2] ^= m8[2]; z8[3] ^= m8[3];
/* Cache top byte for remainder calculations - lost in rotate. */
a = (z8[3] >> 24) & 0xf;
/* Rotate z by 4-bits */
n7 = z8[3] & 0xf0f0f0f0ULL;
n6 = z8[3] & 0x0f0f0f0fULL;
n5 = z8[2] & 0xf0f0f0f0ULL;
n4 = z8[2] & 0x0f0f0f0fULL;
n3 = z8[1] & 0xf0f0f0f0ULL;
n2 = z8[1] & 0x0f0f0f0fULL;
n1 = z8[0] & 0xf0f0f0f0ULL;
n0 = z8[0] & 0x0f0f0f0fULL;
z8[3] = (n7 >> 4) | (n6 << 12) | (n4 >> 20);
z8[2] = (n5 >> 4) | (n4 << 12) | (n2 >> 20);
z8[1] = (n3 >> 4) | (n2 << 12) | (n0 >> 20);
z8[0] = (n1 >> 4) | (n0 << 12);
/* XOR in most significant nibble * remainder */
z8[0] ^= (word32)R[a];
/* XOR in next significant nibble * H */
m8 = (word32*)m[xi >> 4];
z8[0] ^= m8[0]; z8[1] ^= m8[1]; z8[2] ^= m8[2]; z8[3] ^= m8[3];
/* Write back result. */
x8[0] = z8[0]; x8[1] = z8[1]; x8[2] = z8[2]; x8[3] = z8[3];
}
#else
static WC_INLINE void GMULT(byte *x, byte m[32][AES_BLOCK_SIZE])
{
int i;
word64 z8[2] = {0, 0};
byte a;
word64* x8 = (word64*)x;
word64* m8;
word64 n0, n1, n2, n3;
byte xi;
for (i = 15; i > 0; i--) {
xi = x[i];
/* XOR in (msn * H) */
m8 = (word64*)m[xi & 0xf];
z8[0] ^= m8[0];
z8[1] ^= m8[1];
/* Cache top byte for remainder calculations - lost in rotate. */
a = (byte)(z8[1] >> 56);
/* Rotate Z by 8-bits */
z8[1] = (z8[0] >> 56) | (z8[1] << 8);
z8[0] <<= 8;
/* XOR in (next significant nibble * H) [pre-rotated by 4 bits] */
m8 = (word64*)m[16 + (xi >> 4)];
z8[0] ^= m8[0];
z8[1] ^= m8[1];
/* XOR in (msn * remainder) [pre-rotated by 4 bits] */
z8[0] ^= (word64)R[16 + (a & 0xf)];
/* XOR in next significant nibble (XORed with H) * remainder */
m8 = (word64*)m[xi >> 4];
a ^= (byte)(m8[1] >> 52);
z8[0] ^= (word64)R[a >> 4];
}
xi = x[0];
/* XOR in most significant nibble * H */
m8 = (word64*)m[xi & 0xf];
z8[0] ^= m8[0];
z8[1] ^= m8[1];
/* Cache top byte for remainder calculations - lost in rotate. */
a = (z8[1] >> 56) & 0xf;
/* Rotate z by 4-bits */
n3 = z8[1] & W64LIT(0xf0f0f0f0f0f0f0f0);
n2 = z8[1] & W64LIT(0x0f0f0f0f0f0f0f0f);
n1 = z8[0] & W64LIT(0xf0f0f0f0f0f0f0f0);
n0 = z8[0] & W64LIT(0x0f0f0f0f0f0f0f0f);
z8[1] = (n3 >> 4) | (n2 << 12) | (n0 >> 52);
z8[0] = (n1 >> 4) | (n0 << 12);
/* XOR in next significant nibble * H */
m8 = (word64*)m[xi >> 4];
z8[0] ^= m8[0];
z8[1] ^= m8[1];
/* XOR in most significant nibble * remainder */
z8[0] ^= (word64)R[a];
/* Write back result. */
x8[0] = z8[0];
x8[1] = z8[1];
}
#endif
void GHASH(Gcm* gcm, const byte* a, word32 aSz, const byte* c,
word32 cSz, byte* s, word32 sSz)
{
byte x[AES_BLOCK_SIZE];
byte scratch[AES_BLOCK_SIZE];
word32 blocks, partial;
if (gcm == NULL) {
return;
}
XMEMSET(x, 0, AES_BLOCK_SIZE);
/* Hash in A, the Additional Authentication Data */
if (aSz != 0 && a != NULL) {
blocks = aSz / AES_BLOCK_SIZE;
partial = aSz % AES_BLOCK_SIZE;
while (blocks--) {
xorbuf(x, a, AES_BLOCK_SIZE);
GMULT(x, gcm->M0);
a += AES_BLOCK_SIZE;
}
if (partial != 0) {
XMEMSET(scratch, 0, AES_BLOCK_SIZE);
XMEMCPY(scratch, a, partial);
xorbuf(x, scratch, AES_BLOCK_SIZE);
GMULT(x, gcm->M0);
}
}
/* Hash in C, the Ciphertext */
if (cSz != 0 && c != NULL) {
blocks = cSz / AES_BLOCK_SIZE;
partial = cSz % AES_BLOCK_SIZE;
while (blocks--) {
xorbuf(x, c, AES_BLOCK_SIZE);
GMULT(x, gcm->M0);
c += AES_BLOCK_SIZE;
}
if (partial != 0) {
XMEMSET(scratch, 0, AES_BLOCK_SIZE);
XMEMCPY(scratch, c, partial);
xorbuf(x, scratch, AES_BLOCK_SIZE);
GMULT(x, gcm->M0);
}
}
/* Hash in the lengths of A and C in bits */
FlattenSzInBits(&scratch[0], aSz);
FlattenSzInBits(&scratch[8], cSz);
xorbuf(x, scratch, AES_BLOCK_SIZE);
GMULT(x, gcm->M0);
/* Copy the result into s. */
XMEMCPY(s, x, sSz);
}
#ifdef WOLFSSL_AESGCM_STREAM
/* No extra initialization for 4-bit table implementation.
*
* @param [in] aes AES GCM object.
*/
#define GHASH_INIT_EXTRA(aes) WC_DO_NOTHING
/* GHASH one block of data..
*
* XOR block into tag and GMULT with H using pre-computed table.
*
* @param [in, out] aes AES GCM object.
* @param [in] block Block of AAD or cipher text.
*/
#define GHASH_ONE_BLOCK(aes, block) \
do { \
xorbuf(AES_TAG(aes), block, AES_BLOCK_SIZE); \
GMULT(AES_TAG(aes), (aes)->gcm.M0); \
} \
while (0)
#endif /* WOLFSSL_AESGCM_STREAM */
#elif defined(WORD64_AVAILABLE) && !defined(GCM_WORD32)
#if !defined(FREESCALE_LTC_AES_GCM)
static void GMULT(word64* X, word64* Y)
{
word64 Z[2] = {0,0};
word64 V[2];
int i, j;
word64 v1;
V[0] = X[0]; V[1] = X[1];
for (i = 0; i < 2; i++)
{
word64 y = Y[i];
for (j = 0; j < 64; j++)
{
#ifndef AES_GCM_GMULT_NCT
word64 mask = 0 - (y >> 63);
Z[0] ^= V[0] & mask;
Z[1] ^= V[1] & mask;
#else
if (y & 0x8000000000000000ULL) {
Z[0] ^= V[0];
Z[1] ^= V[1];
}
#endif
v1 = (0 - (V[1] & 1)) & 0xE100000000000000ULL;
V[1] >>= 1;
V[1] |= V[0] << 63;
V[0] >>= 1;
V[0] ^= v1;
y <<= 1;
}
}
X[0] = Z[0];
X[1] = Z[1];
}
void GHASH(Gcm* gcm, const byte* a, word32 aSz, const byte* c,
word32 cSz, byte* s, word32 sSz)
{
word64 x[2] = {0,0};
word32 blocks, partial;
word64 bigH[2];
if (gcm == NULL) {
return;
}
XMEMCPY(bigH, gcm->H, AES_BLOCK_SIZE);
#ifdef LITTLE_ENDIAN_ORDER
ByteReverseWords64(bigH, bigH, AES_BLOCK_SIZE);
#endif
/* Hash in A, the Additional Authentication Data */
if (aSz != 0 && a != NULL) {
word64 bigA[2];
blocks = aSz / AES_BLOCK_SIZE;
partial = aSz % AES_BLOCK_SIZE;
while (blocks--) {
XMEMCPY(bigA, a, AES_BLOCK_SIZE);
#ifdef LITTLE_ENDIAN_ORDER
ByteReverseWords64(bigA, bigA, AES_BLOCK_SIZE);
#endif
x[0] ^= bigA[0];
x[1] ^= bigA[1];
GMULT(x, bigH);
a += AES_BLOCK_SIZE;
}
if (partial != 0) {
XMEMSET(bigA, 0, AES_BLOCK_SIZE);
XMEMCPY(bigA, a, partial);
#ifdef LITTLE_ENDIAN_ORDER
ByteReverseWords64(bigA, bigA, AES_BLOCK_SIZE);
#endif
x[0] ^= bigA[0];
x[1] ^= bigA[1];
GMULT(x, bigH);
}
#ifdef OPENSSL_EXTRA
/* store AAD partial tag for next call */
gcm->aadH[0] = (word32)((x[0] & 0xFFFFFFFF00000000ULL) >> 32);
gcm->aadH[1] = (word32)(x[0] & 0xFFFFFFFF);
gcm->aadH[2] = (word32)((x[1] & 0xFFFFFFFF00000000ULL) >> 32);
gcm->aadH[3] = (word32)(x[1] & 0xFFFFFFFF);
#endif
}
/* Hash in C, the Ciphertext */
if (cSz != 0 && c != NULL) {
word64 bigC[2];
blocks = cSz / AES_BLOCK_SIZE;
partial = cSz % AES_BLOCK_SIZE;
#ifdef OPENSSL_EXTRA
/* Start from last AAD partial tag */
if(gcm->aadLen) {
x[0] = ((word64)gcm->aadH[0]) << 32 | gcm->aadH[1];
x[1] = ((word64)gcm->aadH[2]) << 32 | gcm->aadH[3];
}
#endif
while (blocks--) {
XMEMCPY(bigC, c, AES_BLOCK_SIZE);
#ifdef LITTLE_ENDIAN_ORDER
ByteReverseWords64(bigC, bigC, AES_BLOCK_SIZE);
#endif
x[0] ^= bigC[0];
x[1] ^= bigC[1];
GMULT(x, bigH);
c += AES_BLOCK_SIZE;
}
if (partial != 0) {
XMEMSET(bigC, 0, AES_BLOCK_SIZE);
XMEMCPY(bigC, c, partial);
#ifdef LITTLE_ENDIAN_ORDER
ByteReverseWords64(bigC, bigC, AES_BLOCK_SIZE);
#endif
x[0] ^= bigC[0];
x[1] ^= bigC[1];
GMULT(x, bigH);
}
}
/* Hash in the lengths in bits of A and C */
{
word64 len[2];
len[0] = aSz; len[1] = cSz;
#ifdef OPENSSL_EXTRA
if (gcm->aadLen)
len[0] = (word64)gcm->aadLen;
#endif
/* Lengths are in bytes. Convert to bits. */
len[0] *= 8;
len[1] *= 8;
x[0] ^= len[0];
x[1] ^= len[1];
GMULT(x, bigH);
}
#ifdef LITTLE_ENDIAN_ORDER
ByteReverseWords64(x, x, AES_BLOCK_SIZE);
#endif
XMEMCPY(s, x, sSz);
}
#endif /* !FREESCALE_LTC_AES_GCM */
#ifdef WOLFSSL_AESGCM_STREAM
#ifdef LITTLE_ENDIAN_ORDER
/* No extra initialization for small implementation.
*
* @param [in] aes AES GCM object.
*/
#define GHASH_INIT_EXTRA(aes) \
ByteReverseWords64((word64*)aes->gcm.H, (word64*)aes->gcm.H, AES_BLOCK_SIZE)
/* GHASH one block of data..
*
* XOR block into tag and GMULT with H.
*
* @param [in, out] aes AES GCM object.
* @param [in] block Block of AAD or cipher text.
*/
#define GHASH_ONE_BLOCK(aes, block) \
do { \
word64* x = (word64*)AES_TAG(aes); \
word64* h = (word64*)aes->gcm.H; \
word64 block64[2]; \
XMEMCPY(block64, block, AES_BLOCK_SIZE); \
ByteReverseWords64(block64, block64, AES_BLOCK_SIZE); \
x[0] ^= block64[0]; \
x[1] ^= block64[1]; \
GMULT(x, h); \
} \
while (0)
#ifdef OPENSSL_EXTRA
/* GHASH in AAD and cipher text lengths in bits.
*
* Convert tag back to little-endian.
*
* @param [in, out] aes AES GCM object.
*/
#define GHASH_LEN_BLOCK(aes) \
do { \
word64* x = (word64*)AES_TAG(aes); \
word64* h = (word64*)aes->gcm.H; \
word64 len[2]; \
len[0] = aes->aSz; len[1] = aes->cSz; \
if (aes->gcm.aadLen) \
len[0] = (word64)aes->gcm.aadLen; \
/* Lengths are in bytes. Convert to bits. */ \
len[0] *= 8; \
len[1] *= 8; \
\
x[0] ^= len[0]; \
x[1] ^= len[1]; \
GMULT(x, h); \
ByteReverseWords64(x, x, AES_BLOCK_SIZE); \
} \
while (0)
#else
/* GHASH in AAD and cipher text lengths in bits.
*
* Convert tag back to little-endian.
*
* @param [in, out] aes AES GCM object.
*/
#define GHASH_LEN_BLOCK(aes) \
do { \
word64* x = (word64*)AES_TAG(aes); \
word64* h = (word64*)aes->gcm.H; \
word64 len[2]; \
len[0] = aes->aSz; len[1] = aes->cSz; \
/* Lengths are in bytes. Convert to bits. */ \
len[0] *= 8; \
len[1] *= 8; \
\
x[0] ^= len[0]; \
x[1] ^= len[1]; \
GMULT(x, h); \
ByteReverseWords64(x, x, AES_BLOCK_SIZE); \
} \
while (0)
#endif
#else
/* No extra initialization for small implementation.
*
* @param [in] aes AES GCM object.
*/
#define GHASH_INIT_EXTRA(aes) WC_DO_NOTHING
/* GHASH one block of data..
*
* XOR block into tag and GMULT with H.
*
* @param [in, out] aes AES GCM object.
* @param [in] block Block of AAD or cipher text.
*/
#define GHASH_ONE_BLOCK(aes, block) \
do { \
word64* x = (word64*)AES_TAG(aes); \
word64* h = (word64*)aes->gcm.H; \
word64 block64[2]; \
XMEMCPY(block64, block, AES_BLOCK_SIZE); \
x[0] ^= block64[0]; \
x[1] ^= block64[1]; \
GMULT(x, h); \
} \
while (0)
#ifdef OPENSSL_EXTRA
/* GHASH in AAD and cipher text lengths in bits.
*
* Convert tag back to little-endian.
*
* @param [in, out] aes AES GCM object.
*/
#define GHASH_LEN_BLOCK(aes) \
do { \
word64* x = (word64*)AES_TAG(aes); \
word64* h = (word64*)aes->gcm.H; \
word64 len[2]; \
len[0] = aes->aSz; len[1] = aes->cSz; \
if (aes->gcm.aadLen) \
len[0] = (word64)aes->gcm.aadLen; \
/* Lengths are in bytes. Convert to bits. */ \
len[0] *= 8; \
len[1] *= 8; \
\
x[0] ^= len[0]; \
x[1] ^= len[1]; \
GMULT(x, h); \
} \
while (0)
#else
/* GHASH in AAD and cipher text lengths in bits.
*
* Convert tag back to little-endian.
*
* @param [in, out] aes AES GCM object.
*/
#define GHASH_LEN_BLOCK(aes) \
do { \
word64* x = (word64*)AES_TAG(aes); \
word64* h = (word64*)aes->gcm.H; \
word64 len[2]; \
len[0] = aes->aSz; len[1] = aes->cSz; \
/* Lengths are in bytes. Convert to bits. */ \
len[0] *= 8; \
len[1] *= 8; \
\
x[0] ^= len[0]; \
x[1] ^= len[1]; \
GMULT(x, h); \
} \
while (0)
#endif
#endif /* !LITTLE_ENDIAN_ORDER */
#endif /* WOLFSSL_AESGCM_STREAM */
/* end defined(WORD64_AVAILABLE) && !defined(GCM_WORD32) */
#else /* GCM_WORD32 */
static void GMULT(word32* X, word32* Y)
{
word32 Z[4] = {0,0,0,0};
word32 V[4];
int i, j;
V[0] = X[0]; V[1] = X[1]; V[2] = X[2]; V[3] = X[3];
for (i = 0; i < 4; i++)
{
word32 y = Y[i];
for (j = 0; j < 32; j++)
{
if (y & 0x80000000) {
Z[0] ^= V[0];
Z[1] ^= V[1];
Z[2] ^= V[2];
Z[3] ^= V[3];
}
if (V[3] & 0x00000001) {
V[3] >>= 1;
V[3] |= ((V[2] & 0x00000001) ? 0x80000000 : 0);
V[2] >>= 1;
V[2] |= ((V[1] & 0x00000001) ? 0x80000000 : 0);
V[1] >>= 1;
V[1] |= ((V[0] & 0x00000001) ? 0x80000000 : 0);
V[0] >>= 1;
V[0] ^= 0xE1000000;
} else {
V[3] >>= 1;
V[3] |= ((V[2] & 0x00000001) ? 0x80000000 : 0);
V[2] >>= 1;
V[2] |= ((V[1] & 0x00000001) ? 0x80000000 : 0);
V[1] >>= 1;
V[1] |= ((V[0] & 0x00000001) ? 0x80000000 : 0);
V[0] >>= 1;
}
y <<= 1;
}
}
X[0] = Z[0];
X[1] = Z[1];
X[2] = Z[2];
X[3] = Z[3];
}
void GHASH(Gcm* gcm, const byte* a, word32 aSz, const byte* c,
word32 cSz, byte* s, word32 sSz)
{
word32 x[4] = {0,0,0,0};
word32 blocks, partial;
word32 bigH[4];
if (gcm == NULL) {
return;
}
XMEMCPY(bigH, gcm->H, AES_BLOCK_SIZE);
#ifdef LITTLE_ENDIAN_ORDER
ByteReverseWords(bigH, bigH, AES_BLOCK_SIZE);
#endif
/* Hash in A, the Additional Authentication Data */
if (aSz != 0 && a != NULL) {
word32 bigA[4];
blocks = aSz / AES_BLOCK_SIZE;
partial = aSz % AES_BLOCK_SIZE;
while (blocks--) {
XMEMCPY(bigA, a, AES_BLOCK_SIZE);
#ifdef LITTLE_ENDIAN_ORDER
ByteReverseWords(bigA, bigA, AES_BLOCK_SIZE);
#endif
x[0] ^= bigA[0];
x[1] ^= bigA[1];
x[2] ^= bigA[2];
x[3] ^= bigA[3];
GMULT(x, bigH);
a += AES_BLOCK_SIZE;
}
if (partial != 0) {
XMEMSET(bigA, 0, AES_BLOCK_SIZE);
XMEMCPY(bigA, a, partial);
#ifdef LITTLE_ENDIAN_ORDER
ByteReverseWords(bigA, bigA, AES_BLOCK_SIZE);
#endif
x[0] ^= bigA[0];
x[1] ^= bigA[1];
x[2] ^= bigA[2];
x[3] ^= bigA[3];
GMULT(x, bigH);
}
}
/* Hash in C, the Ciphertext */
if (cSz != 0 && c != NULL) {
word32 bigC[4];
blocks = cSz / AES_BLOCK_SIZE;
partial = cSz % AES_BLOCK_SIZE;
while (blocks--) {
XMEMCPY(bigC, c, AES_BLOCK_SIZE);
#ifdef LITTLE_ENDIAN_ORDER
ByteReverseWords(bigC, bigC, AES_BLOCK_SIZE);
#endif
x[0] ^= bigC[0];
x[1] ^= bigC[1];
x[2] ^= bigC[2];
x[3] ^= bigC[3];
GMULT(x, bigH);
c += AES_BLOCK_SIZE;
}
if (partial != 0) {
XMEMSET(bigC, 0, AES_BLOCK_SIZE);
XMEMCPY(bigC, c, partial);
#ifdef LITTLE_ENDIAN_ORDER
ByteReverseWords(bigC, bigC, AES_BLOCK_SIZE);
#endif
x[0] ^= bigC[0];
x[1] ^= bigC[1];
x[2] ^= bigC[2];
x[3] ^= bigC[3];
GMULT(x, bigH);
}
}
/* Hash in the lengths in bits of A and C */
{
word32 len[4];
/* Lengths are in bytes. Convert to bits. */
len[0] = (aSz >> (8*sizeof(aSz) - 3));
len[1] = aSz << 3;
len[2] = (cSz >> (8*sizeof(cSz) - 3));
len[3] = cSz << 3;
x[0] ^= len[0];
x[1] ^= len[1];
x[2] ^= len[2];
x[3] ^= len[3];
GMULT(x, bigH);
}
#ifdef LITTLE_ENDIAN_ORDER
ByteReverseWords(x, x, AES_BLOCK_SIZE);
#endif
XMEMCPY(s, x, sSz);
}
#ifdef WOLFSSL_AESGCM_STREAM
#ifdef LITTLE_ENDIAN_ORDER
/* Little-endian 32-bit word implementation requires byte reversal of H.
*
* H is all-zeros block encrypted with key.
*
* @param [in, out] aes AES GCM object.
*/
#define GHASH_INIT_EXTRA(aes) \
ByteReverseWords((word32*)aes->gcm.H, (word32*)aes->gcm.H, AES_BLOCK_SIZE)
/* GHASH one block of data..
*
* XOR block, in big-endian form, into tag and GMULT with H.
*
* @param [in, out] aes AES GCM object.
* @param [in] block Block of AAD or cipher text.
*/
#define GHASH_ONE_BLOCK(aes, block) \
do { \
word32* x = (word32*)AES_TAG(aes); \
word32* h = (word32*)aes->gcm.H; \
word32 bigEnd[4]; \
XMEMCPY(bigEnd, block, AES_BLOCK_SIZE); \
ByteReverseWords(bigEnd, bigEnd, AES_BLOCK_SIZE); \
x[0] ^= bigEnd[0]; \
x[1] ^= bigEnd[1]; \
x[2] ^= bigEnd[2]; \
x[3] ^= bigEnd[3]; \
GMULT(x, h); \
} \
while (0)
/* GHASH in AAD and cipher text lengths in bits.
*
* Convert tag back to little-endian.
*
* @param [in, out] aes AES GCM object.
*/
#define GHASH_LEN_BLOCK(aes) \
do { \
word32 len[4]; \
word32* x = (word32*)AES_TAG(aes); \
word32* h = (word32*)aes->gcm.H; \
len[0] = (aes->aSz >> (8*sizeof(aes->aSz) - 3)); \
len[1] = aes->aSz << 3; \
len[2] = (aes->cSz >> (8*sizeof(aes->cSz) - 3)); \
len[3] = aes->cSz << 3; \
x[0] ^= len[0]; \
x[1] ^= len[1]; \
x[2] ^= len[2]; \
x[3] ^= len[3]; \
GMULT(x, h); \
ByteReverseWords(x, x, AES_BLOCK_SIZE); \
} \
while (0)
#else
/* No extra initialization for 32-bit word implementation.
*
* @param [in] aes AES GCM object.
*/
#define GHASH_INIT_EXTRA(aes) WC_DO_NOTHING
/* GHASH one block of data..
*
* XOR block into tag and GMULT with H.
*
* @param [in, out] aes AES GCM object.
* @param [in] block Block of AAD or cipher text.
*/
#define GHASH_ONE_BLOCK(aes, block) \
do { \
word32* x = (word32*)AES_TAG(aes); \
word32* h = (word32*)aes->gcm.H; \
word32 block32[4]; \
XMEMCPY(block32, block, AES_BLOCK_SIZE); \
x[0] ^= block32[0]; \
x[1] ^= block32[1]; \
x[2] ^= block32[2]; \
x[3] ^= block32[3]; \
GMULT(x, h); \
} \
while (0)
/* GHASH in AAD and cipher text lengths in bits.
*
* @param [in, out] aes AES GCM object.
*/
#define GHASH_LEN_BLOCK(aes) \
do { \
word32 len[4]; \
word32* x = (word32*)AES_TAG(aes); \
word32* h = (word32*)aes->gcm.H; \
len[0] = (aes->aSz >> (8*sizeof(aes->aSz) - 3)); \
len[1] = aes->aSz << 3; \
len[2] = (aes->cSz >> (8*sizeof(aes->cSz) - 3)); \
len[3] = aes->cSz << 3; \
x[0] ^= len[0]; \
x[1] ^= len[1]; \
x[2] ^= len[2]; \
x[3] ^= len[3]; \
GMULT(x, h); \
} \
while (0)
#endif /* LITTLE_ENDIAN_ORDER */
#endif /* WOLFSSL_AESGCM_STREAM */
#endif /* end GCM_WORD32 */
#if !defined(WOLFSSL_XILINX_CRYPT) && !defined(WOLFSSL_AFALG_XILINX_AES)
#ifdef WOLFSSL_AESGCM_STREAM
#ifndef GHASH_LEN_BLOCK
/* Hash in the lengths of the AAD and cipher text in bits.
*
* Default implementation.
*
* @param [in, out] aes AES GCM object.
*/
#define GHASH_LEN_BLOCK(aes) \
do { \
byte scratch[AES_BLOCK_SIZE]; \
FlattenSzInBits(&scratch[0], (aes)->aSz); \
FlattenSzInBits(&scratch[8], (aes)->cSz); \
GHASH_ONE_BLOCK(aes, scratch); \
} \
while (0)
#endif
/* Initialize a GHASH for streaming operations.
*
* @param [in, out] aes AES GCM object.
*/
static void GHASH_INIT(Aes* aes) {
/* Set tag to all zeros as initial value. */
XMEMSET(AES_TAG(aes), 0, AES_BLOCK_SIZE);
/* Reset counts of AAD and cipher text. */
aes->aOver = 0;
aes->cOver = 0;
/* Extra initialization based on implementation. */
GHASH_INIT_EXTRA(aes);
}
/* Update the GHASH with AAD and/or cipher text.
*
* @param [in,out] aes AES GCM object.
* @param [in] a Additional authentication data buffer.
* @param [in] aSz Size of data in AAD buffer.
* @param [in] c Cipher text buffer.
* @param [in] cSz Size of data in cipher text buffer.
*/
static void GHASH_UPDATE(Aes* aes, const byte* a, word32 aSz, const byte* c,
word32 cSz)
{
word32 blocks;
word32 partial;
/* Hash in A, the Additional Authentication Data */
if (aSz != 0 && a != NULL) {
/* Update count of AAD we have hashed. */
aes->aSz += aSz;
/* Check if we have unprocessed data. */
if (aes->aOver > 0) {
/* Calculate amount we can use - fill up the block. */
byte sz = AES_BLOCK_SIZE - aes->aOver;
if (sz > aSz) {
sz = (byte)aSz;
}
/* Copy extra into last GHASH block array and update count. */
XMEMCPY(AES_LASTGBLOCK(aes) + aes->aOver, a, sz);
aes->aOver += sz;
if (aes->aOver == AES_BLOCK_SIZE) {
/* We have filled up the block and can process. */
GHASH_ONE_BLOCK(aes, AES_LASTGBLOCK(aes));
/* Reset count. */
aes->aOver = 0;
}
/* Used up some data. */
aSz -= sz;
a += sz;
}
/* Calculate number of blocks of AAD and the leftover. */
blocks = aSz / AES_BLOCK_SIZE;
partial = aSz % AES_BLOCK_SIZE;
/* GHASH full blocks now. */
while (blocks--) {
GHASH_ONE_BLOCK(aes, a);
a += AES_BLOCK_SIZE;
}
if (partial != 0) {
/* Cache the partial block. */
XMEMCPY(AES_LASTGBLOCK(aes), a, partial);
aes->aOver = (byte)partial;
}
}
if (aes->aOver > 0 && cSz > 0 && c != NULL) {
/* No more AAD coming and we have a partial block. */
/* Fill the rest of the block with zeros. */
byte sz = AES_BLOCK_SIZE - aes->aOver;
XMEMSET(AES_LASTGBLOCK(aes) + aes->aOver, 0, sz);
/* GHASH last AAD block. */
GHASH_ONE_BLOCK(aes, AES_LASTGBLOCK(aes));
/* Clear partial count for next time through. */
aes->aOver = 0;
}
/* Hash in C, the Ciphertext */
if (cSz != 0 && c != NULL) {
/* Update count of cipher text we have hashed. */
aes->cSz += cSz;
if (aes->cOver > 0) {
/* Calculate amount we can use - fill up the block. */
byte sz = AES_BLOCK_SIZE - aes->cOver;
if (sz > cSz) {
sz = (byte)cSz;
}
XMEMCPY(AES_LASTGBLOCK(aes) + aes->cOver, c, sz);
/* Update count of unused encrypted counter. */
aes->cOver += sz;
if (aes->cOver == AES_BLOCK_SIZE) {
/* We have filled up the block and can process. */
GHASH_ONE_BLOCK(aes, AES_LASTGBLOCK(aes));
/* Reset count. */
aes->cOver = 0;
}
/* Used up some data. */
cSz -= sz;
c += sz;
}
/* Calculate number of blocks of cipher text and the leftover. */
blocks = cSz / AES_BLOCK_SIZE;
partial = cSz % AES_BLOCK_SIZE;
/* GHASH full blocks now. */
while (blocks--) {
GHASH_ONE_BLOCK(aes, c);
c += AES_BLOCK_SIZE;
}
if (partial != 0) {
/* Cache the partial block. */
XMEMCPY(AES_LASTGBLOCK(aes), c, partial);
aes->cOver = (byte)partial;
}
}
}
/* Finalize the GHASH calculation.
*
* Complete hashing cipher text and hash the AAD and cipher text lengths.
*
* @param [in, out] aes AES GCM object.
* @param [out] s Authentication tag.
* @param [in] sSz Size of authentication tag required.
*/
static void GHASH_FINAL(Aes* aes, byte* s, word32 sSz)
{
/* AAD block incomplete when > 0 */
byte over = aes->aOver;
if (aes->cOver > 0) {
/* Cipher text block incomplete. */
over = aes->cOver;
}
if (over > 0) {
/* Zeroize the unused part of the block. */
XMEMSET(AES_LASTGBLOCK(aes) + over, 0, AES_BLOCK_SIZE - over);
/* Hash the last block of cipher text. */
GHASH_ONE_BLOCK(aes, AES_LASTGBLOCK(aes));
}
/* Hash in the lengths of AAD and cipher text in bits */
GHASH_LEN_BLOCK(aes);
/* Copy the result into s. */
XMEMCPY(s, AES_TAG(aes), sSz);
}
#endif /* WOLFSSL_AESGCM_STREAM */
#ifdef FREESCALE_LTC_AES_GCM
int wc_AesGcmEncrypt(Aes* aes, byte* out, const byte* in, word32 sz,
const byte* iv, word32 ivSz,
byte* authTag, word32 authTagSz,
const byte* authIn, word32 authInSz)
{
status_t status;
word32 keySize;
/* argument checks */
if (aes == NULL || authTagSz > AES_BLOCK_SIZE || ivSz == 0) {
return BAD_FUNC_ARG;
}
if (authTagSz < WOLFSSL_MIN_AUTH_TAG_SZ) {
WOLFSSL_MSG("GcmEncrypt authTagSz too small error");
return BAD_FUNC_ARG;
}
status = wc_AesGetKeySize(aes, &keySize);
if (status)
return status;
status = wolfSSL_CryptHwMutexLock();
if (status != 0)
return status;
status = LTC_AES_EncryptTagGcm(LTC_BASE, in, out, sz, iv, ivSz,
authIn, authInSz, (byte*)aes->key, keySize, authTag, authTagSz);
wolfSSL_CryptHwMutexUnLock();
return (status == kStatus_Success) ? 0 : AES_GCM_AUTH_E;
}
#else
#ifdef STM32_CRYPTO_AES_GCM
/* this function supports inline encrypt */
/* define STM32_AESGCM_PARTIAL for STM HW that does not support authentication
* on byte multiples (see CRYP_HEADERWIDTHUNIT_BYTE) */
static WARN_UNUSED_RESULT int wc_AesGcmEncrypt_STM32(
Aes* aes, byte* out, const byte* in, word32 sz,
const byte* iv, word32 ivSz,
byte* authTag, word32 authTagSz,
const byte* authIn, word32 authInSz)
{
int ret;
#ifdef WOLFSSL_STM32_CUBEMX
CRYP_HandleTypeDef hcryp;
#else
word32 keyCopy[AES_256_KEY_SIZE/sizeof(word32)];
#endif
word32 keySize;
#ifdef WOLFSSL_STM32_CUBEMX
int status = HAL_OK;
word32 blocks = sz / AES_BLOCK_SIZE;
word32 partialBlock[AES_BLOCK_SIZE/sizeof(word32)];
#else
int status = SUCCESS;
#endif
word32 partial = sz % AES_BLOCK_SIZE;
word32 tag[AES_BLOCK_SIZE/sizeof(word32)];
word32 ctrInit[AES_BLOCK_SIZE/sizeof(word32)];
word32 ctr[AES_BLOCK_SIZE/sizeof(word32)];
word32 authhdr[AES_BLOCK_SIZE/sizeof(word32)];
byte* authInPadded = NULL;
int authPadSz, wasAlloc = 0, useSwGhash = 0;
ret = wc_AesGetKeySize(aes, &keySize);
if (ret != 0)
return ret;
#ifdef WOLFSSL_STM32_CUBEMX
ret = wc_Stm32_Aes_Init(aes, &hcryp);
if (ret != 0)
return ret;
#endif
XMEMSET(ctr, 0, AES_BLOCK_SIZE);
if (ivSz == GCM_NONCE_MID_SZ) {
byte* pCtr = (byte*)ctr;
XMEMCPY(ctr, iv, ivSz);
pCtr[AES_BLOCK_SIZE - 1] = 1;
}
else {
GHASH(&aes->gcm, NULL, 0, iv, ivSz, (byte*)ctr, AES_BLOCK_SIZE);
}
XMEMCPY(ctrInit, ctr, sizeof(ctr)); /* save off initial counter for GMAC */
/* Authentication buffer - must be 4-byte multiple zero padded */
authPadSz = authInSz % sizeof(word32);
if (authPadSz != 0) {
authPadSz = authInSz + sizeof(word32) - authPadSz;
if (authPadSz <= sizeof(authhdr)) {
authInPadded = (byte*)authhdr;
}
else {
authInPadded = (byte*)XMALLOC(authPadSz, aes->heap,
DYNAMIC_TYPE_TMP_BUFFER);
if (authInPadded == NULL) {
wolfSSL_CryptHwMutexUnLock();
return MEMORY_E;
}
wasAlloc = 1;
}
XMEMSET(authInPadded, 0, authPadSz);
XMEMCPY(authInPadded, authIn, authInSz);
} else {
authPadSz = authInSz;
authInPadded = (byte*)authIn;
}
/* for cases where hardware cannot be used for authTag calculate it */
/* if IV is not 12 calculate GHASH using software */
if (ivSz != GCM_NONCE_MID_SZ
#ifndef CRYP_HEADERWIDTHUNIT_BYTE
/* or hardware that does not support partial block */
|| sz == 0 || partial != 0
#endif
#if !defined(CRYP_HEADERWIDTHUNIT_BYTE) && !defined(STM32_AESGCM_PARTIAL)
/* or authIn is not a multiple of 4 */
|| authPadSz != authInSz
#endif
) {
useSwGhash = 1;
}
/* Hardware requires counter + 1 */
IncrementGcmCounter((byte*)ctr);
ret = wolfSSL_CryptHwMutexLock();
if (ret != 0) {
return ret;
}
#ifdef WOLFSSL_STM32_CUBEMX
hcryp.Init.pInitVect = (STM_CRYPT_TYPE*)ctr;
hcryp.Init.Header = (STM_CRYPT_TYPE*)authInPadded;
#if defined(STM32_HAL_V2)
hcryp.Init.Algorithm = CRYP_AES_GCM;
#ifdef CRYP_HEADERWIDTHUNIT_BYTE
/* V2 with CRYP_HEADERWIDTHUNIT_BYTE uses byte size for header */
hcryp.Init.HeaderSize = authInSz;
#else
hcryp.Init.HeaderSize = authPadSz/sizeof(word32);
#endif
#ifdef CRYP_KEYIVCONFIG_ONCE
/* allows repeated calls to HAL_CRYP_Encrypt */
hcryp.Init.KeyIVConfigSkip = CRYP_KEYIVCONFIG_ONCE;
#endif
ByteReverseWords(ctr, ctr, AES_BLOCK_SIZE);
hcryp.Init.pInitVect = (STM_CRYPT_TYPE*)ctr;
HAL_CRYP_Init(&hcryp);
#ifndef CRYP_KEYIVCONFIG_ONCE
/* GCM payload phase - can handle partial blocks */
status = HAL_CRYP_Encrypt(&hcryp, (uint32_t*)in,
(blocks * AES_BLOCK_SIZE) + partial, (uint32_t*)out, STM32_HAL_TIMEOUT);
#else
/* GCM payload phase - blocks */
if (blocks) {
status = HAL_CRYP_Encrypt(&hcryp, (uint32_t*)in,
(blocks * AES_BLOCK_SIZE), (uint32_t*)out, STM32_HAL_TIMEOUT);
}
/* GCM payload phase - partial remainder */
if (status == HAL_OK && (partial != 0 || blocks == 0)) {
XMEMSET(partialBlock, 0, sizeof(partialBlock));
XMEMCPY(partialBlock, in + (blocks * AES_BLOCK_SIZE), partial);
status = HAL_CRYP_Encrypt(&hcryp, (uint32_t*)partialBlock, partial,
(uint32_t*)partialBlock, STM32_HAL_TIMEOUT);
XMEMCPY(out + (blocks * AES_BLOCK_SIZE), partialBlock, partial);
}
#endif
if (status == HAL_OK && !useSwGhash) {
/* Compute the authTag */
status = HAL_CRYPEx_AESGCM_GenerateAuthTAG(&hcryp, (uint32_t*)tag,
STM32_HAL_TIMEOUT);
}
#elif defined(STM32_CRYPTO_AES_ONLY)
/* Set the CRYP parameters */
hcryp.Init.HeaderSize = authPadSz;
if (authPadSz == 0)
hcryp.Init.Header = NULL; /* cannot pass pointer here when authIn == 0 */
hcryp.Init.ChainingMode = CRYP_CHAINMODE_AES_GCM_GMAC;
hcryp.Init.OperatingMode = CRYP_ALGOMODE_ENCRYPT;
hcryp.Init.GCMCMACPhase = CRYP_INIT_PHASE;
HAL_CRYP_Init(&hcryp);
/* GCM init phase */
status = HAL_CRYPEx_AES_Auth(&hcryp, NULL, 0, NULL, STM32_HAL_TIMEOUT);
if (status == HAL_OK) {
/* GCM header phase */
hcryp.Init.GCMCMACPhase = CRYP_HEADER_PHASE;
status = HAL_CRYPEx_AES_Auth(&hcryp, NULL, 0, NULL, STM32_HAL_TIMEOUT);
}
if (status == HAL_OK) {
/* GCM payload phase - blocks */
hcryp.Init.GCMCMACPhase = CRYP_PAYLOAD_PHASE;
if (blocks) {
status = HAL_CRYPEx_AES_Auth(&hcryp, (byte*)in,
(blocks * AES_BLOCK_SIZE), out, STM32_HAL_TIMEOUT);
}
}
if (status == HAL_OK && (partial != 0 || (sz > 0 && blocks == 0))) {
/* GCM payload phase - partial remainder */
XMEMSET(partialBlock, 0, sizeof(partialBlock));
XMEMCPY(partialBlock, in + (blocks * AES_BLOCK_SIZE), partial);
status = HAL_CRYPEx_AES_Auth(&hcryp, (uint8_t*)partialBlock, partial,
(uint8_t*)partialBlock, STM32_HAL_TIMEOUT);
XMEMCPY(out + (blocks * AES_BLOCK_SIZE), partialBlock, partial);
}
if (status == HAL_OK && !useSwGhash) {
/* GCM final phase */
hcryp.Init.GCMCMACPhase = CRYP_FINAL_PHASE;
status = HAL_CRYPEx_AES_Auth(&hcryp, NULL, sz, (uint8_t*)tag, STM32_HAL_TIMEOUT);
}
#else
hcryp.Init.HeaderSize = authPadSz;
HAL_CRYP_Init(&hcryp);
if (blocks) {
/* GCM payload phase - blocks */
status = HAL_CRYPEx_AESGCM_Encrypt(&hcryp, (byte*)in,
(blocks * AES_BLOCK_SIZE), out, STM32_HAL_TIMEOUT);
}
if (status == HAL_OK && (partial != 0 || blocks == 0)) {
/* GCM payload phase - partial remainder */
XMEMSET(partialBlock, 0, sizeof(partialBlock));
XMEMCPY(partialBlock, in + (blocks * AES_BLOCK_SIZE), partial);
status = HAL_CRYPEx_AESGCM_Encrypt(&hcryp, (uint8_t*)partialBlock, partial,
(uint8_t*)partialBlock, STM32_HAL_TIMEOUT);
XMEMCPY(out + (blocks * AES_BLOCK_SIZE), partialBlock, partial);
}
if (status == HAL_OK && !useSwGhash) {
/* Compute the authTag */
status = HAL_CRYPEx_AESGCM_Finish(&hcryp, sz, (uint8_t*)tag, STM32_HAL_TIMEOUT);
}
#endif
if (status != HAL_OK)
ret = AES_GCM_AUTH_E;
HAL_CRYP_DeInit(&hcryp);
#else /* Standard Peripheral Library */
ByteReverseWords(keyCopy, (word32*)aes->key, keySize);
status = CRYP_AES_GCM(MODE_ENCRYPT, (uint8_t*)ctr,
(uint8_t*)keyCopy, keySize * 8,
(uint8_t*)in, sz,
(uint8_t*)authInPadded, authInSz,
(uint8_t*)out, (uint8_t*)tag);
if (status != SUCCESS)
ret = AES_GCM_AUTH_E;
#endif /* WOLFSSL_STM32_CUBEMX */
wolfSSL_CryptHwMutexUnLock();
wc_Stm32_Aes_Cleanup();
if (ret == 0) {
/* return authTag */
if (authTag) {
if (useSwGhash) {
GHASH(&aes->gcm, authIn, authInSz, out, sz, authTag, authTagSz);
ret = wc_AesEncrypt(aes, (byte*)ctrInit, (byte*)tag);
if (ret == 0) {
xorbuf(authTag, tag, authTagSz);
}
}
else {
/* use hardware calculated tag */
XMEMCPY(authTag, tag, authTagSz);
}
}
}
/* Free memory */
if (wasAlloc) {
XFREE(authInPadded, aes->heap, DYNAMIC_TYPE_TMP_BUFFER);
}
return ret;
}
#endif /* STM32_CRYPTO_AES_GCM */
#ifdef WOLFSSL_AESNI
/* For performance reasons, this code needs to be not inlined. */
WARN_UNUSED_RESULT int AES_GCM_encrypt_C(
Aes* aes, byte* out, const byte* in, word32 sz,
const byte* iv, word32 ivSz,
byte* authTag, word32 authTagSz,
const byte* authIn, word32 authInSz);
#else
static
#endif
WARN_UNUSED_RESULT int AES_GCM_encrypt_C(
Aes* aes, byte* out, const byte* in, word32 sz,
const byte* iv, word32 ivSz,
byte* authTag, word32 authTagSz,
const byte* authIn, word32 authInSz)
{
int ret = 0;
word32 blocks = sz / AES_BLOCK_SIZE;
word32 partial = sz % AES_BLOCK_SIZE;
const byte* p = in;
byte* c = out;
ALIGN16 byte counter[AES_BLOCK_SIZE];
ALIGN16 byte initialCounter[AES_BLOCK_SIZE];
ALIGN16 byte scratch[AES_BLOCK_SIZE];
if (ivSz == GCM_NONCE_MID_SZ) {
/* Counter is IV with bottom 4 bytes set to: 0x00,0x00,0x00,0x01. */
XMEMCPY(counter, iv, ivSz);
XMEMSET(counter + GCM_NONCE_MID_SZ, 0,
AES_BLOCK_SIZE - GCM_NONCE_MID_SZ - 1);
counter[AES_BLOCK_SIZE - 1] = 1;
}
else {
/* Counter is GHASH of IV. */
#ifdef OPENSSL_EXTRA
word32 aadTemp = aes->gcm.aadLen;
aes->gcm.aadLen = 0;
#endif
GHASH(&aes->gcm, NULL, 0, iv, ivSz, counter, AES_BLOCK_SIZE);
#ifdef OPENSSL_EXTRA
aes->gcm.aadLen = aadTemp;
#endif
}
XMEMCPY(initialCounter, counter, AES_BLOCK_SIZE);
#ifdef WOLFSSL_PIC32MZ_CRYPT
if (blocks) {
/* use initial IV for HW, but don't use it below */
XMEMCPY(aes->reg, counter, AES_BLOCK_SIZE);
ret = wc_Pic32AesCrypt(
aes->key, aes->keylen, aes->reg, AES_BLOCK_SIZE,
out, in, (blocks * AES_BLOCK_SIZE),
PIC32_ENCRYPTION, PIC32_ALGO_AES, PIC32_CRYPTOALGO_AES_GCM);
if (ret != 0)
return ret;
}
/* process remainder using partial handling */
#endif
#if defined(HAVE_AES_ECB) && !defined(WOLFSSL_PIC32MZ_CRYPT)
/* some hardware acceleration can gain performance from doing AES encryption
* of the whole buffer at once */
if (c != p && blocks > 0) { /* can not handle inline encryption */
while (blocks--) {
IncrementGcmCounter(counter);
XMEMCPY(c, counter, AES_BLOCK_SIZE);
c += AES_BLOCK_SIZE;
}
/* reset number of blocks and then do encryption */
blocks = sz / AES_BLOCK_SIZE;
wc_AesEcbEncrypt(aes, out, out, AES_BLOCK_SIZE * blocks);
xorbuf(out, p, AES_BLOCK_SIZE * blocks);
p += AES_BLOCK_SIZE * blocks;
}
else
#endif /* HAVE_AES_ECB && !WOLFSSL_PIC32MZ_CRYPT */
{
while (blocks--) {
IncrementGcmCounter(counter);
#if !defined(WOLFSSL_PIC32MZ_CRYPT)
ret = wc_AesEncrypt(aes, counter, scratch);
if (ret != 0)
return ret;
xorbufout(c, scratch, p, AES_BLOCK_SIZE);
#endif
p += AES_BLOCK_SIZE;
c += AES_BLOCK_SIZE;
}
}
if (partial != 0) {
IncrementGcmCounter(counter);
ret = wc_AesEncrypt(aes, counter, scratch);
if (ret != 0)
return ret;
xorbufout(c, scratch, p, partial);
}
if (authTag) {
GHASH(&aes->gcm, authIn, authInSz, out, sz, authTag, authTagSz);
ret = wc_AesEncrypt(aes, initialCounter, scratch);
if (ret != 0)
return ret;
xorbuf(authTag, scratch, authTagSz);
#ifdef OPENSSL_EXTRA
if (!in && !sz)
/* store AAD size for next call */
aes->gcm.aadLen = authInSz;
#endif
}
return ret;
}
/* Software AES - GCM Encrypt */
int wc_AesGcmEncrypt(Aes* aes, byte* out, const byte* in, word32 sz,
const byte* iv, word32 ivSz,
byte* authTag, word32 authTagSz,
const byte* authIn, word32 authInSz)
{
int ret;
/* argument checks */
if (aes == NULL || authTagSz > AES_BLOCK_SIZE || ivSz == 0) {
return BAD_FUNC_ARG;
}
if (authTagSz < WOLFSSL_MIN_AUTH_TAG_SZ) {
WOLFSSL_MSG("GcmEncrypt authTagSz too small error");
return BAD_FUNC_ARG;
}
#ifdef WOLF_CRYPTO_CB
#ifndef WOLF_CRYPTO_CB_FIND
if (aes->devId != INVALID_DEVID)
#endif
{
int crypto_cb_ret =
wc_CryptoCb_AesGcmEncrypt(aes, out, in, sz, iv, ivSz, authTag,
authTagSz, authIn, authInSz);
if (crypto_cb_ret != WC_NO_ERR_TRACE(CRYPTOCB_UNAVAILABLE))
return crypto_cb_ret;
/* fall-through when unavailable */
}
#endif
#if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_AES)
/* if async and byte count above threshold */
/* only 12-byte IV is supported in HW */
if (aes->asyncDev.marker == WOLFSSL_ASYNC_MARKER_AES &&
sz >= WC_ASYNC_THRESH_AES_GCM && ivSz == GCM_NONCE_MID_SZ) {
#if defined(HAVE_CAVIUM)
#ifdef HAVE_CAVIUM_V
if (authInSz == 20) { /* Nitrox V GCM is only working with 20 byte AAD */
return NitroxAesGcmEncrypt(aes, out, in, sz,
(const byte*)aes->devKey, aes->keylen, iv, ivSz,
authTag, authTagSz, authIn, authInSz);
}
#endif
#elif defined(HAVE_INTEL_QA)
return IntelQaSymAesGcmEncrypt(&aes->asyncDev, out, in, sz,
(const byte*)aes->devKey, aes->keylen, iv, ivSz,
authTag, authTagSz, authIn, authInSz);
#elif defined(WOLFSSL_ASYNC_CRYPT_SW)
if (wc_AsyncSwInit(&aes->asyncDev, ASYNC_SW_AES_GCM_ENCRYPT)) {
WC_ASYNC_SW* sw = &aes->asyncDev.sw;
sw->aes.aes = aes;
sw->aes.out = out;
sw->aes.in = in;
sw->aes.sz = sz;
sw->aes.iv = iv;
sw->aes.ivSz = ivSz;
sw->aes.authTag = authTag;
sw->aes.authTagSz = authTagSz;
sw->aes.authIn = authIn;
sw->aes.authInSz = authInSz;
return WC_PENDING_E;
}
#endif
}
#endif /* WOLFSSL_ASYNC_CRYPT */
#ifdef WOLFSSL_SILABS_SE_ACCEL
return wc_AesGcmEncrypt_silabs(
aes, out, in, sz,
iv, ivSz,
authTag, authTagSz,
authIn, authInSz);
#endif
#ifdef STM32_CRYPTO_AES_GCM
return wc_AesGcmEncrypt_STM32(
aes, out, in, sz, iv, ivSz,
authTag, authTagSz, authIn, authInSz);
#endif /* STM32_CRYPTO_AES_GCM */
VECTOR_REGISTERS_PUSH;
#ifdef WOLFSSL_AESNI
if (aes->use_aesni) {
#ifdef HAVE_INTEL_AVX2
if (IS_INTEL_AVX2(intel_flags)) {
AES_GCM_encrypt_avx2(in, out, authIn, iv, authTag, sz, authInSz, ivSz,
authTagSz, (const byte*)aes->key, (int)aes->rounds);
ret = 0;
}
else
#endif
#if defined(HAVE_INTEL_AVX1)
if (IS_INTEL_AVX1(intel_flags)) {
AES_GCM_encrypt_avx1(in, out, authIn, iv, authTag, sz, authInSz, ivSz,
authTagSz, (const byte*)aes->key, (int)aes->rounds);
ret = 0;
} else
#endif
{
AES_GCM_encrypt_aesni(in, out, authIn, iv, authTag, sz, authInSz, ivSz,
authTagSz, (const byte*)aes->key, (int)aes->rounds);
ret = 0;
}
}
else
#endif /* WOLFSSL_AESNI */
{
ret = AES_GCM_encrypt_C(aes, out, in, sz, iv, ivSz, authTag, authTagSz,
authIn, authInSz);
}
VECTOR_REGISTERS_POP;
return ret;
}
#endif
/* AES GCM Decrypt */
#if defined(HAVE_AES_DECRYPT) || defined(HAVE_AESGCM_DECRYPT)
#ifdef FREESCALE_LTC_AES_GCM
int wc_AesGcmDecrypt(Aes* aes, byte* out, const byte* in, word32 sz,
const byte* iv, word32 ivSz,
const byte* authTag, word32 authTagSz,
const byte* authIn, word32 authInSz)
{
int ret;
word32 keySize;
status_t status;
/* argument checks */
/* If the sz is non-zero, both in and out must be set. If sz is 0,
* in and out are don't cares, as this is is the GMAC case. */
if (aes == NULL || iv == NULL || (sz != 0 && (in == NULL || out == NULL)) ||
authTag == NULL || authTagSz > AES_BLOCK_SIZE || authTagSz == 0 ||
ivSz == 0) {
return BAD_FUNC_ARG;
}
ret = wc_AesGetKeySize(aes, &keySize);
if (ret != 0) {
return ret;
}
status = wolfSSL_CryptHwMutexLock();
if (status != 0)
return status;
status = LTC_AES_DecryptTagGcm(LTC_BASE, in, out, sz, iv, ivSz,
authIn, authInSz, (byte*)aes->key, keySize, authTag, authTagSz);
wolfSSL_CryptHwMutexUnLock();
return (status == kStatus_Success) ? 0 : AES_GCM_AUTH_E;
}
#else
#ifdef STM32_CRYPTO_AES_GCM
/* this function supports inline decrypt */
static WARN_UNUSED_RESULT int wc_AesGcmDecrypt_STM32(
Aes* aes, byte* out,
const byte* in, word32 sz,
const byte* iv, word32 ivSz,
const byte* authTag, word32 authTagSz,
const byte* authIn, word32 authInSz)
{
int ret;
#ifdef WOLFSSL_STM32_CUBEMX
int status = HAL_OK;
CRYP_HandleTypeDef hcryp;
word32 blocks = sz / AES_BLOCK_SIZE;
#else
int status = SUCCESS;
word32 keyCopy[AES_256_KEY_SIZE/sizeof(word32)];
#endif
word32 keySize;
word32 partial = sz % AES_BLOCK_SIZE;
word32 tag[AES_BLOCK_SIZE/sizeof(word32)];
word32 tagExpected[AES_BLOCK_SIZE/sizeof(word32)];
word32 partialBlock[AES_BLOCK_SIZE/sizeof(word32)];
word32 ctr[AES_BLOCK_SIZE/sizeof(word32)];
word32 authhdr[AES_BLOCK_SIZE/sizeof(word32)];
byte* authInPadded = NULL;
int authPadSz, wasAlloc = 0, tagComputed = 0;
ret = wc_AesGetKeySize(aes, &keySize);
if (ret != 0)
return ret;
#ifdef WOLFSSL_STM32_CUBEMX
ret = wc_Stm32_Aes_Init(aes, &hcryp);
if (ret != 0)
return ret;
#endif
XMEMSET(ctr, 0, AES_BLOCK_SIZE);
if (ivSz == GCM_NONCE_MID_SZ) {
byte* pCtr = (byte*)ctr;
XMEMCPY(ctr, iv, ivSz);
pCtr[AES_BLOCK_SIZE - 1] = 1;
}
else {
GHASH(&aes->gcm, NULL, 0, iv, ivSz, (byte*)ctr, AES_BLOCK_SIZE);
}
/* Make copy of expected authTag, which could get corrupted in some
* Cube HAL versions without proper partial block support.
* For TLS blocks the authTag is after the output buffer, so save it */
XMEMCPY(tagExpected, authTag, authTagSz);
/* Authentication buffer - must be 4-byte multiple zero padded */
authPadSz = authInSz % sizeof(word32);
if (authPadSz != 0) {
authPadSz = authInSz + sizeof(word32) - authPadSz;
}
else {
authPadSz = authInSz;
}
/* for cases where hardware cannot be used for authTag calculate it */
/* if IV is not 12 calculate GHASH using software */
if (ivSz != GCM_NONCE_MID_SZ
#ifndef CRYP_HEADERWIDTHUNIT_BYTE
/* or hardware that does not support partial block */
|| sz == 0 || partial != 0
#endif
#if !defined(CRYP_HEADERWIDTHUNIT_BYTE) && !defined(STM32_AESGCM_PARTIAL)
/* or authIn is not a multiple of 4 */
|| authPadSz != authInSz
#endif
) {
GHASH(&aes->gcm, authIn, authInSz, in, sz, (byte*)tag, sizeof(tag));
ret = wc_AesEncrypt(aes, (byte*)ctr, (byte*)partialBlock);
if (ret != 0)
return ret;
xorbuf(tag, partialBlock, sizeof(tag));
tagComputed = 1;
}
/* if using hardware for authentication tag make sure its aligned and zero padded */
if (authPadSz != authInSz && !tagComputed) {
if (authPadSz <= sizeof(authhdr)) {
authInPadded = (byte*)authhdr;
}
else {
authInPadded = (byte*)XMALLOC(authPadSz, aes->heap,
DYNAMIC_TYPE_TMP_BUFFER);
if (authInPadded == NULL) {
wolfSSL_CryptHwMutexUnLock();
return MEMORY_E;
}
wasAlloc = 1;
}
XMEMSET(authInPadded, 0, authPadSz);
XMEMCPY(authInPadded, authIn, authInSz);
} else {
authInPadded = (byte*)authIn;
}
/* Hardware requires counter + 1 */
IncrementGcmCounter((byte*)ctr);
ret = wolfSSL_CryptHwMutexLock();
if (ret != 0) {
return ret;
}
#ifdef WOLFSSL_STM32_CUBEMX
hcryp.Init.pInitVect = (STM_CRYPT_TYPE*)ctr;
hcryp.Init.Header = (STM_CRYPT_TYPE*)authInPadded;
#if defined(STM32_HAL_V2)
hcryp.Init.Algorithm = CRYP_AES_GCM;
#ifdef CRYP_HEADERWIDTHUNIT_BYTE
/* V2 with CRYP_HEADERWIDTHUNIT_BYTE uses byte size for header */
hcryp.Init.HeaderSize = authInSz;
#else
hcryp.Init.HeaderSize = authPadSz/sizeof(word32);
#endif
#ifdef CRYP_KEYIVCONFIG_ONCE
/* allows repeated calls to HAL_CRYP_Decrypt */
hcryp.Init.KeyIVConfigSkip = CRYP_KEYIVCONFIG_ONCE;
#endif
ByteReverseWords(ctr, ctr, AES_BLOCK_SIZE);
hcryp.Init.pInitVect = (STM_CRYPT_TYPE*)ctr;
HAL_CRYP_Init(&hcryp);
#ifndef CRYP_KEYIVCONFIG_ONCE
status = HAL_CRYP_Decrypt(&hcryp, (uint32_t*)in,
(blocks * AES_BLOCK_SIZE) + partial, (uint32_t*)out, STM32_HAL_TIMEOUT);
#else
/* GCM payload phase - blocks */
if (blocks) {
status = HAL_CRYP_Decrypt(&hcryp, (uint32_t*)in,
(blocks * AES_BLOCK_SIZE), (uint32_t*)out, STM32_HAL_TIMEOUT);
}
/* GCM payload phase - partial remainder */
if (status == HAL_OK && (partial != 0 || blocks == 0)) {
XMEMSET(partialBlock, 0, sizeof(partialBlock));
XMEMCPY(partialBlock, in + (blocks * AES_BLOCK_SIZE), partial);
status = HAL_CRYP_Decrypt(&hcryp, (uint32_t*)partialBlock, partial,
(uint32_t*)partialBlock, STM32_HAL_TIMEOUT);
XMEMCPY(out + (blocks * AES_BLOCK_SIZE), partialBlock, partial);
}
#endif
if (status == HAL_OK && !tagComputed) {
/* Compute the authTag */
status = HAL_CRYPEx_AESGCM_GenerateAuthTAG(&hcryp, (uint32_t*)tag,
STM32_HAL_TIMEOUT);
}
#elif defined(STM32_CRYPTO_AES_ONLY)
/* Set the CRYP parameters */
hcryp.Init.HeaderSize = authPadSz;
if (authPadSz == 0)
hcryp.Init.Header = NULL; /* cannot pass pointer when authIn == 0 */
hcryp.Init.ChainingMode = CRYP_CHAINMODE_AES_GCM_GMAC;
hcryp.Init.OperatingMode = CRYP_ALGOMODE_DECRYPT;
hcryp.Init.GCMCMACPhase = CRYP_INIT_PHASE;
HAL_CRYP_Init(&hcryp);
/* GCM init phase */
status = HAL_CRYPEx_AES_Auth(&hcryp, NULL, 0, NULL, STM32_HAL_TIMEOUT);
if (status == HAL_OK) {
/* GCM header phase */
hcryp.Init.GCMCMACPhase = CRYP_HEADER_PHASE;
status = HAL_CRYPEx_AES_Auth(&hcryp, NULL, 0, NULL, STM32_HAL_TIMEOUT);
}
if (status == HAL_OK) {
/* GCM payload phase - blocks */
hcryp.Init.GCMCMACPhase = CRYP_PAYLOAD_PHASE;
if (blocks) {
status = HAL_CRYPEx_AES_Auth(&hcryp, (byte*)in,
(blocks * AES_BLOCK_SIZE), out, STM32_HAL_TIMEOUT);
}
}
if (status == HAL_OK && (partial != 0 || (sz > 0 && blocks == 0))) {
/* GCM payload phase - partial remainder */
XMEMSET(partialBlock, 0, sizeof(partialBlock));
XMEMCPY(partialBlock, in + (blocks * AES_BLOCK_SIZE), partial);
status = HAL_CRYPEx_AES_Auth(&hcryp, (byte*)partialBlock, partial,
(byte*)partialBlock, STM32_HAL_TIMEOUT);
XMEMCPY(out + (blocks * AES_BLOCK_SIZE), partialBlock, partial);
}
if (status == HAL_OK && tagComputed == 0) {
/* GCM final phase */
hcryp.Init.GCMCMACPhase = CRYP_FINAL_PHASE;
status = HAL_CRYPEx_AES_Auth(&hcryp, NULL, sz, (byte*)tag, STM32_HAL_TIMEOUT);
}
#else
hcryp.Init.HeaderSize = authPadSz;
HAL_CRYP_Init(&hcryp);
if (blocks) {
/* GCM payload phase - blocks */
status = HAL_CRYPEx_AESGCM_Decrypt(&hcryp, (byte*)in,
(blocks * AES_BLOCK_SIZE), out, STM32_HAL_TIMEOUT);
}
if (status == HAL_OK && (partial != 0 || blocks == 0)) {
/* GCM payload phase - partial remainder */
XMEMSET(partialBlock, 0, sizeof(partialBlock));
XMEMCPY(partialBlock, in + (blocks * AES_BLOCK_SIZE), partial);
status = HAL_CRYPEx_AESGCM_Decrypt(&hcryp, (byte*)partialBlock, partial,
(byte*)partialBlock, STM32_HAL_TIMEOUT);
XMEMCPY(out + (blocks * AES_BLOCK_SIZE), partialBlock, partial);
}
if (status == HAL_OK && tagComputed == 0) {
/* Compute the authTag */
status = HAL_CRYPEx_AESGCM_Finish(&hcryp, sz, (byte*)tag, STM32_HAL_TIMEOUT);
}
#endif
if (status != HAL_OK)
ret = AES_GCM_AUTH_E;
HAL_CRYP_DeInit(&hcryp);
#else /* Standard Peripheral Library */
ByteReverseWords(keyCopy, (word32*)aes->key, aes->keylen);
/* Input size and auth size need to be the actual sizes, even though
* they are not block aligned, because this length (in bits) is used
* in the final GHASH. */
XMEMSET(partialBlock, 0, sizeof(partialBlock)); /* use this to get tag */
status = CRYP_AES_GCM(MODE_DECRYPT, (uint8_t*)ctr,
(uint8_t*)keyCopy, keySize * 8,
(uint8_t*)in, sz,
(uint8_t*)authInPadded, authInSz,
(uint8_t*)out, (uint8_t*)partialBlock);
if (status != SUCCESS)
ret = AES_GCM_AUTH_E;
if (tagComputed == 0)
XMEMCPY(tag, partialBlock, authTagSz);
#endif /* WOLFSSL_STM32_CUBEMX */
wolfSSL_CryptHwMutexUnLock();
wc_Stm32_Aes_Cleanup();
/* Check authentication tag */
if (ConstantCompare((const byte*)tagExpected, (byte*)tag, authTagSz) != 0) {
ret = AES_GCM_AUTH_E;
}
/* Free memory */
if (wasAlloc) {
XFREE(authInPadded, aes->heap, DYNAMIC_TYPE_TMP_BUFFER);
}
return ret;
}
#endif /* STM32_CRYPTO_AES_GCM */
#ifdef WOLFSSL_AESNI
/* For performance reasons, this code needs to be not inlined. */
int WARN_UNUSED_RESULT AES_GCM_decrypt_C(
Aes* aes, byte* out, const byte* in, word32 sz,
const byte* iv, word32 ivSz,
const byte* authTag, word32 authTagSz,
const byte* authIn, word32 authInSz);
#else
static
#endif
int WARN_UNUSED_RESULT AES_GCM_decrypt_C(
Aes* aes, byte* out, const byte* in, word32 sz,
const byte* iv, word32 ivSz,
const byte* authTag, word32 authTagSz,
const byte* authIn, word32 authInSz)
{
int ret;
word32 blocks = sz / AES_BLOCK_SIZE;
word32 partial = sz % AES_BLOCK_SIZE;
const byte* c = in;
byte* p = out;
ALIGN16 byte counter[AES_BLOCK_SIZE];
ALIGN16 byte scratch[AES_BLOCK_SIZE];
ALIGN16 byte Tprime[AES_BLOCK_SIZE];
ALIGN16 byte EKY0[AES_BLOCK_SIZE];
sword32 res;
if (ivSz == GCM_NONCE_MID_SZ) {
/* Counter is IV with bottom 4 bytes set to: 0x00,0x00,0x00,0x01. */
XMEMCPY(counter, iv, ivSz);
XMEMSET(counter + GCM_NONCE_MID_SZ, 0,
AES_BLOCK_SIZE - GCM_NONCE_MID_SZ - 1);
counter[AES_BLOCK_SIZE - 1] = 1;
}
else {
/* Counter is GHASH of IV. */
#ifdef OPENSSL_EXTRA
word32 aadTemp = aes->gcm.aadLen;
aes->gcm.aadLen = 0;
#endif
GHASH(&aes->gcm, NULL, 0, iv, ivSz, counter, AES_BLOCK_SIZE);
#ifdef OPENSSL_EXTRA
aes->gcm.aadLen = aadTemp;
#endif
}
/* Calc the authTag again using received auth data and the cipher text */
GHASH(&aes->gcm, authIn, authInSz, in, sz, Tprime, sizeof(Tprime));
ret = wc_AesEncrypt(aes, counter, EKY0);
if (ret != 0)
return ret;
xorbuf(Tprime, EKY0, sizeof(Tprime));
#ifdef WC_AES_GCM_DEC_AUTH_EARLY
/* ConstantCompare returns the cumulative bitwise or of the bitwise xor of
* the pairwise bytes in the strings.
*/
res = ConstantCompare(authTag, Tprime, authTagSz);
/* convert positive retval from ConstantCompare() to all-1s word, in
* constant time.
*/
res = 0 - (sword32)(((word32)(0 - res)) >> 31U);
ret = res & AES_GCM_AUTH_E;
if (ret != 0)
return ret;
#endif
#ifdef OPENSSL_EXTRA
if (!out) {
/* authenticated, non-confidential data */
/* store AAD size for next call */
aes->gcm.aadLen = authInSz;
}
#endif
#if defined(WOLFSSL_PIC32MZ_CRYPT)
if (blocks) {
/* use initial IV for HW, but don't use it below */
XMEMCPY(aes->reg, counter, AES_BLOCK_SIZE);
ret = wc_Pic32AesCrypt(
aes->key, aes->keylen, aes->reg, AES_BLOCK_SIZE,
out, in, (blocks * AES_BLOCK_SIZE),
PIC32_DECRYPTION, PIC32_ALGO_AES, PIC32_CRYPTOALGO_AES_GCM);
if (ret != 0)
return ret;
}
/* process remainder using partial handling */
#endif
#if defined(HAVE_AES_ECB) && !defined(WOLFSSL_PIC32MZ_CRYPT)
/* some hardware acceleration can gain performance from doing AES encryption
* of the whole buffer at once */
if (c != p && blocks > 0) { /* can not handle inline decryption */
while (blocks--) {
IncrementGcmCounter(counter);
XMEMCPY(p, counter, AES_BLOCK_SIZE);
p += AES_BLOCK_SIZE;
}
/* reset number of blocks and then do encryption */
blocks = sz / AES_BLOCK_SIZE;
wc_AesEcbEncrypt(aes, out, out, AES_BLOCK_SIZE * blocks);
xorbuf(out, c, AES_BLOCK_SIZE * blocks);
c += AES_BLOCK_SIZE * blocks;
}
else
#endif /* HAVE_AES_ECB && !PIC32MZ */
{
while (blocks--) {
IncrementGcmCounter(counter);
#if !defined(WOLFSSL_PIC32MZ_CRYPT)
ret = wc_AesEncrypt(aes, counter, scratch);
if (ret != 0)
return ret;
xorbufout(p, scratch, c, AES_BLOCK_SIZE);
#endif
p += AES_BLOCK_SIZE;
c += AES_BLOCK_SIZE;
}
}
if (partial != 0) {
IncrementGcmCounter(counter);
ret = wc_AesEncrypt(aes, counter, scratch);
if (ret != 0)
return ret;
xorbuf(scratch, c, partial);
XMEMCPY(p, scratch, partial);
}
#ifndef WC_AES_GCM_DEC_AUTH_EARLY
/* ConstantCompare returns the cumulative bitwise or of the bitwise xor of
* the pairwise bytes in the strings.
*/
res = ConstantCompare(authTag, Tprime, (int)authTagSz);
/* convert positive retval from ConstantCompare() to all-1s word, in
* constant time.
*/
res = 0 - (sword32)(((word32)(0 - res)) >> 31U);
/* now use res as a mask for constant time return of ret, unless tag
* mismatch, whereupon AES_GCM_AUTH_E is returned.
*/
ret = (ret & ~res) | (res & AES_GCM_AUTH_E);
#endif
return ret;
}
/* Software AES - GCM Decrypt */
int wc_AesGcmDecrypt(Aes* aes, byte* out, const byte* in, word32 sz,
const byte* iv, word32 ivSz,
const byte* authTag, word32 authTagSz,
const byte* authIn, word32 authInSz)
{
int ret;
#ifdef WOLFSSL_AESNI
int res = WC_NO_ERR_TRACE(AES_GCM_AUTH_E);
#endif
/* argument checks */
/* If the sz is non-zero, both in and out must be set. If sz is 0,
* in and out are don't cares, as this is is the GMAC case. */
if (aes == NULL || iv == NULL || (sz != 0 && (in == NULL || out == NULL)) ||
authTag == NULL || authTagSz > AES_BLOCK_SIZE || authTagSz == 0 ||
ivSz == 0) {
return BAD_FUNC_ARG;
}
#ifdef WOLF_CRYPTO_CB
#ifndef WOLF_CRYPTO_CB_FIND
if (aes->devId != INVALID_DEVID)
#endif
{
int crypto_cb_ret =
wc_CryptoCb_AesGcmDecrypt(aes, out, in, sz, iv, ivSz,
authTag, authTagSz, authIn, authInSz);
if (crypto_cb_ret != WC_NO_ERR_TRACE(CRYPTOCB_UNAVAILABLE))
return crypto_cb_ret;
/* fall-through when unavailable */
}
#endif
#if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_AES)
/* if async and byte count above threshold */
/* only 12-byte IV is supported in HW */
if (aes->asyncDev.marker == WOLFSSL_ASYNC_MARKER_AES &&
sz >= WC_ASYNC_THRESH_AES_GCM && ivSz == GCM_NONCE_MID_SZ) {
#if defined(HAVE_CAVIUM)
#ifdef HAVE_CAVIUM_V
if (authInSz == 20) { /* Nitrox V GCM is only working with 20 byte AAD */
return NitroxAesGcmDecrypt(aes, out, in, sz,
(const byte*)aes->devKey, aes->keylen, iv, ivSz,
authTag, authTagSz, authIn, authInSz);
}
#endif
#elif defined(HAVE_INTEL_QA)
return IntelQaSymAesGcmDecrypt(&aes->asyncDev, out, in, sz,
(const byte*)aes->devKey, aes->keylen, iv, ivSz,
authTag, authTagSz, authIn, authInSz);
#elif defined(WOLFSSL_ASYNC_CRYPT_SW)
if (wc_AsyncSwInit(&aes->asyncDev, ASYNC_SW_AES_GCM_DECRYPT)) {
WC_ASYNC_SW* sw = &aes->asyncDev.sw;
sw->aes.aes = aes;
sw->aes.out = out;
sw->aes.in = in;
sw->aes.sz = sz;
sw->aes.iv = iv;
sw->aes.ivSz = ivSz;
sw->aes.authTag = (byte*)authTag;
sw->aes.authTagSz = authTagSz;
sw->aes.authIn = authIn;
sw->aes.authInSz = authInSz;
return WC_PENDING_E;
}
#endif
}
#endif /* WOLFSSL_ASYNC_CRYPT */
#ifdef WOLFSSL_SILABS_SE_ACCEL
return wc_AesGcmDecrypt_silabs(
aes, out, in, sz, iv, ivSz,
authTag, authTagSz, authIn, authInSz);
#endif
#ifdef STM32_CRYPTO_AES_GCM
/* The STM standard peripheral library API's doesn't support partial blocks */
return wc_AesGcmDecrypt_STM32(
aes, out, in, sz, iv, ivSz,
authTag, authTagSz, authIn, authInSz);
#endif /* STM32_CRYPTO_AES_GCM */
VECTOR_REGISTERS_PUSH;
#ifdef WOLFSSL_AESNI
if (aes->use_aesni) {
#ifdef HAVE_INTEL_AVX2
if (IS_INTEL_AVX2(intel_flags)) {
AES_GCM_decrypt_avx2(in, out, authIn, iv, authTag, sz, authInSz, ivSz,
authTagSz, (byte*)aes->key, (int)aes->rounds, &res);
if (res == 0)
ret = AES_GCM_AUTH_E;
else
ret = 0;
}
else
#endif
#if defined(HAVE_INTEL_AVX1)
if (IS_INTEL_AVX1(intel_flags)) {
AES_GCM_decrypt_avx1(in, out, authIn, iv, authTag, sz, authInSz, ivSz,
authTagSz, (byte*)aes->key, (int)aes->rounds, &res);
if (res == 0)
ret = AES_GCM_AUTH_E;
else
ret = 0;
}
else
#endif
{
AES_GCM_decrypt_aesni(in, out, authIn, iv, authTag, sz, authInSz, ivSz,
authTagSz, (byte*)aes->key, (int)aes->rounds, &res);
if (res == 0)
ret = AES_GCM_AUTH_E;
else
ret = 0;
}
}
else
#endif /* WOLFSSL_AESNI */
{
ret = AES_GCM_decrypt_C(aes, out, in, sz, iv, ivSz, authTag, authTagSz,
authIn, authInSz);
}
VECTOR_REGISTERS_POP;
return ret;
}
#endif
#endif /* HAVE_AES_DECRYPT || HAVE_AESGCM_DECRYPT */
#ifdef WOLFSSL_AESGCM_STREAM
/* Initialize the AES GCM cipher with an IV. C implementation.
*
* @param [in, out] aes AES object.
* @param [in] iv IV/nonce buffer.
* @param [in] ivSz Length of IV/nonce data.
*/
static WARN_UNUSED_RESULT int AesGcmInit_C(Aes* aes, const byte* iv, word32 ivSz)
{
ALIGN32 byte counter[AES_BLOCK_SIZE];
int ret;
if (ivSz == GCM_NONCE_MID_SZ) {
/* Counter is IV with bottom 4 bytes set to: 0x00,0x00,0x00,0x01. */
XMEMCPY(counter, iv, ivSz);
XMEMSET(counter + GCM_NONCE_MID_SZ, 0,
AES_BLOCK_SIZE - GCM_NONCE_MID_SZ - 1);
counter[AES_BLOCK_SIZE - 1] = 1;
}
else {
/* Counter is GHASH of IV. */
#ifdef OPENSSL_EXTRA
word32 aadTemp = aes->gcm.aadLen;
aes->gcm.aadLen = 0;
#endif
GHASH(&aes->gcm, NULL, 0, iv, ivSz, counter, AES_BLOCK_SIZE);
#ifdef OPENSSL_EXTRA
aes->gcm.aadLen = aadTemp;
#endif
}
/* Copy in the counter for use with cipher. */
XMEMCPY(AES_COUNTER(aes), counter, AES_BLOCK_SIZE);
/* Encrypt initial counter into a buffer for GCM. */
ret = wc_AesEncrypt(aes, counter, AES_INITCTR(aes));
if (ret != 0)
return ret;
/* Reset state fields. */
aes->over = 0;
aes->aSz = 0;
aes->cSz = 0;
/* Initialization for GHASH. */
GHASH_INIT(aes);
return 0;
}
/* Update the AES GCM cipher with data. C implementation.
*
* Only enciphers data.
*
* @param [in, out] aes AES object.
* @param [in] out Cipher text or plaintext buffer.
* @param [in] in Plaintext or cipher text buffer.
* @param [in] sz Length of data.
*/
static WARN_UNUSED_RESULT int AesGcmCryptUpdate_C(
Aes* aes, byte* out, const byte* in, word32 sz)
{
word32 blocks;
word32 partial;
int ret;
/* Check if previous encrypted block was not used up. */
if (aes->over > 0) {
byte pSz = AES_BLOCK_SIZE - aes->over;
if (pSz > sz) pSz = (byte)sz;
/* Use some/all of last encrypted block. */
xorbufout(out, AES_LASTBLOCK(aes) + aes->over, in, pSz);
aes->over = (aes->over + pSz) & (AES_BLOCK_SIZE - 1);
/* Some data used. */
sz -= pSz;
in += pSz;
out += pSz;
}
/* Calculate the number of blocks needing to be encrypted and any leftover.
*/
blocks = sz / AES_BLOCK_SIZE;
partial = sz & (AES_BLOCK_SIZE - 1);
#if defined(HAVE_AES_ECB)
/* Some hardware acceleration can gain performance from doing AES encryption
* of the whole buffer at once.
* Overwrites the cipher text before using plaintext - no inline encryption.
*/
if ((out != in) && blocks > 0) {
word32 b;
/* Place incrementing counter blocks into cipher text. */
for (b = 0; b < blocks; b++) {
IncrementGcmCounter(AES_COUNTER(aes));
XMEMCPY(out + b * AES_BLOCK_SIZE, AES_COUNTER(aes), AES_BLOCK_SIZE);
}
/* Encrypt counter blocks. */
wc_AesEcbEncrypt(aes, out, out, AES_BLOCK_SIZE * blocks);
/* XOR in plaintext. */
xorbuf(out, in, AES_BLOCK_SIZE * blocks);
/* Skip over processed data. */
in += AES_BLOCK_SIZE * blocks;
out += AES_BLOCK_SIZE * blocks;
}
else
#endif /* HAVE_AES_ECB */
{
/* Encrypt block by block. */
while (blocks--) {
ALIGN32 byte scratch[AES_BLOCK_SIZE];
IncrementGcmCounter(AES_COUNTER(aes));
/* Encrypt counter into a buffer. */
ret = wc_AesEncrypt(aes, AES_COUNTER(aes), scratch);
if (ret != 0)
return ret;
/* XOR plain text into encrypted counter into cipher text buffer. */
xorbufout(out, scratch, in, AES_BLOCK_SIZE);
/* Data complete. */
in += AES_BLOCK_SIZE;
out += AES_BLOCK_SIZE;
}
}
if (partial != 0) {
/* Generate an extra block and use up as much as needed. */
IncrementGcmCounter(AES_COUNTER(aes));
/* Encrypt counter into cache. */
ret = wc_AesEncrypt(aes, AES_COUNTER(aes), AES_LASTBLOCK(aes));
if (ret != 0)
return ret;
/* XOR plain text into encrypted counter into cipher text buffer. */
xorbufout(out, AES_LASTBLOCK(aes), in, partial);
/* Keep amount of encrypted block used. */
aes->over = (byte)partial;
}
return 0;
}
/* Calculates authentication tag for AES GCM. C implementation.
*
* @param [in, out] aes AES object.
* @param [out] authTag Buffer to store authentication tag in.
* @param [in] authTagSz Length of tag to create.
*/
static WARN_UNUSED_RESULT int AesGcmFinal_C(
Aes* aes, byte* authTag, word32 authTagSz)
{
/* Calculate authentication tag. */
GHASH_FINAL(aes, authTag, authTagSz);
/* XOR in as much of encrypted counter as is required. */
xorbuf(authTag, AES_INITCTR(aes), authTagSz);
#ifdef OPENSSL_EXTRA
/* store AAD size for next call */
aes->gcm.aadLen = aes->aSz;
#endif
/* Zeroize last block to protect sensitive data. */
ForceZero(AES_LASTBLOCK(aes), AES_BLOCK_SIZE);
return 0;
}
#ifdef WOLFSSL_AESNI
#ifdef __cplusplus
extern "C" {
#endif
/* Assembly code implementations in: aes_gcm_asm.S */
#ifdef HAVE_INTEL_AVX2
extern void AES_GCM_init_avx2(const unsigned char* key, int nr,
const unsigned char* ivec, unsigned int ibytes, unsigned char* h,
unsigned char* counter, unsigned char* initCtr);
extern void AES_GCM_aad_update_avx2(const unsigned char* addt,
unsigned int abytes, unsigned char* tag, unsigned char* h);
extern void AES_GCM_encrypt_block_avx2(const unsigned char* key, int nr,
unsigned char* out, const unsigned char* in, unsigned char* counter);
extern void AES_GCM_ghash_block_avx2(const unsigned char* data,
unsigned char* tag, unsigned char* h);
extern void AES_GCM_encrypt_update_avx2(const unsigned char* key, int nr,
unsigned char* out, const unsigned char* in, unsigned int nbytes,
unsigned char* tag, unsigned char* h, unsigned char* counter);
extern void AES_GCM_encrypt_final_avx2(unsigned char* tag,
unsigned char* authTag, unsigned int tbytes, unsigned int nbytes,
unsigned int abytes, unsigned char* h, unsigned char* initCtr);
#endif
#ifdef HAVE_INTEL_AVX1
extern void AES_GCM_init_avx1(const unsigned char* key, int nr,
const unsigned char* ivec, unsigned int ibytes, unsigned char* h,
unsigned char* counter, unsigned char* initCtr);
extern void AES_GCM_aad_update_avx1(const unsigned char* addt,
unsigned int abytes, unsigned char* tag, unsigned char* h);
extern void AES_GCM_encrypt_block_avx1(const unsigned char* key, int nr,
unsigned char* out, const unsigned char* in, unsigned char* counter);
extern void AES_GCM_ghash_block_avx1(const unsigned char* data,
unsigned char* tag, unsigned char* h);
extern void AES_GCM_encrypt_update_avx1(const unsigned char* key, int nr,
unsigned char* out, const unsigned char* in, unsigned int nbytes,
unsigned char* tag, unsigned char* h, unsigned char* counter);
extern void AES_GCM_encrypt_final_avx1(unsigned char* tag,
unsigned char* authTag, unsigned int tbytes, unsigned int nbytes,
unsigned int abytes, unsigned char* h, unsigned char* initCtr);
#endif
extern void AES_GCM_init_aesni(const unsigned char* key, int nr,
const unsigned char* ivec, unsigned int ibytes, unsigned char* h,
unsigned char* counter, unsigned char* initCtr);
extern void AES_GCM_aad_update_aesni(const unsigned char* addt,
unsigned int abytes, unsigned char* tag, unsigned char* h);
extern void AES_GCM_encrypt_block_aesni(const unsigned char* key, int nr,
unsigned char* out, const unsigned char* in, unsigned char* counter);
extern void AES_GCM_ghash_block_aesni(const unsigned char* data,
unsigned char* tag, unsigned char* h);
extern void AES_GCM_encrypt_update_aesni(const unsigned char* key, int nr,
unsigned char* out, const unsigned char* in, unsigned int nbytes,
unsigned char* tag, unsigned char* h, unsigned char* counter);
extern void AES_GCM_encrypt_final_aesni(unsigned char* tag,
unsigned char* authTag, unsigned int tbytes, unsigned int nbytes,
unsigned int abytes, unsigned char* h, unsigned char* initCtr);
#ifdef __cplusplus
} /* extern "C" */
#endif
/* Initialize the AES GCM cipher with an IV. AES-NI implementations.
*
* @param [in, out] aes AES object.
* @param [in] iv IV/nonce buffer.
* @param [in] ivSz Length of IV/nonce data.
*/
static WARN_UNUSED_RESULT int AesGcmInit_aesni(
Aes* aes, const byte* iv, word32 ivSz)
{
ASSERT_SAVED_VECTOR_REGISTERS();
/* Reset state fields. */
aes->over = 0;
aes->aSz = 0;
aes->cSz = 0;
/* Set tag to all zeros as initial value. */
XMEMSET(AES_TAG(aes), 0, AES_BLOCK_SIZE);
/* Reset counts of AAD and cipher text. */
aes->aOver = 0;
aes->cOver = 0;
#ifdef HAVE_INTEL_AVX2
if (IS_INTEL_AVX2(intel_flags)) {
AES_GCM_init_avx2((byte*)aes->key, (int)aes->rounds, iv, ivSz,
aes->gcm.H, AES_COUNTER(aes), AES_INITCTR(aes));
}
else
#endif
#ifdef HAVE_INTEL_AVX1
if (IS_INTEL_AVX1(intel_flags)) {
AES_GCM_init_avx1((byte*)aes->key, (int)aes->rounds, iv, ivSz,
aes->gcm.H, AES_COUNTER(aes), AES_INITCTR(aes));
}
else
#endif
{
AES_GCM_init_aesni((byte*)aes->key, (int)aes->rounds, iv, ivSz,
aes->gcm.H, AES_COUNTER(aes), AES_INITCTR(aes));
}
return 0;
}
/* Update the AES GCM for encryption with authentication data.
*
* Implementation uses AVX2, AVX1 or straight AES-NI optimized assembly code.
*
* @param [in, out] aes AES object.
* @param [in] a Buffer holding authentication data.
* @param [in] aSz Length of authentication data in bytes.
* @param [in] endA Whether no more authentication data is expected.
*/
static WARN_UNUSED_RESULT int AesGcmAadUpdate_aesni(
Aes* aes, const byte* a, word32 aSz, int endA)
{
word32 blocks;
int partial;
ASSERT_SAVED_VECTOR_REGISTERS();
if (aSz != 0 && a != NULL) {
/* Total count of AAD updated. */
aes->aSz += aSz;
/* Check if we have unprocessed data. */
if (aes->aOver > 0) {
/* Calculate amount we can use - fill up the block. */
byte sz = AES_BLOCK_SIZE - aes->aOver;
if (sz > aSz) {
sz = (byte)aSz;
}
/* Copy extra into last GHASH block array and update count. */
XMEMCPY(AES_LASTGBLOCK(aes) + aes->aOver, a, sz);
aes->aOver += sz;
if (aes->aOver == AES_BLOCK_SIZE) {
/* We have filled up the block and can process. */
#ifdef HAVE_INTEL_AVX2
if (IS_INTEL_AVX2(intel_flags)) {
AES_GCM_ghash_block_avx2(AES_LASTGBLOCK(aes), AES_TAG(aes),
aes->gcm.H);
}
else
#endif
#ifdef HAVE_INTEL_AVX1
if (IS_INTEL_AVX1(intel_flags)) {
AES_GCM_ghash_block_avx1(AES_LASTGBLOCK(aes), AES_TAG(aes),
aes->gcm.H);
}
else
#endif
{
AES_GCM_ghash_block_aesni(AES_LASTGBLOCK(aes), AES_TAG(aes),
aes->gcm.H);
}
/* Reset count. */
aes->aOver = 0;
}
/* Used up some data. */
aSz -= sz;
a += sz;
}
/* Calculate number of blocks of AAD and the leftover. */
blocks = aSz / AES_BLOCK_SIZE;
partial = aSz % AES_BLOCK_SIZE;
if (blocks > 0) {
/* GHASH full blocks now. */
#ifdef HAVE_INTEL_AVX2
if (IS_INTEL_AVX2(intel_flags)) {
AES_GCM_aad_update_avx2(a, blocks * AES_BLOCK_SIZE,
AES_TAG(aes), aes->gcm.H);
}
else
#endif
#ifdef HAVE_INTEL_AVX1
if (IS_INTEL_AVX1(intel_flags)) {
AES_GCM_aad_update_avx1(a, blocks * AES_BLOCK_SIZE,
AES_TAG(aes), aes->gcm.H);
}
else
#endif
{
AES_GCM_aad_update_aesni(a, blocks * AES_BLOCK_SIZE,
AES_TAG(aes), aes->gcm.H);
}
/* Skip over to end of AAD blocks. */
a += blocks * AES_BLOCK_SIZE;
}
if (partial != 0) {
/* Cache the partial block. */
XMEMCPY(AES_LASTGBLOCK(aes), a, (size_t)partial);
aes->aOver = (byte)partial;
}
}
if (endA && (aes->aOver > 0)) {
/* No more AAD coming and we have a partial block. */
/* Fill the rest of the block with zeros. */
XMEMSET(AES_LASTGBLOCK(aes) + aes->aOver, 0,
AES_BLOCK_SIZE - aes->aOver);
/* GHASH last AAD block. */
#ifdef HAVE_INTEL_AVX2
if (IS_INTEL_AVX2(intel_flags)) {
AES_GCM_ghash_block_avx2(AES_LASTGBLOCK(aes), AES_TAG(aes),
aes->gcm.H);
}
else
#endif
#ifdef HAVE_INTEL_AVX1
if (IS_INTEL_AVX1(intel_flags)) {
AES_GCM_ghash_block_avx1(AES_LASTGBLOCK(aes), AES_TAG(aes),
aes->gcm.H);
}
else
#endif
{
AES_GCM_ghash_block_aesni(AES_LASTGBLOCK(aes), AES_TAG(aes),
aes->gcm.H);
}
/* Clear partial count for next time through. */
aes->aOver = 0;
}
return 0;
}
/* Update the AES GCM for encryption with data and/or authentication data.
*
* Implementation uses AVX2, AVX1 or straight AES-NI optimized assembly code.
*
* @param [in, out] aes AES object.
* @param [out] c Buffer to hold cipher text.
* @param [in] p Buffer holding plaintext.
* @param [in] cSz Length of cipher text/plaintext in bytes.
* @param [in] a Buffer holding authentication data.
* @param [in] aSz Length of authentication data in bytes.
*/
static WARN_UNUSED_RESULT int AesGcmEncryptUpdate_aesni(
Aes* aes, byte* c, const byte* p, word32 cSz, const byte* a, word32 aSz)
{
word32 blocks;
int partial;
int ret;
ASSERT_SAVED_VECTOR_REGISTERS();
/* Hash in A, the Authentication Data */
ret = AesGcmAadUpdate_aesni(aes, a, aSz, (cSz > 0) && (c != NULL));
if (ret != 0)
return ret;
/* Encrypt plaintext and Hash in C, the Cipher text */
if (cSz != 0 && c != NULL) {
/* Update count of cipher text we have hashed. */
aes->cSz += cSz;
if (aes->cOver > 0) {
/* Calculate amount we can use - fill up the block. */
byte sz = AES_BLOCK_SIZE - aes->cOver;
if (sz > cSz) {
sz = (byte)cSz;
}
/* Encrypt some of the plaintext. */
xorbuf(AES_LASTGBLOCK(aes) + aes->cOver, p, sz);
XMEMCPY(c, AES_LASTGBLOCK(aes) + aes->cOver, sz);
/* Update count of unused encrypted counter. */
aes->cOver += sz;
if (aes->cOver == AES_BLOCK_SIZE) {
/* We have filled up the block and can process. */
#ifdef HAVE_INTEL_AVX2
if (IS_INTEL_AVX2(intel_flags)) {
AES_GCM_ghash_block_avx2(AES_LASTGBLOCK(aes), AES_TAG(aes),
aes->gcm.H);
}
else
#endif
#ifdef HAVE_INTEL_AVX1
if (IS_INTEL_AVX1(intel_flags)) {
AES_GCM_ghash_block_avx1(AES_LASTGBLOCK(aes), AES_TAG(aes),
aes->gcm.H);
}
else
#endif
{
AES_GCM_ghash_block_aesni(AES_LASTGBLOCK(aes), AES_TAG(aes),
aes->gcm.H);
}
/* Reset count. */
aes->cOver = 0;
}
/* Used up some data. */
cSz -= sz;
p += sz;
c += sz;
}
/* Calculate number of blocks of plaintext and the leftover. */
blocks = cSz / AES_BLOCK_SIZE;
partial = cSz % AES_BLOCK_SIZE;
if (blocks > 0) {
/* Encrypt and GHASH full blocks now. */
#ifdef HAVE_INTEL_AVX2
if (IS_INTEL_AVX2(intel_flags)) {
AES_GCM_encrypt_update_avx2((byte*)aes->key, (int)aes->rounds,
c, p, blocks * AES_BLOCK_SIZE, AES_TAG(aes), aes->gcm.H,
AES_COUNTER(aes));
}
else
#endif
#ifdef HAVE_INTEL_AVX1
if (IS_INTEL_AVX1(intel_flags)) {
AES_GCM_encrypt_update_avx1((byte*)aes->key, (int)aes->rounds,
c, p, blocks * AES_BLOCK_SIZE, AES_TAG(aes), aes->gcm.H,
AES_COUNTER(aes));
}
else
#endif
{
AES_GCM_encrypt_update_aesni((byte*)aes->key, (int)aes->rounds,
c, p, blocks * AES_BLOCK_SIZE, AES_TAG(aes), aes->gcm.H,
AES_COUNTER(aes));
}
/* Skip over to end of blocks. */
p += blocks * AES_BLOCK_SIZE;
c += blocks * AES_BLOCK_SIZE;
}
if (partial != 0) {
/* Encrypt the counter - XOR in zeros as proxy for plaintext. */
XMEMSET(AES_LASTGBLOCK(aes), 0, AES_BLOCK_SIZE);
#ifdef HAVE_INTEL_AVX2
if (IS_INTEL_AVX2(intel_flags)) {
AES_GCM_encrypt_block_avx2((byte*)aes->key, (int)aes->rounds,
AES_LASTGBLOCK(aes), AES_LASTGBLOCK(aes), AES_COUNTER(aes));
}
else
#endif
#ifdef HAVE_INTEL_AVX1
if (IS_INTEL_AVX1(intel_flags)) {
AES_GCM_encrypt_block_avx1((byte*)aes->key, (int)aes->rounds,
AES_LASTGBLOCK(aes), AES_LASTGBLOCK(aes), AES_COUNTER(aes));
}
else
#endif
{
AES_GCM_encrypt_block_aesni((byte*)aes->key, (int)aes->rounds,
AES_LASTGBLOCK(aes), AES_LASTGBLOCK(aes), AES_COUNTER(aes));
}
/* XOR the remaining plaintext to calculate cipher text.
* Keep cipher text for GHASH of last partial block.
*/
xorbuf(AES_LASTGBLOCK(aes), p, (word32)partial);
XMEMCPY(c, AES_LASTGBLOCK(aes), (size_t)partial);
/* Update count of the block used. */
aes->cOver = (byte)partial;
}
}
return 0;
}
/* Finalize the AES GCM for encryption and calculate the authentication tag.
*
* Calls AVX2, AVX1 or straight AES-NI optimized assembly code.
*
* @param [in, out] aes AES object.
* @param [in] authTag Buffer to hold authentication tag.
* @param [in] authTagSz Length of authentication tag in bytes.
* @return 0 on success.
*/
static WARN_UNUSED_RESULT int AesGcmEncryptFinal_aesni(
Aes* aes, byte* authTag, word32 authTagSz)
{
/* AAD block incomplete when > 0 */
byte over = aes->aOver;
ASSERT_SAVED_VECTOR_REGISTERS();
if (aes->cOver > 0) {
/* Cipher text block incomplete. */
over = aes->cOver;
}
if (over > 0) {
/* Fill the rest of the block with zeros. */
XMEMSET(AES_LASTGBLOCK(aes) + over, 0, AES_BLOCK_SIZE - over);
/* GHASH last cipher block. */
#ifdef HAVE_INTEL_AVX2
if (IS_INTEL_AVX2(intel_flags)) {
AES_GCM_ghash_block_avx2(AES_LASTGBLOCK(aes), AES_TAG(aes),
aes->gcm.H);
}
else
#endif
#ifdef HAVE_INTEL_AVX1
if (IS_INTEL_AVX1(intel_flags)) {
AES_GCM_ghash_block_avx1(AES_LASTGBLOCK(aes), AES_TAG(aes),
aes->gcm.H);
}
else
#endif
{
AES_GCM_ghash_block_aesni(AES_LASTGBLOCK(aes), AES_TAG(aes),
aes->gcm.H);
}
}
/* Calculate the authentication tag. */
#ifdef HAVE_INTEL_AVX2
if (IS_INTEL_AVX2(intel_flags)) {
AES_GCM_encrypt_final_avx2(AES_TAG(aes), authTag, authTagSz, aes->cSz,
aes->aSz, aes->gcm.H, AES_INITCTR(aes));
}
else
#endif
#ifdef HAVE_INTEL_AVX1
if (IS_INTEL_AVX1(intel_flags)) {
AES_GCM_encrypt_final_avx1(AES_TAG(aes), authTag, authTagSz, aes->cSz,
aes->aSz, aes->gcm.H, AES_INITCTR(aes));
}
else
#endif
{
AES_GCM_encrypt_final_aesni(AES_TAG(aes), authTag, authTagSz, aes->cSz,
aes->aSz, aes->gcm.H, AES_INITCTR(aes));
}
return 0;
}
#if defined(HAVE_AES_DECRYPT) || defined(HAVE_AESGCM_DECRYPT)
#ifdef __cplusplus
extern "C" {
#endif
/* Assembly code implementations in: aes_gcm_asm.S and aes_gcm_x86_asm.S */
#ifdef HAVE_INTEL_AVX2
extern void AES_GCM_decrypt_update_avx2(const unsigned char* key, int nr,
unsigned char* out, const unsigned char* in, unsigned int nbytes,
unsigned char* tag, unsigned char* h, unsigned char* counter);
extern void AES_GCM_decrypt_final_avx2(unsigned char* tag,
const unsigned char* authTag, unsigned int tbytes, unsigned int nbytes,
unsigned int abytes, unsigned char* h, unsigned char* initCtr, int* res);
#endif
#ifdef HAVE_INTEL_AVX1
extern void AES_GCM_decrypt_update_avx1(const unsigned char* key, int nr,
unsigned char* out, const unsigned char* in, unsigned int nbytes,
unsigned char* tag, unsigned char* h, unsigned char* counter);
extern void AES_GCM_decrypt_final_avx1(unsigned char* tag,
const unsigned char* authTag, unsigned int tbytes, unsigned int nbytes,
unsigned int abytes, unsigned char* h, unsigned char* initCtr, int* res);
#endif
extern void AES_GCM_decrypt_update_aesni(const unsigned char* key, int nr,
unsigned char* out, const unsigned char* in, unsigned int nbytes,
unsigned char* tag, unsigned char* h, unsigned char* counter);
extern void AES_GCM_decrypt_final_aesni(unsigned char* tag,
const unsigned char* authTag, unsigned int tbytes, unsigned int nbytes,
unsigned int abytes, unsigned char* h, unsigned char* initCtr, int* res);
#ifdef __cplusplus
} /* extern "C" */
#endif
/* Update the AES GCM for decryption with data and/or authentication data.
*
* @param [in, out] aes AES object.
* @param [out] p Buffer to hold plaintext.
* @param [in] c Buffer holding cipher text.
* @param [in] cSz Length of cipher text/plaintext in bytes.
* @param [in] a Buffer holding authentication data.
* @param [in] aSz Length of authentication data in bytes.
*/
static WARN_UNUSED_RESULT int AesGcmDecryptUpdate_aesni(
Aes* aes, byte* p, const byte* c, word32 cSz, const byte* a, word32 aSz)
{
word32 blocks;
int partial;
int ret;
ASSERT_SAVED_VECTOR_REGISTERS();
/* Hash in A, the Authentication Data */
ret = AesGcmAadUpdate_aesni(aes, a, aSz, (cSz > 0) && (c != NULL));
if (ret != 0)
return ret;
/* Hash in C, the Cipher text, and decrypt. */
if (cSz != 0 && p != NULL) {
/* Update count of cipher text we have hashed. */
aes->cSz += cSz;
if (aes->cOver > 0) {
/* Calculate amount we can use - fill up the block. */
byte sz = AES_BLOCK_SIZE - aes->cOver;
if (sz > cSz) {
sz = (byte)cSz;
}
/* Keep a copy of the cipher text for GHASH. */
XMEMCPY(AES_LASTBLOCK(aes) + aes->cOver, c, sz);
/* Decrypt some of the cipher text. */
xorbuf(AES_LASTGBLOCK(aes) + aes->cOver, c, sz);
XMEMCPY(p, AES_LASTGBLOCK(aes) + aes->cOver, sz);
/* Update count of unused encrypted counter. */
aes->cOver += sz;
if (aes->cOver == AES_BLOCK_SIZE) {
/* We have filled up the block and can process. */
#ifdef HAVE_INTEL_AVX2
if (IS_INTEL_AVX2(intel_flags)) {
AES_GCM_ghash_block_avx2(AES_LASTBLOCK(aes), AES_TAG(aes),
aes->gcm.H);
}
else
#endif
#ifdef HAVE_INTEL_AVX1
if (IS_INTEL_AVX1(intel_flags)) {
AES_GCM_ghash_block_avx1(AES_LASTBLOCK(aes), AES_TAG(aes),
aes->gcm.H);
}
else
#endif
{
AES_GCM_ghash_block_aesni(AES_LASTBLOCK(aes), AES_TAG(aes),
aes->gcm.H);
}
/* Reset count. */
aes->cOver = 0;
}
/* Used up some data. */
cSz -= sz;
c += sz;
p += sz;
}
/* Calculate number of blocks of plaintext and the leftover. */
blocks = cSz / AES_BLOCK_SIZE;
partial = cSz % AES_BLOCK_SIZE;
if (blocks > 0) {
/* Decrypt and GHASH full blocks now. */
#ifdef HAVE_INTEL_AVX2
if (IS_INTEL_AVX2(intel_flags)) {
AES_GCM_decrypt_update_avx2((byte*)aes->key, (int)aes->rounds,
p, c, blocks * AES_BLOCK_SIZE, AES_TAG(aes), aes->gcm.H,
AES_COUNTER(aes));
}
else
#endif
#ifdef HAVE_INTEL_AVX1
if (IS_INTEL_AVX1(intel_flags)) {
AES_GCM_decrypt_update_avx1((byte*)aes->key, (int)aes->rounds,
p, c, blocks * AES_BLOCK_SIZE, AES_TAG(aes), aes->gcm.H,
AES_COUNTER(aes));
}
else
#endif
{
AES_GCM_decrypt_update_aesni((byte*)aes->key, (int)aes->rounds,
p, c, blocks * AES_BLOCK_SIZE, AES_TAG(aes), aes->gcm.H,
AES_COUNTER(aes));
}
/* Skip over to end of blocks. */
c += blocks * AES_BLOCK_SIZE;
p += blocks * AES_BLOCK_SIZE;
}
if (partial != 0) {
/* Encrypt the counter - XOR in zeros as proxy for cipher text. */
XMEMSET(AES_LASTGBLOCK(aes), 0, AES_BLOCK_SIZE);
#ifdef HAVE_INTEL_AVX2
if (IS_INTEL_AVX2(intel_flags)) {
AES_GCM_encrypt_block_avx2((byte*)aes->key, (int)aes->rounds,
AES_LASTGBLOCK(aes), AES_LASTGBLOCK(aes), AES_COUNTER(aes));
}
else
#endif
#ifdef HAVE_INTEL_AVX1
if (IS_INTEL_AVX1(intel_flags)) {
AES_GCM_encrypt_block_avx1((byte*)aes->key, (int)aes->rounds,
AES_LASTGBLOCK(aes), AES_LASTGBLOCK(aes), AES_COUNTER(aes));
}
else
#endif
{
AES_GCM_encrypt_block_aesni((byte*)aes->key, (int)aes->rounds,
AES_LASTGBLOCK(aes), AES_LASTGBLOCK(aes), AES_COUNTER(aes));
}
/* Keep cipher text for GHASH of last partial block. */
XMEMCPY(AES_LASTBLOCK(aes), c, (size_t)partial);
/* XOR the remaining cipher text to calculate plaintext. */
xorbuf(AES_LASTGBLOCK(aes), c, (word32)partial);
XMEMCPY(p, AES_LASTGBLOCK(aes), (size_t)partial);
/* Update count of the block used. */
aes->cOver = (byte)partial;
}
}
return 0;
}
/* Finalize the AES GCM for decryption and check the authentication tag.
*
* Calls AVX2, AVX1 or straight AES-NI optimized assembly code.
*
* @param [in, out] aes AES object.
* @param [in] authTag Buffer holding authentication tag.
* @param [in] authTagSz Length of authentication tag in bytes.
* @return 0 on success.
* @return AES_GCM_AUTH_E when authentication tag doesn't match calculated
* value.
*/
static WARN_UNUSED_RESULT int AesGcmDecryptFinal_aesni(
Aes* aes, const byte* authTag, word32 authTagSz)
{
int ret = 0;
int res;
/* AAD block incomplete when > 0 */
byte over = aes->aOver;
byte *lastBlock = AES_LASTGBLOCK(aes);
ASSERT_SAVED_VECTOR_REGISTERS();
if (aes->cOver > 0) {
/* Cipher text block incomplete. */
over = aes->cOver;
lastBlock = AES_LASTBLOCK(aes);
}
if (over > 0) {
/* Zeroize the unused part of the block. */
XMEMSET(lastBlock + over, 0, AES_BLOCK_SIZE - over);
/* Hash the last block of cipher text. */
#ifdef HAVE_INTEL_AVX2
if (IS_INTEL_AVX2(intel_flags)) {
AES_GCM_ghash_block_avx2(lastBlock, AES_TAG(aes), aes->gcm.H);
}
else
#endif
#ifdef HAVE_INTEL_AVX1
if (IS_INTEL_AVX1(intel_flags)) {
AES_GCM_ghash_block_avx1(lastBlock, AES_TAG(aes), aes->gcm.H);
}
else
#endif
{
AES_GCM_ghash_block_aesni(lastBlock, AES_TAG(aes), aes->gcm.H);
}
}
/* Calculate and compare the authentication tag. */
#ifdef HAVE_INTEL_AVX2
if (IS_INTEL_AVX2(intel_flags)) {
AES_GCM_decrypt_final_avx2(AES_TAG(aes), authTag, authTagSz, aes->cSz,
aes->aSz, aes->gcm.H, AES_INITCTR(aes), &res);
}
else
#endif
#ifdef HAVE_INTEL_AVX1
if (IS_INTEL_AVX1(intel_flags)) {
AES_GCM_decrypt_final_avx1(AES_TAG(aes), authTag, authTagSz, aes->cSz,
aes->aSz, aes->gcm.H, AES_INITCTR(aes), &res);
}
else
#endif
{
AES_GCM_decrypt_final_aesni(AES_TAG(aes), authTag, authTagSz, aes->cSz,
aes->aSz, aes->gcm.H, AES_INITCTR(aes), &res);
}
/* Return error code when calculated doesn't match input. */
if (res == 0) {
ret = AES_GCM_AUTH_E;
}
return ret;
}
#endif /* HAVE_AES_DECRYPT || HAVE_AESGCM_DECRYPT */
#endif /* WOLFSSL_AESNI */
/* Initialize an AES GCM cipher for encryption or decryption.
*
* Must call wc_AesInit() before calling this function.
* Call wc_AesGcmSetIV() before calling this function to generate part of IV.
* Call wc_AesGcmSetExtIV() before calling this function to cache IV.
*
* @param [in, out] aes AES object.
* @param [in] key Buffer holding key.
* @param [in] len Length of key in bytes.
* @param [in] iv Buffer holding IV/nonce.
* @param [in] ivSz Length of IV/nonce in bytes.
* @return 0 on success.
* @return BAD_FUNC_ARG when aes is NULL, or a length is non-zero but buffer
* is NULL, or the IV is NULL and no previous IV has been set.
* @return MEMORY_E when dynamic memory allocation fails. (WOLFSSL_SMALL_STACK)
*/
int wc_AesGcmInit(Aes* aes, const byte* key, word32 len, const byte* iv,
word32 ivSz)
{
int ret = 0;
/* Check validity of parameters. */
if ((aes == NULL) || ((len > 0) && (key == NULL)) ||
((ivSz == 0) && (iv != NULL)) ||
((ivSz > 0) && (iv == NULL))) {
ret = BAD_FUNC_ARG;
}
#if defined(WOLFSSL_SMALL_STACK) && !defined(WOLFSSL_AESNI)
if ((ret == 0) && (aes->streamData == NULL)) {
/* Allocate buffers for streaming. */
aes->streamData = (byte*)XMALLOC(5 * AES_BLOCK_SIZE, aes->heap,
DYNAMIC_TYPE_AES);
if (aes->streamData == NULL) {
ret = MEMORY_E;
}
}
#endif
/* Set the key if passed in. */
if ((ret == 0) && (key != NULL)) {
ret = wc_AesGcmSetKey(aes, key, len);
}
if (ret == 0) {
/* Set the IV passed in if it is smaller than a block. */
if ((iv != NULL) && (ivSz <= AES_BLOCK_SIZE)) {
XMEMMOVE((byte*)aes->reg, iv, ivSz);
aes->nonceSz = ivSz;
}
/* No IV passed in, check for cached IV. */
if ((iv == NULL) && (aes->nonceSz != 0)) {
/* Use the cached copy. */
iv = (byte*)aes->reg;
ivSz = aes->nonceSz;
}
if (iv != NULL) {
/* Initialize with the IV. */
#ifdef WOLFSSL_AESNI
if (aes->use_aesni) {
SAVE_VECTOR_REGISTERS(return _svr_ret;);
ret = AesGcmInit_aesni(aes, iv, ivSz);
RESTORE_VECTOR_REGISTERS();
}
else
#endif
{
ret = AesGcmInit_C(aes, iv, ivSz);
}
if (ret == 0)
aes->nonceSet = 1;
}
}
return ret;
}
/* Initialize an AES GCM cipher for encryption.
*
* Must call wc_AesInit() before calling this function.
*
* @param [in, out] aes AES object.
* @param [in] key Buffer holding key.
* @param [in] len Length of key in bytes.
* @param [in] iv Buffer holding IV/nonce.
* @param [in] ivSz Length of IV/nonce in bytes.
* @return 0 on success.
* @return BAD_FUNC_ARG when aes is NULL, or a length is non-zero but buffer
* is NULL, or the IV is NULL and no previous IV has been set.
*/
int wc_AesGcmEncryptInit(Aes* aes, const byte* key, word32 len, const byte* iv,
word32 ivSz)
{
return wc_AesGcmInit(aes, key, len, iv, ivSz);
}
/* Initialize an AES GCM cipher for encryption. Get IV.
*
* Must call wc_AesGcmSetIV() to generate part of IV before calling this
* function.
* Must call wc_AesInit() before calling this function.
*
* See wc_AesGcmEncrypt_ex() for non-streaming version of getting IV out.
*
* @param [in, out] aes AES object.
* @param [in] key Buffer holding key.
* @param [in] len Length of key in bytes.
* @param [in] iv Buffer holding IV/nonce.
* @param [in] ivSz Length of IV/nonce in bytes.
* @return 0 on success.
* @return BAD_FUNC_ARG when aes is NULL, key length is non-zero but key
* is NULL, or the IV is NULL or ivOutSz is not the same as cached
* nonce size.
*/
int wc_AesGcmEncryptInit_ex(Aes* aes, const byte* key, word32 len, byte* ivOut,
word32 ivOutSz)
{
int ret;
/* Check validity of parameters. */
if ((aes == NULL) || (ivOut == NULL) || (ivOutSz != aes->nonceSz)) {
ret = BAD_FUNC_ARG;
}
else {
/* Copy out the IV including generated part for decryption. */
XMEMCPY(ivOut, aes->reg, ivOutSz);
/* Initialize AES GCM cipher with key and cached Iv. */
ret = wc_AesGcmInit(aes, key, len, NULL, 0);
}
return ret;
}
/* Update the AES GCM for encryption with data and/or authentication data.
*
* All the AAD must be passed to update before the plaintext.
* Last part of AAD can be passed with first part of plaintext.
*
* Must set key and IV before calling this function.
* Must call wc_AesGcmInit() before calling this function.
*
* @param [in, out] aes AES object.
* @param [out] out Buffer to hold cipher text.
* @param [in] in Buffer holding plaintext.
* @param [in] sz Length of plaintext in bytes.
* @param [in] authIn Buffer holding authentication data.
* @param [in] authInSz Length of authentication data in bytes.
* @return 0 on success.
* @return BAD_FUNC_ARG when aes is NULL, or a length is non-zero but buffer
* is NULL.
*/
int wc_AesGcmEncryptUpdate(Aes* aes, byte* out, const byte* in, word32 sz,
const byte* authIn, word32 authInSz)
{
int ret = 0;
/* Check validity of parameters. */
if ((aes == NULL) || ((authInSz > 0) && (authIn == NULL)) || ((sz > 0) &&
((out == NULL) || (in == NULL)))) {
ret = BAD_FUNC_ARG;
}
/* Check key has been set. */
if ((ret == 0) && (!aes->gcmKeySet)) {
ret = MISSING_KEY;
}
/* Check IV has been set. */
if ((ret == 0) && (!aes->nonceSet)) {
ret = MISSING_IV;
}
if ((ret == 0) && aes->ctrSet && (aes->aSz == 0) && (aes->cSz == 0)) {
aes->invokeCtr[0]++;
if (aes->invokeCtr[0] == 0) {
aes->invokeCtr[1]++;
if (aes->invokeCtr[1] == 0)
ret = AES_GCM_OVERFLOW_E;
}
}
if (ret == 0) {
/* Encrypt with AAD and/or plaintext. */
#ifdef WOLFSSL_AESNI
if (aes->use_aesni) {
SAVE_VECTOR_REGISTERS(return _svr_ret;);
ret = AesGcmEncryptUpdate_aesni(aes, out, in, sz, authIn, authInSz);
RESTORE_VECTOR_REGISTERS();
}
else
#endif
{
/* Encrypt the plaintext. */
ret = AesGcmCryptUpdate_C(aes, out, in, sz);
if (ret == 0) {
/* Update the authentication tag with any authentication data and the
* new cipher text. */
GHASH_UPDATE(aes, authIn, authInSz, out, sz);
}
}
}
return ret;
}
/* Finalize the AES GCM for encryption and return the authentication tag.
*
* Must set key and IV before calling this function.
* Must call wc_AesGcmInit() before calling this function.
*
* @param [in, out] aes AES object.
* @param [out] authTag Buffer to hold authentication tag.
* @param [in] authTagSz Length of authentication tag in bytes.
* @return 0 on success.
*/
int wc_AesGcmEncryptFinal(Aes* aes, byte* authTag, word32 authTagSz)
{
int ret = 0;
/* Check validity of parameters. */
if ((aes == NULL) || (authTag == NULL) || (authTagSz > AES_BLOCK_SIZE) ||
(authTagSz == 0)) {
ret = BAD_FUNC_ARG;
}
/* Check key has been set. */
if ((ret == 0) && (!aes->gcmKeySet)) {
ret = MISSING_KEY;
}
/* Check IV has been set. */
if ((ret == 0) && (!aes->nonceSet)) {
ret = MISSING_IV;
}
if (ret == 0) {
/* Calculate authentication tag. */
#ifdef WOLFSSL_AESNI
if (aes->use_aesni) {
SAVE_VECTOR_REGISTERS(return _svr_ret;);
ret = AesGcmEncryptFinal_aesni(aes, authTag, authTagSz);
RESTORE_VECTOR_REGISTERS();
}
else
#endif
{
ret = AesGcmFinal_C(aes, authTag, authTagSz);
}
}
if ((ret == 0) && aes->ctrSet) {
IncCtr((byte*)aes->reg, aes->nonceSz);
}
return ret;
}
#if defined(HAVE_AES_DECRYPT) || defined(HAVE_AESGCM_DECRYPT)
/* Initialize an AES GCM cipher for decryption.
*
* Must call wc_AesInit() before calling this function.
*
* Call wc_AesGcmSetExtIV() before calling this function to use FIPS external IV
* instead.
*
* @param [in, out] aes AES object.
* @param [in] key Buffer holding key.
* @param [in] len Length of key in bytes.
* @param [in] iv Buffer holding IV/nonce.
* @param [in] ivSz Length of IV/nonce in bytes.
* @return 0 on success.
* @return BAD_FUNC_ARG when aes is NULL, or a length is non-zero but buffer
* is NULL, or the IV is NULL and no previous IV has been set.
*/
int wc_AesGcmDecryptInit(Aes* aes, const byte* key, word32 len, const byte* iv,
word32 ivSz)
{
return wc_AesGcmInit(aes, key, len, iv, ivSz);
}
/* Update the AES GCM for decryption with data and/or authentication data.
*
* All the AAD must be passed to update before the cipher text.
* Last part of AAD can be passed with first part of cipher text.
*
* Must set key and IV before calling this function.
* Must call wc_AesGcmInit() before calling this function.
*
* @param [in, out] aes AES object.
* @param [out] out Buffer to hold plaintext.
* @param [in] in Buffer holding cipher text.
* @param [in] sz Length of cipher text in bytes.
* @param [in] authIn Buffer holding authentication data.
* @param [in] authInSz Length of authentication data in bytes.
* @return 0 on success.
* @return BAD_FUNC_ARG when aes is NULL, or a length is non-zero but buffer
* is NULL.
*/
int wc_AesGcmDecryptUpdate(Aes* aes, byte* out, const byte* in, word32 sz,
const byte* authIn, word32 authInSz)
{
int ret = 0;
/* Check validity of parameters. */
if ((aes == NULL) || ((authInSz > 0) && (authIn == NULL)) || ((sz > 0) &&
((out == NULL) || (in == NULL)))) {
ret = BAD_FUNC_ARG;
}
/* Check key has been set. */
if ((ret == 0) && (!aes->gcmKeySet)) {
ret = MISSING_KEY;
}
/* Check IV has been set. */
if ((ret == 0) && (!aes->nonceSet)) {
ret = MISSING_IV;
}
if (ret == 0) {
/* Decrypt with AAD and/or cipher text. */
#ifdef WOLFSSL_AESNI
if (aes->use_aesni) {
SAVE_VECTOR_REGISTERS(return _svr_ret;);
ret = AesGcmDecryptUpdate_aesni(aes, out, in, sz, authIn, authInSz);
RESTORE_VECTOR_REGISTERS();
}
else
#endif
{
/* Update the authentication tag with any authentication data and
* cipher text. */
GHASH_UPDATE(aes, authIn, authInSz, in, sz);
/* Decrypt the cipher text. */
ret = AesGcmCryptUpdate_C(aes, out, in, sz);
}
}
return ret;
}
/* Finalize the AES GCM for decryption and check the authentication tag.
*
* Must set key and IV before calling this function.
* Must call wc_AesGcmInit() before calling this function.
*
* @param [in, out] aes AES object.
* @param [in] authTag Buffer holding authentication tag.
* @param [in] authTagSz Length of authentication tag in bytes.
* @return 0 on success.
*/
int wc_AesGcmDecryptFinal(Aes* aes, const byte* authTag, word32 authTagSz)
{
int ret = 0;
/* Check validity of parameters. */
if ((aes == NULL) || (authTag == NULL) || (authTagSz > AES_BLOCK_SIZE) ||
(authTagSz == 0)) {
ret = BAD_FUNC_ARG;
}
/* Check key has been set. */
if ((ret == 0) && (!aes->gcmKeySet)) {
ret = MISSING_KEY;
}
/* Check IV has been set. */
if ((ret == 0) && (!aes->nonceSet)) {
ret = MISSING_IV;
}
if (ret == 0) {
/* Calculate authentication tag and compare with one passed in.. */
#ifdef WOLFSSL_AESNI
if (aes->use_aesni) {
SAVE_VECTOR_REGISTERS(return _svr_ret;);
ret = AesGcmDecryptFinal_aesni(aes, authTag, authTagSz);
RESTORE_VECTOR_REGISTERS();
}
else
#endif
{
ALIGN32 byte calcTag[AES_BLOCK_SIZE];
/* Calculate authentication tag. */
ret = AesGcmFinal_C(aes, calcTag, authTagSz);
if (ret == 0) {
/* Check calculated tag matches the one passed in. */
if (ConstantCompare(authTag, calcTag, (int)authTagSz) != 0) {
ret = AES_GCM_AUTH_E;
}
}
}
}
return ret;
}
#endif /* HAVE_AES_DECRYPT || HAVE_AESGCM_DECRYPT */
#endif /* WOLFSSL_AESGCM_STREAM */
#endif /* WOLFSSL_XILINX_CRYPT */
#endif /* end of block for AESGCM implementation selection */
/* Common to all, abstract functions that build off of lower level AESGCM
* functions */
#ifndef WC_NO_RNG
static WARN_UNUSED_RESULT WC_INLINE int CheckAesGcmIvSize(int ivSz) {
return (ivSz == GCM_NONCE_MIN_SZ ||
ivSz == GCM_NONCE_MID_SZ ||
ivSz == GCM_NONCE_MAX_SZ);
}
int wc_AesGcmSetExtIV(Aes* aes, const byte* iv, word32 ivSz)
{
int ret = 0;
if (aes == NULL || iv == NULL || !CheckAesGcmIvSize((int)ivSz)) {
ret = BAD_FUNC_ARG;
}
if (ret == 0) {
XMEMCPY((byte*)aes->reg, iv, ivSz);
/* If the IV is 96, allow for a 2^64 invocation counter.
* For any other size for the nonce, limit the invocation
* counter to 32-bits. (SP 800-38D 8.3) */
aes->invokeCtr[0] = 0;
aes->invokeCtr[1] = (ivSz == GCM_NONCE_MID_SZ) ? 0 : 0xFFFFFFFF;
#ifdef WOLFSSL_AESGCM_STREAM
aes->ctrSet = 1;
#endif
aes->nonceSz = ivSz;
}
return ret;
}
int wc_AesGcmSetIV(Aes* aes, word32 ivSz,
const byte* ivFixed, word32 ivFixedSz,
WC_RNG* rng)
{
int ret = 0;
if (aes == NULL || rng == NULL || !CheckAesGcmIvSize((int)ivSz) ||
(ivFixed == NULL && ivFixedSz != 0) ||
(ivFixed != NULL && ivFixedSz != AES_IV_FIXED_SZ)) {
ret = BAD_FUNC_ARG;
}
if (ret == 0) {
byte* iv = (byte*)aes->reg;
if (ivFixedSz)
XMEMCPY(iv, ivFixed, ivFixedSz);
ret = wc_RNG_GenerateBlock(rng, iv + ivFixedSz, ivSz - ivFixedSz);
}
if (ret == 0) {
/* If the IV is 96, allow for a 2^64 invocation counter.
* For any other size for the nonce, limit the invocation
* counter to 32-bits. (SP 800-38D 8.3) */
aes->invokeCtr[0] = 0;
aes->invokeCtr[1] = (ivSz == GCM_NONCE_MID_SZ) ? 0 : 0xFFFFFFFF;
#ifdef WOLFSSL_AESGCM_STREAM
aes->ctrSet = 1;
#endif
aes->nonceSz = ivSz;
}
return ret;
}
int wc_AesGcmEncrypt_ex(Aes* aes, byte* out, const byte* in, word32 sz,
byte* ivOut, word32 ivOutSz,
byte* authTag, word32 authTagSz,
const byte* authIn, word32 authInSz)
{
int ret = 0;
if (aes == NULL || (sz != 0 && (in == NULL || out == NULL)) ||
ivOut == NULL || ivOutSz != aes->nonceSz ||
(authIn == NULL && authInSz != 0)) {
ret = BAD_FUNC_ARG;
}
if (ret == 0) {
aes->invokeCtr[0]++;
if (aes->invokeCtr[0] == 0) {
aes->invokeCtr[1]++;
if (aes->invokeCtr[1] == 0)
ret = AES_GCM_OVERFLOW_E;
}
}
if (ret == 0) {
XMEMCPY(ivOut, aes->reg, ivOutSz);
ret = wc_AesGcmEncrypt(aes, out, in, sz,
(byte*)aes->reg, ivOutSz,
authTag, authTagSz,
authIn, authInSz);
if (ret == 0)
IncCtr((byte*)aes->reg, ivOutSz);
}
return ret;
}
int wc_Gmac(const byte* key, word32 keySz, byte* iv, word32 ivSz,
const byte* authIn, word32 authInSz,
byte* authTag, word32 authTagSz, WC_RNG* rng)
{
#ifdef WOLFSSL_SMALL_STACK
Aes *aes = NULL;
#else
Aes aes[1];
#endif
int ret;
if (key == NULL || iv == NULL || (authIn == NULL && authInSz != 0) ||
authTag == NULL || authTagSz == 0 || rng == NULL) {
return BAD_FUNC_ARG;
}
#ifdef WOLFSSL_SMALL_STACK
if ((aes = (Aes *)XMALLOC(sizeof *aes, NULL,
DYNAMIC_TYPE_AES)) == NULL)
return MEMORY_E;
#endif
ret = wc_AesInit(aes, NULL, INVALID_DEVID);
if (ret == 0) {
ret = wc_AesGcmSetKey(aes, key, keySz);
if (ret == 0)
ret = wc_AesGcmSetIV(aes, ivSz, NULL, 0, rng);
if (ret == 0)
ret = wc_AesGcmEncrypt_ex(aes, NULL, NULL, 0, iv, ivSz,
authTag, authTagSz, authIn, authInSz);
wc_AesFree(aes);
}
ForceZero(aes, sizeof *aes);
#ifdef WOLFSSL_SMALL_STACK
XFREE(aes, NULL, DYNAMIC_TYPE_AES);
#endif
return ret;
}
int wc_GmacVerify(const byte* key, word32 keySz,
const byte* iv, word32 ivSz,
const byte* authIn, word32 authInSz,
const byte* authTag, word32 authTagSz)
{
int ret;
#ifdef HAVE_AES_DECRYPT
#ifdef WOLFSSL_SMALL_STACK
Aes *aes = NULL;
#else
Aes aes[1];
#endif
if (key == NULL || iv == NULL || (authIn == NULL && authInSz != 0) ||
authTag == NULL || authTagSz == 0 || authTagSz > AES_BLOCK_SIZE) {
return BAD_FUNC_ARG;
}
#ifdef WOLFSSL_SMALL_STACK
if ((aes = (Aes *)XMALLOC(sizeof *aes, NULL,
DYNAMIC_TYPE_AES)) == NULL)
return MEMORY_E;
#endif
ret = wc_AesInit(aes, NULL, INVALID_DEVID);
if (ret == 0) {
ret = wc_AesGcmSetKey(aes, key, keySz);
if (ret == 0)
ret = wc_AesGcmDecrypt(aes, NULL, NULL, 0, iv, ivSz,
authTag, authTagSz, authIn, authInSz);
wc_AesFree(aes);
}
ForceZero(aes, sizeof *aes);
#ifdef WOLFSSL_SMALL_STACK
XFREE(aes, NULL, DYNAMIC_TYPE_AES);
#endif
#else
(void)key;
(void)keySz;
(void)iv;
(void)ivSz;
(void)authIn;
(void)authInSz;
(void)authTag;
(void)authTagSz;
ret = NOT_COMPILED_IN;
#endif
return ret;
}
#endif /* WC_NO_RNG */
WOLFSSL_API int wc_GmacSetKey(Gmac* gmac, const byte* key, word32 len)
{
if (gmac == NULL || key == NULL) {
return BAD_FUNC_ARG;
}
return wc_AesGcmSetKey(&gmac->aes, key, len);
}
WOLFSSL_API int wc_GmacUpdate(Gmac* gmac, const byte* iv, word32 ivSz,
const byte* authIn, word32 authInSz,
byte* authTag, word32 authTagSz)
{
if (gmac == NULL) {
return BAD_FUNC_ARG;
}
return wc_AesGcmEncrypt(&gmac->aes, NULL, NULL, 0, iv, ivSz,
authTag, authTagSz, authIn, authInSz);
}
#endif /* HAVE_AESGCM */
#ifdef HAVE_AESCCM
int wc_AesCcmSetKey(Aes* aes, const byte* key, word32 keySz)
{
if (!((keySz == 16) || (keySz == 24) || (keySz == 32)))
return BAD_FUNC_ARG;
return wc_AesSetKey(aes, key, keySz, NULL, AES_ENCRYPTION);
}
/* Checks if the tag size is an accepted value based on RFC 3610 section 2
* returns 0 if tag size is ok
*/
int wc_AesCcmCheckTagSize(int sz)
{
/* values here are from RFC 3610 section 2 */
if (sz != 4 && sz != 6 && sz != 8 && sz != 10 && sz != 12 && sz != 14
&& sz != 16) {
WOLFSSL_MSG("Bad auth tag size AES-CCM");
return BAD_FUNC_ARG;
}
return 0;
}
#ifdef WOLFSSL_ARMASM
/* implementation located in wolfcrypt/src/port/arm/armv8-aes.c */
#elif defined(WOLFSSL_RISCV_ASM)
/* implementation located in wolfcrypt/src/port/risc-v/riscv-64-aes.c */
#elif defined(HAVE_COLDFIRE_SEC)
#error "Coldfire SEC doesn't currently support AES-CCM mode"
#elif defined(WOLFSSL_IMX6_CAAM) && !defined(NO_IMX6_CAAM_AES) && \
!defined(WOLFSSL_QNX_CAAM)
/* implemented in wolfcrypt/src/port/caam_aes.c */
#elif defined(WOLFSSL_SILABS_SE_ACCEL)
/* implemented in wolfcrypt/src/port/silabs/silabs_aes.c */
int wc_AesCcmEncrypt(Aes* aes, byte* out, const byte* in, word32 inSz,
const byte* nonce, word32 nonceSz,
byte* authTag, word32 authTagSz,
const byte* authIn, word32 authInSz)
{
return wc_AesCcmEncrypt_silabs(
aes, out, in, inSz,
nonce, nonceSz,
authTag, authTagSz,
authIn, authInSz);
}
#ifdef HAVE_AES_DECRYPT
int wc_AesCcmDecrypt(Aes* aes, byte* out, const byte* in, word32 inSz,
const byte* nonce, word32 nonceSz,
const byte* authTag, word32 authTagSz,
const byte* authIn, word32 authInSz)
{
return wc_AesCcmDecrypt_silabs(
aes, out, in, inSz,
nonce, nonceSz,
authTag, authTagSz,
authIn, authInSz);
}
#endif
#elif defined(FREESCALE_LTC)
/* return 0 on success */
int wc_AesCcmEncrypt(Aes* aes, byte* out, const byte* in, word32 inSz,
const byte* nonce, word32 nonceSz,
byte* authTag, word32 authTagSz,
const byte* authIn, word32 authInSz)
{
byte *key;
word32 keySize;
status_t status;
/* sanity check on arguments */
/* note, LTC_AES_EncryptTagCcm() doesn't allow null src or dst
* ptrs even if inSz is zero (ltc_aes_ccm_check_input_args()), so
* don't allow it here either.
*/
if (aes == NULL || out == NULL || in == NULL || nonce == NULL
|| authTag == NULL || nonceSz < 7 || nonceSz > 13) {
return BAD_FUNC_ARG;
}
if (wc_AesCcmCheckTagSize(authTagSz) != 0) {
return BAD_FUNC_ARG;
}
key = (byte*)aes->key;
status = wc_AesGetKeySize(aes, &keySize);
if (status != 0) {
return status;
}
status = wolfSSL_CryptHwMutexLock();
if (status != 0)
return status;
status = LTC_AES_EncryptTagCcm(LTC_BASE, in, out, inSz,
nonce, nonceSz, authIn, authInSz, key, keySize, authTag, authTagSz);
wolfSSL_CryptHwMutexUnLock();
return (kStatus_Success == status) ? 0 : BAD_FUNC_ARG;
}
#ifdef HAVE_AES_DECRYPT
int wc_AesCcmDecrypt(Aes* aes, byte* out, const byte* in, word32 inSz,
const byte* nonce, word32 nonceSz,
const byte* authTag, word32 authTagSz,
const byte* authIn, word32 authInSz)
{
byte *key;
word32 keySize;
status_t status;
/* sanity check on arguments */
if (aes == NULL || out == NULL || in == NULL || nonce == NULL
|| authTag == NULL || nonceSz < 7 || nonceSz > 13) {
return BAD_FUNC_ARG;
}
key = (byte*)aes->key;
status = wc_AesGetKeySize(aes, &keySize);
if (status != 0) {
return status;
}
status = wolfSSL_CryptHwMutexLock();
if (status != 0)
return status;
status = LTC_AES_DecryptTagCcm(LTC_BASE, in, out, inSz,
nonce, nonceSz, authIn, authInSz, key, keySize, authTag, authTagSz);
wolfSSL_CryptHwMutexUnLock();
if (status != kStatus_Success) {
XMEMSET(out, 0, inSz);
return AES_CCM_AUTH_E;
}
return 0;
}
#endif /* HAVE_AES_DECRYPT */
#else
/* Software CCM */
static WARN_UNUSED_RESULT int roll_x(
Aes* aes, const byte* in, word32 inSz, byte* out)
{
int ret;
/* process the bulk of the data */
while (inSz >= AES_BLOCK_SIZE) {
xorbuf(out, in, AES_BLOCK_SIZE);
in += AES_BLOCK_SIZE;
inSz -= AES_BLOCK_SIZE;
ret = wc_AesEncrypt(aes, out, out);
if (ret != 0)
return ret;
}
/* process remainder of the data */
if (inSz > 0) {
xorbuf(out, in, inSz);
ret = wc_AesEncrypt(aes, out, out);
if (ret != 0)
return ret;
}
return 0;
}
static WARN_UNUSED_RESULT int roll_auth(
Aes* aes, const byte* in, word32 inSz, byte* out)
{
word32 authLenSz;
word32 remainder;
int ret;
/* encode the length in */
if (inSz <= 0xFEFF) {
authLenSz = 2;
out[0] ^= (byte)(inSz >> 8);
out[1] ^= (byte)inSz;
}
else {
authLenSz = 6;
out[0] ^= 0xFF;
out[1] ^= 0xFE;
out[2] ^= (byte)(inSz >> 24);
out[3] ^= (byte)(inSz >> 16);
out[4] ^= (byte)(inSz >> 8);
out[5] ^= (byte)inSz;
}
/* Note, the protocol handles auth data up to 2^64, but we are
* using 32-bit sizes right now, so the bigger data isn't handled
* else {}
*/
/* start fill out the rest of the first block */
remainder = AES_BLOCK_SIZE - authLenSz;
if (inSz >= remainder) {
/* plenty of bulk data to fill the remainder of this block */
xorbuf(out + authLenSz, in, remainder);
inSz -= remainder;
in += remainder;
}
else {
/* not enough bulk data, copy what is available, and pad zero */
xorbuf(out + authLenSz, in, inSz);
inSz = 0;
}
ret = wc_AesEncrypt(aes, out, out);
if ((ret == 0) && (inSz > 0)) {
ret = roll_x(aes, in, inSz, out);
}
return ret;
}
static WC_INLINE void AesCcmCtrInc(byte* B, word32 lenSz)
{
word32 i;
for (i = 0; i < lenSz; i++) {
if (++B[AES_BLOCK_SIZE - 1 - i] != 0) return;
}
}
#ifdef WOLFSSL_AESNI
static WC_INLINE void AesCcmCtrIncSet4(byte* B, word32 lenSz)
{
word32 i;
/* B+1 = B */
XMEMCPY(B + AES_BLOCK_SIZE * 1, B, AES_BLOCK_SIZE);
/* B+2,B+3 = B,B+1 */
XMEMCPY(B + AES_BLOCK_SIZE * 2, B, AES_BLOCK_SIZE * 2);
for (i = 0; i < lenSz; i++) {
if (++B[AES_BLOCK_SIZE * 2 - 1 - i] != 0) break;
}
B[AES_BLOCK_SIZE * 3 - 1] += 2;
if (B[AES_BLOCK_SIZE * 3 - 1] < 2) {
for (i = 1; i < lenSz; i++) {
if (++B[AES_BLOCK_SIZE * 3 - 1 - i] != 0) break;
}
}
B[AES_BLOCK_SIZE * 4 - 1] += 3;
if (B[AES_BLOCK_SIZE * 4 - 1] < 3) {
for (i = 1; i < lenSz; i++) {
if (++B[AES_BLOCK_SIZE * 4 - 1 - i] != 0) break;
}
}
}
static WC_INLINE void AesCcmCtrInc4(byte* B, word32 lenSz)
{
word32 i;
B[AES_BLOCK_SIZE - 1] += 4;
if (B[AES_BLOCK_SIZE - 1] < 4) {
for (i = 1; i < lenSz; i++) {
if (++B[AES_BLOCK_SIZE - 1 - i] != 0) break;
}
}
}
#endif
/* Software AES - CCM Encrypt */
/* return 0 on success */
int wc_AesCcmEncrypt(Aes* aes, byte* out, const byte* in, word32 inSz,
const byte* nonce, word32 nonceSz,
byte* authTag, word32 authTagSz,
const byte* authIn, word32 authInSz)
{
#ifdef WOLFSSL_AESNI
ALIGN128 byte A[AES_BLOCK_SIZE * 4];
ALIGN128 byte B[AES_BLOCK_SIZE * 4];
#else
byte A[AES_BLOCK_SIZE];
byte B[AES_BLOCK_SIZE];
#endif
byte lenSz;
word32 i;
byte mask = 0xFF;
const word32 wordSz = (word32)sizeof(word32);
int ret;
/* sanity check on arguments */
if (aes == NULL || (inSz != 0 && (in == NULL || out == NULL)) ||
nonce == NULL || authTag == NULL || nonceSz < 7 || nonceSz > 13 ||
authTagSz > AES_BLOCK_SIZE)
return BAD_FUNC_ARG;
/* sanity check on tag size */
if (wc_AesCcmCheckTagSize((int)authTagSz) != 0) {
return BAD_FUNC_ARG;
}
#ifdef WOLF_CRYPTO_CB
#ifndef WOLF_CRYPTO_CB_FIND
if (aes->devId != INVALID_DEVID)
#endif
{
int crypto_cb_ret =
wc_CryptoCb_AesCcmEncrypt(aes, out, in, inSz, nonce, nonceSz,
authTag, authTagSz, authIn, authInSz);
if (crypto_cb_ret != WC_NO_ERR_TRACE(CRYPTOCB_UNAVAILABLE))
return crypto_cb_ret;
/* fall-through when unavailable */
}
#endif
XMEMSET(A, 0, sizeof(A));
XMEMCPY(B+1, nonce, nonceSz);
lenSz = AES_BLOCK_SIZE - 1 - (byte)nonceSz;
B[0] = (byte)((authInSz > 0 ? 64 : 0)
+ (8 * (((byte)authTagSz - 2) / 2))
+ (lenSz - 1));
for (i = 0; i < lenSz; i++) {
if (mask && i >= wordSz)
mask = 0x00;
B[AES_BLOCK_SIZE - 1 - i] = (byte)((inSz >> ((8 * i) & mask)) & mask);
}
#ifdef WOLFSSL_CHECK_MEM_ZERO
wc_MemZero_Add("wc_AesCcmEncrypt B", B, sizeof(B));
#endif
VECTOR_REGISTERS_PUSH;
ret = wc_AesEncrypt(aes, B, A);
#ifdef WOLFSSL_CHECK_MEM_ZERO
if (ret == 0)
wc_MemZero_Add("wc_AesCcmEncrypt A", A, sizeof(A));
#endif
if ((ret == 0) && (authInSz > 0))
ret = roll_auth(aes, authIn, authInSz, A);
if ((ret == 0) && (inSz > 0))
ret = roll_x(aes, in, inSz, A);
if (ret == 0) {
XMEMCPY(authTag, A, authTagSz);
B[0] = lenSz - 1;
for (i = 0; i < lenSz; i++)
B[AES_BLOCK_SIZE - 1 - i] = 0;
ret = wc_AesEncrypt(aes, B, A);
}
if (ret == 0) {
xorbuf(authTag, A, authTagSz);
B[15] = 1;
}
#ifdef WOLFSSL_AESNI
if ((ret == 0) && aes->use_aesni) {
while (inSz >= AES_BLOCK_SIZE * 4) {
AesCcmCtrIncSet4(B, lenSz);
AES_ECB_encrypt_AESNI(B, A, AES_BLOCK_SIZE * 4, (byte*)aes->key,
(int)aes->rounds);
xorbuf(A, in, AES_BLOCK_SIZE * 4);
XMEMCPY(out, A, AES_BLOCK_SIZE * 4);
inSz -= AES_BLOCK_SIZE * 4;
in += AES_BLOCK_SIZE * 4;
out += AES_BLOCK_SIZE * 4;
AesCcmCtrInc4(B, lenSz);
}
}
#endif
if (ret == 0) {
while (inSz >= AES_BLOCK_SIZE) {
ret = wc_AesEncrypt(aes, B, A);
if (ret != 0)
break;
xorbuf(A, in, AES_BLOCK_SIZE);
XMEMCPY(out, A, AES_BLOCK_SIZE);
AesCcmCtrInc(B, lenSz);
inSz -= AES_BLOCK_SIZE;
in += AES_BLOCK_SIZE;
out += AES_BLOCK_SIZE;
}
}
if ((ret == 0) && (inSz > 0)) {
ret = wc_AesEncrypt(aes, B, A);
}
if ((ret == 0) && (inSz > 0)) {
xorbuf(A, in, inSz);
XMEMCPY(out, A, inSz);
}
ForceZero(A, sizeof(A));
ForceZero(B, sizeof(B));
#ifdef WOLFSSL_CHECK_MEM_ZERO
wc_MemZero_Check(A, sizeof(A));
wc_MemZero_Check(B, sizeof(B));
#endif
VECTOR_REGISTERS_POP;
return ret;
}
#ifdef HAVE_AES_DECRYPT
/* Software AES - CCM Decrypt */
int wc_AesCcmDecrypt(Aes* aes, byte* out, const byte* in, word32 inSz,
const byte* nonce, word32 nonceSz,
const byte* authTag, word32 authTagSz,
const byte* authIn, word32 authInSz)
{
#ifdef WOLFSSL_AESNI
ALIGN128 byte B[AES_BLOCK_SIZE * 4];
ALIGN128 byte A[AES_BLOCK_SIZE * 4];
#else
byte A[AES_BLOCK_SIZE];
byte B[AES_BLOCK_SIZE];
#endif
byte* o;
byte lenSz;
word32 i, oSz;
byte mask = 0xFF;
const word32 wordSz = (word32)sizeof(word32);
int ret = 0;
/* sanity check on arguments */
if (aes == NULL || (inSz != 0 && (in == NULL || out == NULL)) ||
nonce == NULL || authTag == NULL || nonceSz < 7 || nonceSz > 13 ||
authTagSz > AES_BLOCK_SIZE)
return BAD_FUNC_ARG;
/* sanity check on tag size */
if (wc_AesCcmCheckTagSize((int)authTagSz) != 0) {
return BAD_FUNC_ARG;
}
#ifdef WOLF_CRYPTO_CB
#ifndef WOLF_CRYPTO_CB_FIND
if (aes->devId != INVALID_DEVID)
#endif
{
int crypto_cb_ret =
wc_CryptoCb_AesCcmDecrypt(aes, out, in, inSz, nonce, nonceSz,
authTag, authTagSz, authIn, authInSz);
if (crypto_cb_ret != WC_NO_ERR_TRACE(CRYPTOCB_UNAVAILABLE))
return crypto_cb_ret;
/* fall-through when unavailable */
}
#endif
o = out;
oSz = inSz;
XMEMSET(A, 0, sizeof A);
XMEMCPY(B+1, nonce, nonceSz);
lenSz = AES_BLOCK_SIZE - 1 - (byte)nonceSz;
B[0] = lenSz - 1;
for (i = 0; i < lenSz; i++)
B[AES_BLOCK_SIZE - 1 - i] = 0;
B[15] = 1;
#ifdef WOLFSSL_CHECK_MEM_ZERO
wc_MemZero_Add("wc_AesCcmEncrypt A", A, sizeof(A));
wc_MemZero_Add("wc_AesCcmEncrypt B", B, sizeof(B));
#endif
VECTOR_REGISTERS_PUSH;
#ifdef WOLFSSL_AESNI
if (aes->use_aesni) {
while (oSz >= AES_BLOCK_SIZE * 4) {
AesCcmCtrIncSet4(B, lenSz);
AES_ECB_encrypt_AESNI(B, A, AES_BLOCK_SIZE * 4, (byte*)aes->key,
(int)aes->rounds);
xorbuf(A, in, AES_BLOCK_SIZE * 4);
XMEMCPY(o, A, AES_BLOCK_SIZE * 4);
oSz -= AES_BLOCK_SIZE * 4;
in += AES_BLOCK_SIZE * 4;
o += AES_BLOCK_SIZE * 4;
AesCcmCtrInc4(B, lenSz);
}
}
#endif
while (oSz >= AES_BLOCK_SIZE) {
ret = wc_AesEncrypt(aes, B, A);
if (ret != 0)
break;
xorbuf(A, in, AES_BLOCK_SIZE);
XMEMCPY(o, A, AES_BLOCK_SIZE);
AesCcmCtrInc(B, lenSz);
oSz -= AES_BLOCK_SIZE;
in += AES_BLOCK_SIZE;
o += AES_BLOCK_SIZE;
}
if ((ret == 0) && (inSz > 0))
ret = wc_AesEncrypt(aes, B, A);
if ((ret == 0) && (inSz > 0)) {
xorbuf(A, in, oSz);
XMEMCPY(o, A, oSz);
for (i = 0; i < lenSz; i++)
B[AES_BLOCK_SIZE - 1 - i] = 0;
ret = wc_AesEncrypt(aes, B, A);
}
if (ret == 0) {
o = out;
oSz = inSz;
B[0] = (byte)((authInSz > 0 ? 64 : 0)
+ (8 * (((byte)authTagSz - 2) / 2))
+ (lenSz - 1));
for (i = 0; i < lenSz; i++) {
if (mask && i >= wordSz)
mask = 0x00;
B[AES_BLOCK_SIZE - 1 - i] = (byte)((inSz >> ((8 * i) & mask)) & mask);
}
ret = wc_AesEncrypt(aes, B, A);
}
if (ret == 0) {
if (authInSz > 0)
ret = roll_auth(aes, authIn, authInSz, A);
}
if ((ret == 0) && (inSz > 0))
ret = roll_x(aes, o, oSz, A);
if (ret == 0) {
B[0] = lenSz - 1;
for (i = 0; i < lenSz; i++)
B[AES_BLOCK_SIZE - 1 - i] = 0;
ret = wc_AesEncrypt(aes, B, B);
}
if (ret == 0)
xorbuf(A, B, authTagSz);
if (ret == 0) {
if (ConstantCompare(A, authTag, (int)authTagSz) != 0) {
/* If the authTag check fails, don't keep the decrypted data.
* Unfortunately, you need the decrypted data to calculate the
* check value. */
#if defined(HAVE_FIPS_VERSION) && (HAVE_FIPS_VERSION >= 2) && \
defined(ACVP_VECTOR_TESTING)
WOLFSSL_MSG("Preserve output for vector responses");
#else
if (inSz > 0)
XMEMSET(out, 0, inSz);
#endif
ret = AES_CCM_AUTH_E;
}
}
ForceZero(A, sizeof(A));
ForceZero(B, sizeof(B));
o = NULL;
#ifdef WOLFSSL_CHECK_MEM_ZERO
wc_MemZero_Check(A, sizeof(A));
wc_MemZero_Check(B, sizeof(B));
#endif
VECTOR_REGISTERS_POP;
return ret;
}
#endif /* HAVE_AES_DECRYPT */
#endif /* software CCM */
/* abstract functions that call lower level AESCCM functions */
#ifndef WC_NO_RNG
int wc_AesCcmSetNonce(Aes* aes, const byte* nonce, word32 nonceSz)
{
int ret = 0;
if (aes == NULL || nonce == NULL ||
nonceSz < CCM_NONCE_MIN_SZ || nonceSz > CCM_NONCE_MAX_SZ) {
ret = BAD_FUNC_ARG;
}
if (ret == 0) {
XMEMCPY(aes->reg, nonce, nonceSz);
aes->nonceSz = nonceSz;
/* Invocation counter should be 2^61 */
aes->invokeCtr[0] = 0;
aes->invokeCtr[1] = 0xE0000000;
}
return ret;
}
int wc_AesCcmEncrypt_ex(Aes* aes, byte* out, const byte* in, word32 sz,
byte* ivOut, word32 ivOutSz,
byte* authTag, word32 authTagSz,
const byte* authIn, word32 authInSz)
{
int ret = 0;
if (aes == NULL || out == NULL ||
(in == NULL && sz != 0) ||
ivOut == NULL ||
(authIn == NULL && authInSz != 0) ||
(ivOutSz != aes->nonceSz)) {
ret = BAD_FUNC_ARG;
}
if (ret == 0) {
aes->invokeCtr[0]++;
if (aes->invokeCtr[0] == 0) {
aes->invokeCtr[1]++;
if (aes->invokeCtr[1] == 0)
ret = AES_CCM_OVERFLOW_E;
}
}
if (ret == 0) {
ret = wc_AesCcmEncrypt(aes, out, in, sz,
(byte*)aes->reg, aes->nonceSz,
authTag, authTagSz,
authIn, authInSz);
if (ret == 0) {
XMEMCPY(ivOut, aes->reg, aes->nonceSz);
IncCtr((byte*)aes->reg, aes->nonceSz);
}
}
return ret;
}
#endif /* WC_NO_RNG */
#endif /* HAVE_AESCCM */
/* Initialize Aes for use with async hardware */
int wc_AesInit(Aes* aes, void* heap, int devId)
{
int ret = 0;
if (aes == NULL)
return BAD_FUNC_ARG;
aes->heap = heap;
aes->rounds = 0;
#ifdef WOLFSSL_AESNI
/* clear here for the benefit of wc_AesGcmInit(). */
aes->use_aesni = 0;
#endif
#ifdef WOLF_CRYPTO_CB
aes->devId = devId;
aes->devCtx = NULL;
#else
(void)devId;
#endif
#if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_AES)
ret = wolfAsync_DevCtxInit(&aes->asyncDev, WOLFSSL_ASYNC_MARKER_AES,
aes->heap, devId);
#endif /* WOLFSSL_ASYNC_CRYPT */
#if defined(WOLFSSL_AFALG) || defined(WOLFSSL_AFALG_XILINX_AES)
aes->alFd = WC_SOCK_NOTSET;
aes->rdFd = WC_SOCK_NOTSET;
#endif
#ifdef WOLFSSL_KCAPI_AES
aes->handle = NULL;
aes->init = 0;
#endif
#if defined(WOLFSSL_DEVCRYPTO) && \
(defined(WOLFSSL_DEVCRYPTO_AES) || defined(WOLFSSL_DEVCRYPTO_CBC))
aes->ctx.cfd = -1;
#endif
#if defined(WOLFSSL_CRYPTOCELL) && defined(WOLFSSL_CRYPTOCELL_AES)
XMEMSET(&aes->ctx, 0, sizeof(aes->ctx));
#endif
#if defined(WOLFSSL_IMXRT_DCP)
DCPAesInit(aes);
#endif
#ifdef WOLFSSL_MAXQ10XX_CRYPTO
XMEMSET(&aes->maxq_ctx, 0, sizeof(aes->maxq_ctx));
#endif
#ifdef HAVE_AESGCM
#ifdef OPENSSL_EXTRA
XMEMSET(aes->gcm.aadH, 0, sizeof(aes->gcm.aadH));
aes->gcm.aadLen = 0;
#endif
#endif
#ifdef WOLFSSL_AESGCM_STREAM
#if defined(WOLFSSL_SMALL_STACK) && !defined(WOLFSSL_AESNI)
aes->streamData = NULL;
#endif
aes->keylen = 0;
aes->nonceSz = 0;
aes->gcmKeySet = 0;
aes->nonceSet = 0;
aes->ctrSet = 0;
#endif
#if defined(WOLFSSL_HAVE_PSA) && !defined(WOLFSSL_PSA_NO_AES)
ret = wc_psa_aes_init(aes);
#endif
#if defined(WOLFSSL_RENESAS_FSPSM)
XMEMSET(&aes->ctx, 0, sizeof(aes->ctx));
#endif
#ifdef WC_DEBUG_CIPHER_LIFECYCLE
if (ret == 0)
ret = wc_debug_CipherLifecycleInit(&aes->CipherLifecycleTag, aes->heap);
#endif
return ret;
}
#ifdef WOLF_PRIVATE_KEY_ID
int wc_AesInit_Id(Aes* aes, unsigned char* id, int len, void* heap, int devId)
{
int ret = 0;
if (aes == NULL)
ret = BAD_FUNC_ARG;
if (ret == 0 && (len < 0 || len > AES_MAX_ID_LEN))
ret = BUFFER_E;
if (ret == 0)
ret = wc_AesInit(aes, heap, devId);
if (ret == 0) {
XMEMCPY(aes->id, id, (size_t)len);
aes->idLen = len;
aes->labelLen = 0;
}
return ret;
}
int wc_AesInit_Label(Aes* aes, const char* label, void* heap, int devId)
{
int ret = 0;
size_t labelLen = 0;
if (aes == NULL || label == NULL)
ret = BAD_FUNC_ARG;
if (ret == 0) {
labelLen = XSTRLEN(label);
if (labelLen == 0 || labelLen > AES_MAX_LABEL_LEN)
ret = BUFFER_E;
}
if (ret == 0)
ret = wc_AesInit(aes, heap, devId);
if (ret == 0) {
XMEMCPY(aes->label, label, labelLen);
aes->labelLen = (int)labelLen;
aes->idLen = 0;
}
return ret;
}
#endif
/* Free Aes from use with async hardware */
void wc_AesFree(Aes* aes)
{
if (aes == NULL)
return;
#ifdef WC_DEBUG_CIPHER_LIFECYCLE
(void)wc_debug_CipherLifecycleFree(&aes->CipherLifecycleTag, aes->heap, 1);
#endif
#if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_AES)
wolfAsync_DevCtxFree(&aes->asyncDev, WOLFSSL_ASYNC_MARKER_AES);
#endif /* WOLFSSL_ASYNC_CRYPT */
#if defined(WOLFSSL_AFALG) || defined(WOLFSSL_AFALG_XILINX_AES)
if (aes->rdFd > 0) { /* negative is error case */
close(aes->rdFd);
aes->rdFd = WC_SOCK_NOTSET;
}
if (aes->alFd > 0) {
close(aes->alFd);
aes->alFd = WC_SOCK_NOTSET;
}
#endif /* WOLFSSL_AFALG */
#ifdef WOLFSSL_KCAPI_AES
ForceZero((byte*)aes->devKey, AES_MAX_KEY_SIZE/WOLFSSL_BIT_SIZE);
if (aes->init == 1) {
kcapi_cipher_destroy(aes->handle);
}
aes->init = 0;
aes->handle = NULL;
#endif
#if defined(WOLFSSL_DEVCRYPTO) && \
(defined(WOLFSSL_DEVCRYPTO_AES) || defined(WOLFSSL_DEVCRYPTO_CBC))
wc_DevCryptoFree(&aes->ctx);
#endif
#if defined(WOLF_CRYPTO_CB) || (defined(WOLFSSL_DEVCRYPTO) && \
(defined(WOLFSSL_DEVCRYPTO_AES) || defined(WOLFSSL_DEVCRYPTO_CBC))) || \
(defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_AES))
ForceZero((byte*)aes->devKey, AES_MAX_KEY_SIZE/WOLFSSL_BIT_SIZE);
#endif
#if defined(WOLFSSL_IMXRT_DCP)
DCPAesFree(aes);
#endif
#if defined(WOLFSSL_AESGCM_STREAM) && defined(WOLFSSL_SMALL_STACK) && \
!defined(WOLFSSL_AESNI)
if (aes->streamData != NULL) {
XFREE(aes->streamData, aes->heap, DYNAMIC_TYPE_AES);
aes->streamData = NULL;
}
#endif
#if defined(WOLFSSL_SE050) && defined(WOLFSSL_SE050_CRYPT)
if (aes->useSWCrypt == 0) {
se050_aes_free(aes);
}
#endif
#if defined(WOLFSSL_HAVE_PSA) && !defined(WOLFSSL_PSA_NO_AES)
wc_psa_aes_free(aes);
#endif
#ifdef WOLFSSL_MAXQ10XX_CRYPTO
wc_MAXQ10XX_AesFree(aes);
#endif
#if ((defined(WOLFSSL_RENESAS_FSPSM_TLS) || \
defined(WOLFSSL_RENESAS_FSPSM_CRYPTONLY)) && \
!defined(NO_WOLFSSL_RENESAS_FSPSM_AES))
wc_fspsm_Aesfree(aes);
#endif
#ifdef WOLFSSL_CHECK_MEM_ZERO
wc_MemZero_Check(aes, sizeof(Aes));
#endif
}
int wc_AesGetKeySize(Aes* aes, word32* keySize)
{
int ret = 0;
if (aes == NULL || keySize == NULL) {
return BAD_FUNC_ARG;
}
#if defined(WOLFSSL_HAVE_PSA) && !defined(WOLFSSL_PSA_NO_AES)
return wc_psa_aes_get_key_size(aes, keySize);
#endif
#if defined(WOLFSSL_CRYPTOCELL) && defined(WOLFSSL_CRYPTOCELL_AES)
*keySize = aes->ctx.key.keySize;
return ret;
#endif
switch (aes->rounds) {
#ifdef WOLFSSL_AES_128
case 10:
*keySize = 16;
break;
#endif
#ifdef WOLFSSL_AES_192
case 12:
*keySize = 24;
break;
#endif
#ifdef WOLFSSL_AES_256
case 14:
*keySize = 32;
break;
#endif
default:
*keySize = 0;
ret = BAD_FUNC_ARG;
}
return ret;
}
#endif /* !WOLFSSL_TI_CRYPT */
/* the earlier do-nothing default definitions for VECTOR_REGISTERS_{PUSH,POP}
* are missed when WOLFSSL_TI_CRYPT or WOLFSSL_ARMASM.
*/
#ifndef VECTOR_REGISTERS_PUSH
#define VECTOR_REGISTERS_PUSH { WC_DO_NOTHING
#endif
#ifndef VECTOR_REGISTERS_POP
#define VECTOR_REGISTERS_POP } WC_DO_NOTHING
#endif
#ifdef HAVE_AES_ECB
#if defined(WOLFSSL_IMX6_CAAM) && !defined(NO_IMX6_CAAM_AES) && \
!defined(WOLFSSL_QNX_CAAM)
/* implemented in wolfcrypt/src/port/caam/caam_aes.c */
#elif defined(WOLFSSL_AFALG)
/* implemented in wolfcrypt/src/port/af_alg/afalg_aes.c */
#elif defined(WOLFSSL_DEVCRYPTO_AES)
/* implemented in wolfcrypt/src/port/devcrypt/devcrypto_aes.c */
#elif defined(WOLFSSL_RISCV_ASM)
/* implemented in wolfcrypt/src/port/riscv/riscv-64-aes.c */
#elif defined(WOLFSSL_SCE) && !defined(WOLFSSL_SCE_NO_AES)
/* Software AES - ECB */
int wc_AesEcbEncrypt(Aes* aes, byte* out, const byte* in, word32 sz)
{
if ((in == NULL) || (out == NULL) || (aes == NULL))
return BAD_FUNC_ARG;
return AES_ECB_encrypt(aes, in, out, sz);
}
int wc_AesEcbDecrypt(Aes* aes, byte* out, const byte* in, word32 sz)
{
if ((in == NULL) || (out == NULL) || (aes == NULL))
return BAD_FUNC_ARG;
return AES_ECB_decrypt(aes, in, out, sz);
}
#else
/* Software AES - ECB */
static WARN_UNUSED_RESULT int _AesEcbEncrypt(
Aes* aes, byte* out, const byte* in, word32 sz)
{
int ret = 0;
#ifdef WOLF_CRYPTO_CB
#ifndef WOLF_CRYPTO_CB_FIND
if (aes->devId != INVALID_DEVID)
#endif
{
ret = wc_CryptoCb_AesEcbEncrypt(aes, out, in, sz);
if (ret != WC_NO_ERR_TRACE(CRYPTOCB_UNAVAILABLE))
return ret;
ret = 0;
/* fall-through when unavailable */
}
#endif
#ifdef WOLFSSL_IMXRT_DCP
if (aes->keylen == 16)
return DCPAesEcbEncrypt(aes, out, in, sz);
#endif
VECTOR_REGISTERS_PUSH;
#ifdef WOLFSSL_AESNI
if (aes->use_aesni) {
AES_ECB_encrypt_AESNI(in, out, sz, (byte*)aes->key, (int)aes->rounds);
}
else
#endif
{
#ifdef NEED_AES_TABLES
AesEncryptBlocks_C(aes, in, out, sz);
#else
word32 i;
for (i = 0; i < sz; i += AES_BLOCK_SIZE) {
ret = wc_AesEncryptDirect(aes, out, in);
if (ret != 0)
break;
in += AES_BLOCK_SIZE;
out += AES_BLOCK_SIZE;
}
#endif
}
VECTOR_REGISTERS_POP;
return ret;
}
#ifdef HAVE_AES_DECRYPT
static WARN_UNUSED_RESULT int _AesEcbDecrypt(
Aes* aes, byte* out, const byte* in, word32 sz)
{
int ret = 0;
#ifdef WOLF_CRYPTO_CB
#ifndef WOLF_CRYPTO_CB_FIND
if (aes->devId != INVALID_DEVID)
#endif
{
ret = wc_CryptoCb_AesEcbDecrypt(aes, out, in, sz);
if (ret != WC_NO_ERR_TRACE(CRYPTOCB_UNAVAILABLE))
return ret;
ret = 0;
/* fall-through when unavailable */
}
#endif
#ifdef WOLFSSL_IMXRT_DCP
if (aes->keylen == 16)
return DCPAesEcbDecrypt(aes, out, in, sz);
#endif
VECTOR_REGISTERS_PUSH;
#ifdef WOLFSSL_AESNI
if (aes->use_aesni) {
AES_ECB_decrypt_AESNI(in, out, sz, (byte*)aes->key, (int)aes->rounds);
}
else
#endif
{
#ifdef NEED_AES_TABLES
AesDecryptBlocks_C(aes, in, out, sz);
#else
word32 i;
for (i = 0; i < sz; i += AES_BLOCK_SIZE) {
ret = wc_AesDecryptDirect(aes, out, in);
if (ret != 0)
break;
in += AES_BLOCK_SIZE;
out += AES_BLOCK_SIZE;
}
#endif
}
VECTOR_REGISTERS_POP;
return ret;
}
#endif
int wc_AesEcbEncrypt(Aes* aes, byte* out, const byte* in, word32 sz)
{
if ((in == NULL) || (out == NULL) || (aes == NULL))
return BAD_FUNC_ARG;
if ((sz % AES_BLOCK_SIZE) != 0) {
return BAD_LENGTH_E;
}
return _AesEcbEncrypt(aes, out, in, sz);
}
#ifdef HAVE_AES_DECRYPT
int wc_AesEcbDecrypt(Aes* aes, byte* out, const byte* in, word32 sz)
{
if ((in == NULL) || (out == NULL) || (aes == NULL))
return BAD_FUNC_ARG;
if ((sz % AES_BLOCK_SIZE) != 0) {
return BAD_LENGTH_E;
}
return _AesEcbDecrypt(aes, out, in, sz);
}
#endif /* HAVE_AES_DECRYPT */
#endif
#endif /* HAVE_AES_ECB */
#if defined(WOLFSSL_AES_CFB) || defined(WOLFSSL_AES_OFB)
/* Feedback AES mode
*
* aes structure holding key to use for encryption
* out buffer to hold result of encryption (must be at least as large as input
* buffer)
* in buffer to encrypt
* sz size of input buffer
* mode flag to specify AES mode
*
* returns 0 on success and negative error values on failure
*/
/* Software AES - CFB Encrypt */
static WARN_UNUSED_RESULT int wc_AesFeedbackEncrypt(
Aes* aes, byte* out, const byte* in, word32 sz, byte mode)
{
byte* tmp = NULL;
int ret = 0;
word32 processed;
if (aes == NULL || out == NULL || in == NULL) {
return BAD_FUNC_ARG;
}
/* consume any unused bytes left in aes->tmp */
processed = min(aes->left, sz);
xorbufout(out, in, (byte*)aes->tmp + AES_BLOCK_SIZE - aes->left, processed);
#ifdef WOLFSSL_AES_CFB
if (mode == AES_CFB_MODE) {
XMEMCPY((byte*)aes->reg + AES_BLOCK_SIZE - aes->left, out, processed);
}
#endif
aes->left -= processed;
out += processed;
in += processed;
sz -= processed;
VECTOR_REGISTERS_PUSH;
while (sz >= AES_BLOCK_SIZE) {
/* Using aes->tmp here for inline case i.e. in=out */
ret = wc_AesEncryptDirect(aes, (byte*)aes->tmp, (byte*)aes->reg);
if (ret != 0)
break;
#ifdef WOLFSSL_AES_OFB
if (mode == AES_OFB_MODE) {
XMEMCPY(aes->reg, aes->tmp, AES_BLOCK_SIZE);
}
#endif
xorbuf((byte*)aes->tmp, in, AES_BLOCK_SIZE);
#ifdef WOLFSSL_AES_CFB
if (mode == AES_CFB_MODE) {
XMEMCPY(aes->reg, aes->tmp, AES_BLOCK_SIZE);
}
#endif
XMEMCPY(out, aes->tmp, AES_BLOCK_SIZE);
out += AES_BLOCK_SIZE;
in += AES_BLOCK_SIZE;
sz -= AES_BLOCK_SIZE;
aes->left = 0;
}
/* encrypt left over data */
if ((ret == 0) && sz) {
ret = wc_AesEncryptDirect(aes, (byte*)aes->tmp, (byte*)aes->reg);
}
if ((ret == 0) && sz) {
aes->left = AES_BLOCK_SIZE;
tmp = (byte*)aes->tmp;
#ifdef WOLFSSL_AES_OFB
if (mode == AES_OFB_MODE) {
XMEMCPY(aes->reg, aes->tmp, AES_BLOCK_SIZE);
}
#endif
xorbufout(out, in, tmp, sz);
#ifdef WOLFSSL_AES_CFB
if (mode == AES_CFB_MODE) {
XMEMCPY(aes->reg, out, sz);
}
#endif
aes->left -= sz;
}
VECTOR_REGISTERS_POP;
return ret;
}
#ifdef HAVE_AES_DECRYPT
/* CFB 128
*
* aes structure holding key to use for decryption
* out buffer to hold result of decryption (must be at least as large as input
* buffer)
* in buffer to decrypt
* sz size of input buffer
*
* returns 0 on success and negative error values on failure
*/
/* Software AES - CFB Decrypt */
static WARN_UNUSED_RESULT int wc_AesFeedbackDecrypt(
Aes* aes, byte* out, const byte* in, word32 sz, byte mode)
{
int ret = 0;
word32 processed;
if (aes == NULL || out == NULL || in == NULL) {
return BAD_FUNC_ARG;
}
#ifdef WOLFSSL_AES_CFB
/* check if more input needs copied over to aes->reg */
if (aes->left && sz && mode == AES_CFB_MODE) {
word32 size = min(aes->left, sz);
XMEMCPY((byte*)aes->reg + AES_BLOCK_SIZE - aes->left, in, size);
}
#endif
/* consume any unused bytes left in aes->tmp */
processed = min(aes->left, sz);
xorbufout(out, in, (byte*)aes->tmp + AES_BLOCK_SIZE - aes->left, processed);
aes->left -= processed;
out += processed;
in += processed;
sz -= processed;
VECTOR_REGISTERS_PUSH;
while (sz > AES_BLOCK_SIZE) {
/* Using aes->tmp here for inline case i.e. in=out */
ret = wc_AesEncryptDirect(aes, (byte*)aes->tmp, (byte*)aes->reg);
if (ret != 0)
break;
#ifdef WOLFSSL_AES_OFB
if (mode == AES_OFB_MODE) {
XMEMCPY((byte*)aes->reg, (byte*)aes->tmp, AES_BLOCK_SIZE);
}
#endif
xorbuf((byte*)aes->tmp, in, AES_BLOCK_SIZE);
#ifdef WOLFSSL_AES_CFB
if (mode == AES_CFB_MODE) {
XMEMCPY(aes->reg, in, AES_BLOCK_SIZE);
}
#endif
XMEMCPY(out, (byte*)aes->tmp, AES_BLOCK_SIZE);
out += AES_BLOCK_SIZE;
in += AES_BLOCK_SIZE;
sz -= AES_BLOCK_SIZE;
aes->left = 0;
}
/* decrypt left over data */
if ((ret == 0) && sz) {
ret = wc_AesEncryptDirect(aes, (byte*)aes->tmp, (byte*)aes->reg);
}
if ((ret == 0) && sz) {
#ifdef WOLFSSL_AES_CFB
if (mode == AES_CFB_MODE) {
XMEMCPY(aes->reg, in, sz);
}
#endif
#ifdef WOLFSSL_AES_OFB
if (mode == AES_OFB_MODE) {
XMEMCPY(aes->reg, aes->tmp, AES_BLOCK_SIZE);
}
#endif
aes->left = AES_BLOCK_SIZE - sz;
xorbufout(out, in, aes->tmp, sz);
}
VECTOR_REGISTERS_POP;
return ret;
}
#endif /* HAVE_AES_DECRYPT */
#endif /* WOLFSSL_AES_CFB */
#ifdef WOLFSSL_AES_CFB
/* CFB 128
*
* aes structure holding key to use for encryption
* out buffer to hold result of encryption (must be at least as large as input
* buffer)
* in buffer to encrypt
* sz size of input buffer
*
* returns 0 on success and negative error values on failure
*/
/* Software AES - CFB Encrypt */
int wc_AesCfbEncrypt(Aes* aes, byte* out, const byte* in, word32 sz)
{
return wc_AesFeedbackEncrypt(aes, out, in, sz, AES_CFB_MODE);
}
#ifdef HAVE_AES_DECRYPT
/* CFB 128
*
* aes structure holding key to use for decryption
* out buffer to hold result of decryption (must be at least as large as input
* buffer)
* in buffer to decrypt
* sz size of input buffer
*
* returns 0 on success and negative error values on failure
*/
/* Software AES - CFB Decrypt */
int wc_AesCfbDecrypt(Aes* aes, byte* out, const byte* in, word32 sz)
{
return wc_AesFeedbackDecrypt(aes, out, in, sz, AES_CFB_MODE);
}
#endif /* HAVE_AES_DECRYPT */
/* shift the whole AES_BLOCK_SIZE array left by 8 or 1 bits */
static void shiftLeftArray(byte* ary, byte shift)
{
int i;
if (shift == WOLFSSL_BIT_SIZE) {
/* shifting over by 8 bits */
for (i = 0; i < AES_BLOCK_SIZE - 1; i++) {
ary[i] = ary[i+1];
}
ary[i] = 0;
}
else {
/* shifting over by 7 or less bits */
for (i = 0; i < AES_BLOCK_SIZE - 1; i++) {
byte carry = ary[i+1] & (0XFF << (WOLFSSL_BIT_SIZE - shift));
carry >>= (WOLFSSL_BIT_SIZE - shift);
ary[i] = (byte)((ary[i] << shift) + carry);
}
ary[i] = ary[i] << shift;
}
}
/* returns 0 on success and negative values on failure */
static WARN_UNUSED_RESULT int wc_AesFeedbackCFB8(
Aes* aes, byte* out, const byte* in, word32 sz, byte dir)
{
byte *pt;
int ret = 0;
if (aes == NULL || out == NULL || in == NULL) {
return BAD_FUNC_ARG;
}
if (sz == 0) {
return 0;
}
VECTOR_REGISTERS_PUSH;
while (sz > 0) {
ret = wc_AesEncryptDirect(aes, (byte*)aes->tmp, (byte*)aes->reg);
if (ret != 0)
break;
if (dir == AES_DECRYPTION) {
pt = (byte*)aes->reg;
/* LSB + CAT */
shiftLeftArray(pt, WOLFSSL_BIT_SIZE);
pt[AES_BLOCK_SIZE - 1] = in[0];
}
/* MSB + XOR */
#ifdef BIG_ENDIAN_ORDER
ByteReverseWords(aes->tmp, aes->tmp, AES_BLOCK_SIZE);
#endif
out[0] = (byte)(aes->tmp[0] ^ in[0]);
if (dir == AES_ENCRYPTION) {
pt = (byte*)aes->reg;
/* LSB + CAT */
shiftLeftArray(pt, WOLFSSL_BIT_SIZE);
pt[AES_BLOCK_SIZE - 1] = out[0];
}
out += 1;
in += 1;
sz -= 1;
}
VECTOR_REGISTERS_POP;
return ret;
}
/* returns 0 on success and negative values on failure */
static WARN_UNUSED_RESULT int wc_AesFeedbackCFB1(
Aes* aes, byte* out, const byte* in, word32 sz, byte dir)
{
byte tmp;
byte cur = 0; /* hold current work in order to handle inline in=out */
byte* pt;
int bit = 7;
int ret = 0;
if (aes == NULL || out == NULL || in == NULL) {
return BAD_FUNC_ARG;
}
if (sz == 0) {
return 0;
}
VECTOR_REGISTERS_PUSH;
while (sz > 0) {
ret = wc_AesEncryptDirect(aes, (byte*)aes->tmp, (byte*)aes->reg);
if (ret != 0)
break;
if (dir == AES_DECRYPTION) {
pt = (byte*)aes->reg;
/* LSB + CAT */
tmp = (0X01 << bit) & in[0];
tmp = tmp >> bit;
tmp &= 0x01;
shiftLeftArray((byte*)aes->reg, 1);
pt[AES_BLOCK_SIZE - 1] |= tmp;
}
/* MSB + XOR */
tmp = (0X01 << bit) & in[0];
pt = (byte*)aes->tmp;
tmp = (pt[0] >> 7) ^ (tmp >> bit);
tmp &= 0x01;
cur |= (tmp << bit);
if (dir == AES_ENCRYPTION) {
pt = (byte*)aes->reg;
/* LSB + CAT */
shiftLeftArray((byte*)aes->reg, 1);
pt[AES_BLOCK_SIZE - 1] |= tmp;
}
bit--;
if (bit < 0) {
out[0] = cur;
out += 1;
in += 1;
sz -= 1;
bit = 7;
cur = 0;
}
else {
sz -= 1;
}
}
if (ret == 0) {
if (bit >= 0 && bit < 7) {
out[0] = cur;
}
}
VECTOR_REGISTERS_POP;
return ret;
}
/* CFB 1
*
* aes structure holding key to use for encryption
* out buffer to hold result of encryption (must be at least as large as input
* buffer)
* in buffer to encrypt (packed to left, i.e. 101 is 0x90)
* sz size of input buffer in bits (0x1 would be size of 1 and 0xFF size of 8)
*
* returns 0 on success and negative values on failure
*/
int wc_AesCfb1Encrypt(Aes* aes, byte* out, const byte* in, word32 sz)
{
return wc_AesFeedbackCFB1(aes, out, in, sz, AES_ENCRYPTION);
}
/* CFB 8
*
* aes structure holding key to use for encryption
* out buffer to hold result of encryption (must be at least as large as input
* buffer)
* in buffer to encrypt
* sz size of input buffer
*
* returns 0 on success and negative values on failure
*/
int wc_AesCfb8Encrypt(Aes* aes, byte* out, const byte* in, word32 sz)
{
return wc_AesFeedbackCFB8(aes, out, in, sz, AES_ENCRYPTION);
}
#ifdef HAVE_AES_DECRYPT
/* CFB 1
*
* aes structure holding key to use for encryption
* out buffer to hold result of encryption (must be at least as large as input
* buffer)
* in buffer to encrypt
* sz size of input buffer in bits (0x1 would be size of 1 and 0xFF size of 8)
*
* returns 0 on success and negative values on failure
*/
int wc_AesCfb1Decrypt(Aes* aes, byte* out, const byte* in, word32 sz)
{
return wc_AesFeedbackCFB1(aes, out, in, sz, AES_DECRYPTION);
}
/* CFB 8
*
* aes structure holding key to use for encryption
* out buffer to hold result of encryption (must be at least as large as input
* buffer)
* in buffer to encrypt
* sz size of input buffer
*
* returns 0 on success and negative values on failure
*/
int wc_AesCfb8Decrypt(Aes* aes, byte* out, const byte* in, word32 sz)
{
return wc_AesFeedbackCFB8(aes, out, in, sz, AES_DECRYPTION);
}
#endif /* HAVE_AES_DECRYPT */
#endif /* WOLFSSL_AES_CFB */
#ifdef WOLFSSL_AES_OFB
/* OFB
*
* aes structure holding key to use for encryption
* out buffer to hold result of encryption (must be at least as large as input
* buffer)
* in buffer to encrypt
* sz size of input buffer
*
* returns 0 on success and negative error values on failure
*/
/* Software AES - CFB Encrypt */
int wc_AesOfbEncrypt(Aes* aes, byte* out, const byte* in, word32 sz)
{
return wc_AesFeedbackEncrypt(aes, out, in, sz, AES_OFB_MODE);
}
#ifdef HAVE_AES_DECRYPT
/* OFB
*
* aes structure holding key to use for decryption
* out buffer to hold result of decryption (must be at least as large as input
* buffer)
* in buffer to decrypt
* sz size of input buffer
*
* returns 0 on success and negative error values on failure
*/
/* Software AES - OFB Decrypt */
int wc_AesOfbDecrypt(Aes* aes, byte* out, const byte* in, word32 sz)
{
return wc_AesFeedbackDecrypt(aes, out, in, sz, AES_OFB_MODE);
}
#endif /* HAVE_AES_DECRYPT */
#endif /* WOLFSSL_AES_OFB */
#ifdef HAVE_AES_KEYWRAP
/* Initialize key wrap counter with value */
static WC_INLINE void InitKeyWrapCounter(byte* inOutCtr, word32 value)
{
word32 i;
word32 bytes;
bytes = sizeof(word32);
for (i = 0; i < sizeof(word32); i++) {
inOutCtr[i+sizeof(word32)] = (byte)(value >> ((bytes - 1) * 8));
bytes--;
}
}
/* Increment key wrap counter */
static WC_INLINE void IncrementKeyWrapCounter(byte* inOutCtr)
{
int i;
/* in network byte order so start at end and work back */
for (i = KEYWRAP_BLOCK_SIZE - 1; i >= 0; i--) {
if (++inOutCtr[i]) /* we're done unless we overflow */
return;
}
}
/* Decrement key wrap counter */
static WC_INLINE void DecrementKeyWrapCounter(byte* inOutCtr)
{
int i;
for (i = KEYWRAP_BLOCK_SIZE - 1; i >= 0; i--) {
if (--inOutCtr[i] != 0xFF) /* we're done unless we underflow */
return;
}
}
int wc_AesKeyWrap_ex(Aes *aes, const byte* in, word32 inSz, byte* out,
word32 outSz, const byte* iv)
{
word32 i;
byte* r;
int j;
int ret = 0;
byte t[KEYWRAP_BLOCK_SIZE];
byte tmp[AES_BLOCK_SIZE];
/* n must be at least 2 64-bit blocks, output size is (n + 1) 8 bytes (64-bit) */
if (aes == NULL || in == NULL || inSz < 2*KEYWRAP_BLOCK_SIZE ||
out == NULL || outSz < (inSz + KEYWRAP_BLOCK_SIZE))
return BAD_FUNC_ARG;
/* input must be multiple of 64-bits */
if (inSz % KEYWRAP_BLOCK_SIZE != 0)
return BAD_FUNC_ARG;
r = out + 8;
XMEMCPY(r, in, inSz);
XMEMSET(t, 0, sizeof(t));
/* user IV is optional */
if (iv == NULL) {
XMEMSET(tmp, 0xA6, KEYWRAP_BLOCK_SIZE);
} else {
XMEMCPY(tmp, iv, KEYWRAP_BLOCK_SIZE);
}
VECTOR_REGISTERS_PUSH;
for (j = 0; j <= 5; j++) {
for (i = 1; i <= inSz / KEYWRAP_BLOCK_SIZE; i++) {
/* load R[i] */
XMEMCPY(tmp + KEYWRAP_BLOCK_SIZE, r, KEYWRAP_BLOCK_SIZE);
ret = wc_AesEncryptDirect(aes, tmp, tmp);
if (ret != 0)
break;
/* calculate new A */
IncrementKeyWrapCounter(t);
xorbuf(tmp, t, KEYWRAP_BLOCK_SIZE);
/* save R[i] */
XMEMCPY(r, tmp + KEYWRAP_BLOCK_SIZE, KEYWRAP_BLOCK_SIZE);
r += KEYWRAP_BLOCK_SIZE;
}
if (ret != 0)
break;
r = out + KEYWRAP_BLOCK_SIZE;
}
VECTOR_REGISTERS_POP;
if (ret != 0)
return ret;
/* C[0] = A */
XMEMCPY(out, tmp, KEYWRAP_BLOCK_SIZE);
return (int)(inSz + KEYWRAP_BLOCK_SIZE);
}
/* perform AES key wrap (RFC3394), return out sz on success, negative on err */
int wc_AesKeyWrap(const byte* key, word32 keySz, const byte* in, word32 inSz,
byte* out, word32 outSz, const byte* iv)
{
#ifdef WOLFSSL_SMALL_STACK
Aes *aes = NULL;
#else
Aes aes[1];
#endif
int ret;
if (key == NULL)
return BAD_FUNC_ARG;
#ifdef WOLFSSL_SMALL_STACK
if ((aes = (Aes *)XMALLOC(sizeof *aes, NULL,
DYNAMIC_TYPE_AES)) == NULL)
return MEMORY_E;
#endif
ret = wc_AesInit(aes, NULL, INVALID_DEVID);
if (ret != 0)
goto out;
ret = wc_AesSetKey(aes, key, keySz, NULL, AES_ENCRYPTION);
if (ret != 0) {
wc_AesFree(aes);
goto out;
}
ret = wc_AesKeyWrap_ex(aes, in, inSz, out, outSz, iv);
wc_AesFree(aes);
out:
#ifdef WOLFSSL_SMALL_STACK
if (aes != NULL)
XFREE(aes, NULL, DYNAMIC_TYPE_AES);
#endif
return ret;
}
int wc_AesKeyUnWrap_ex(Aes *aes, const byte* in, word32 inSz, byte* out,
word32 outSz, const byte* iv)
{
byte* r;
word32 i, n;
int j;
int ret = 0;
byte t[KEYWRAP_BLOCK_SIZE];
byte tmp[AES_BLOCK_SIZE];
const byte* expIv;
const byte defaultIV[] = {
0xA6, 0xA6, 0xA6, 0xA6, 0xA6, 0xA6, 0xA6, 0xA6
};
if (aes == NULL || in == NULL || inSz < 3 * KEYWRAP_BLOCK_SIZE ||
out == NULL || outSz < (inSz - KEYWRAP_BLOCK_SIZE))
return BAD_FUNC_ARG;
/* input must be multiple of 64-bits */
if (inSz % KEYWRAP_BLOCK_SIZE != 0)
return BAD_FUNC_ARG;
/* user IV optional */
if (iv != NULL)
expIv = iv;
else
expIv = defaultIV;
/* A = C[0], R[i] = C[i] */
XMEMCPY(tmp, in, KEYWRAP_BLOCK_SIZE);
XMEMCPY(out, in + KEYWRAP_BLOCK_SIZE, inSz - KEYWRAP_BLOCK_SIZE);
XMEMSET(t, 0, sizeof(t));
VECTOR_REGISTERS_PUSH;
/* initialize counter to 6n */
n = (inSz - 1) / KEYWRAP_BLOCK_SIZE;
InitKeyWrapCounter(t, 6 * n);
for (j = 5; j >= 0; j--) {
for (i = n; i >= 1; i--) {
/* calculate A */
xorbuf(tmp, t, KEYWRAP_BLOCK_SIZE);
DecrementKeyWrapCounter(t);
/* load R[i], starting at end of R */
r = out + ((i - 1) * KEYWRAP_BLOCK_SIZE);
XMEMCPY(tmp + KEYWRAP_BLOCK_SIZE, r, KEYWRAP_BLOCK_SIZE);
ret = wc_AesDecryptDirect(aes, tmp, tmp);
if (ret != 0)
break;
/* save R[i] */
XMEMCPY(r, tmp + KEYWRAP_BLOCK_SIZE, KEYWRAP_BLOCK_SIZE);
}
if (ret != 0)
break;
}
VECTOR_REGISTERS_POP;
if (ret != 0)
return ret;
/* verify IV */
if (XMEMCMP(tmp, expIv, KEYWRAP_BLOCK_SIZE) != 0)
return BAD_KEYWRAP_IV_E;
return (int)(inSz - KEYWRAP_BLOCK_SIZE);
}
int wc_AesKeyUnWrap(const byte* key, word32 keySz, const byte* in, word32 inSz,
byte* out, word32 outSz, const byte* iv)
{
#ifdef WOLFSSL_SMALL_STACK
Aes *aes = NULL;
#else
Aes aes[1];
#endif
int ret;
(void)iv;
if (key == NULL)
return BAD_FUNC_ARG;
#ifdef WOLFSSL_SMALL_STACK
if ((aes = (Aes *)XMALLOC(sizeof *aes, NULL,
DYNAMIC_TYPE_AES)) == NULL)
return MEMORY_E;
#endif
ret = wc_AesInit(aes, NULL, INVALID_DEVID);
if (ret != 0)
goto out;
ret = wc_AesSetKey(aes, key, keySz, NULL, AES_DECRYPTION);
if (ret != 0) {
wc_AesFree(aes);
goto out;
}
ret = wc_AesKeyUnWrap_ex(aes, in, inSz, out, outSz, iv);
wc_AesFree(aes);
out:
#ifdef WOLFSSL_SMALL_STACK
if (aes)
XFREE(aes, NULL, DYNAMIC_TYPE_AES);
#endif
return ret;
}
#endif /* HAVE_AES_KEYWRAP */
#ifdef WOLFSSL_AES_XTS
/* Galois Field to use */
#define GF_XTS 0x87
/* Set up keys for encryption and/or decryption.
*
* aes buffer holding aes subkeys
* heap heap hint to use for memory. Can be NULL
* devId id to use with async crypto. Can be 0
*
* return 0 on success
*/
int wc_AesXtsInit(XtsAes* aes, void* heap, int devId)
{
int ret = 0;
if (aes == NULL) {
return BAD_FUNC_ARG;
}
if ((ret = wc_AesInit(&aes->tweak, heap, devId)) != 0) {
return ret;
}
if ((ret = wc_AesInit(&aes->aes, heap, devId)) != 0) {
(void)wc_AesFree(&aes->tweak);
return ret;
}
#ifdef WC_AES_XTS_SUPPORT_SIMULTANEOUS_ENC_AND_DEC_KEYS
if ((ret = wc_AesInit(&aes->aes_decrypt, heap, devId)) != 0) {
(void)wc_AesFree(&aes->tweak);
(void)wc_AesFree(&aes->aes);
return ret;
}
#endif
return 0;
}
/* Set up keys for encryption and/or decryption.
*
* aes buffer holding aes subkeys
* key AES key for encrypt/decrypt and tweak process (concatenated)
* len length of key buffer in bytes. Should be twice that of key size. i.e.
* 32 for a 16 byte key.
* dir direction: AES_ENCRYPTION, AES_DECRYPTION, or
* AES_ENCRYPTION_AND_DECRYPTION
*
* return 0 on success
*/
int wc_AesXtsSetKeyNoInit(XtsAes* aes, const byte* key, word32 len, int dir)
{
word32 keySz;
int ret = 0;
if (aes == NULL || key == NULL) {
return BAD_FUNC_ARG;
}
if ((dir != AES_ENCRYPTION) && (dir != AES_DECRYPTION)
#ifdef WC_AES_XTS_SUPPORT_SIMULTANEOUS_ENC_AND_DEC_KEYS
&& (dir != AES_ENCRYPTION_AND_DECRYPTION)
#endif
)
{
return BAD_FUNC_ARG;
}
if ((len != (AES_128_KEY_SIZE*2)) &&
(len != (AES_192_KEY_SIZE*2)) &&
(len != (AES_256_KEY_SIZE*2)))
{
WOLFSSL_MSG("Unsupported key size");
return WC_KEY_SIZE_E;
}
keySz = len/2;
#ifdef HAVE_FIPS
if (XMEMCMP(key, key + keySz, keySz) == 0) {
WOLFSSL_MSG("FIPS AES-XTS main and tweak keys must differ");
return BAD_FUNC_ARG;
}
#endif
if (dir == AES_ENCRYPTION
#ifdef WC_AES_XTS_SUPPORT_SIMULTANEOUS_ENC_AND_DEC_KEYS
|| dir == AES_ENCRYPTION_AND_DECRYPTION
#endif
)
{
ret = wc_AesSetKey(&aes->aes, key, keySz, NULL, AES_ENCRYPTION);
}
#ifdef WC_AES_XTS_SUPPORT_SIMULTANEOUS_ENC_AND_DEC_KEYS
if ((ret == 0) && ((dir == AES_DECRYPTION)
|| (dir == AES_ENCRYPTION_AND_DECRYPTION)))
ret = wc_AesSetKey(&aes->aes_decrypt, key, keySz, NULL, AES_DECRYPTION);
#else
if (dir == AES_DECRYPTION)
ret = wc_AesSetKey(&aes->aes, key, keySz, NULL, AES_DECRYPTION);
#endif
if (ret == 0)
ret = wc_AesSetKey(&aes->tweak, key + keySz, keySz, NULL,
AES_ENCRYPTION);
#ifdef WOLFSSL_AESNI
if (ret == 0) {
/* With WC_C_DYNAMIC_FALLBACK, the main and tweak keys could have
* conflicting _aesni status, but the AES-XTS asm implementations need
* them to all be AESNI. If any aren't, disable AESNI on all.
*/
#ifdef WC_AES_XTS_SUPPORT_SIMULTANEOUS_ENC_AND_DEC_KEYS
if ((((dir == AES_ENCRYPTION) ||
(dir == AES_ENCRYPTION_AND_DECRYPTION))
&& (aes->aes.use_aesni != aes->tweak.use_aesni))
||
(((dir == AES_DECRYPTION) ||
(dir == AES_ENCRYPTION_AND_DECRYPTION))
&& (aes->aes_decrypt.use_aesni != aes->tweak.use_aesni)))
{
#ifdef WC_C_DYNAMIC_FALLBACK
aes->aes.use_aesni = 0;
aes->aes_decrypt.use_aesni = 0;
aes->tweak.use_aesni = 0;
#else
ret = SYSLIB_FAILED_E;
#endif
}
#else /* !WC_AES_XTS_SUPPORT_SIMULTANEOUS_ENC_AND_DEC_KEYS */
if (aes->aes.use_aesni != aes->tweak.use_aesni) {
#ifdef WC_C_DYNAMIC_FALLBACK
aes->aes.use_aesni = 0;
aes->tweak.use_aesni = 0;
#else
ret = SYSLIB_FAILED_E;
#endif
}
#endif /* !WC_AES_XTS_SUPPORT_SIMULTANEOUS_ENC_AND_DEC_KEYS */
}
#endif /* WOLFSSL_AESNI */
return ret;
}
/* Combined call to wc_AesXtsInit() and wc_AesXtsSetKeyNoInit().
*
* Note: is up to user to call wc_AesXtsFree when done.
*
* return 0 on success
*/
int wc_AesXtsSetKey(XtsAes* aes, const byte* key, word32 len, int dir,
void* heap, int devId)
{
int ret = 0;
if (aes == NULL || key == NULL) {
return BAD_FUNC_ARG;
}
ret = wc_AesXtsInit(aes, heap, devId);
if (ret != 0)
return ret;
ret = wc_AesXtsSetKeyNoInit(aes, key, len, dir);
if (ret != 0)
wc_AesXtsFree(aes);
return ret;
}
/* This is used to free up resources used by Aes structs
*
* aes AES keys to free
*
* return 0 on success
*/
int wc_AesXtsFree(XtsAes* aes)
{
if (aes != NULL) {
wc_AesFree(&aes->aes);
#ifdef WC_AES_XTS_SUPPORT_SIMULTANEOUS_ENC_AND_DEC_KEYS
wc_AesFree(&aes->aes_decrypt);
#endif
wc_AesFree(&aes->tweak);
}
return 0;
}
/* Same process as wc_AesXtsEncrypt but uses a word64 type as the tweak value
* instead of a byte array. This just converts the word64 to a byte array and
* calls wc_AesXtsEncrypt.
*
* aes AES keys to use for block encrypt/decrypt
* out output buffer to hold cipher text
* in input plain text buffer to encrypt
* sz size of both out and in buffers
* sector value to use for tweak
*
* returns 0 on success
*/
int wc_AesXtsEncryptSector(XtsAes* aes, byte* out, const byte* in,
word32 sz, word64 sector)
{
byte* pt;
byte i[AES_BLOCK_SIZE];
XMEMSET(i, 0, AES_BLOCK_SIZE);
#ifdef BIG_ENDIAN_ORDER
sector = ByteReverseWord64(sector);
#endif
pt = (byte*)&sector;
XMEMCPY(i, pt, sizeof(word64));
return wc_AesXtsEncrypt(aes, out, in, sz, (const byte*)i, AES_BLOCK_SIZE);
}
/* Same process as wc_AesXtsDecrypt but uses a word64 type as the tweak value
* instead of a byte array. This just converts the word64 to a byte array.
*
* aes AES keys to use for block encrypt/decrypt
* out output buffer to hold plain text
* in input cipher text buffer to encrypt
* sz size of both out and in buffers
* sector value to use for tweak
*
* returns 0 on success
*/
int wc_AesXtsDecryptSector(XtsAes* aes, byte* out, const byte* in, word32 sz,
word64 sector)
{
byte* pt;
byte i[AES_BLOCK_SIZE];
XMEMSET(i, 0, AES_BLOCK_SIZE);
#ifdef BIG_ENDIAN_ORDER
sector = ByteReverseWord64(sector);
#endif
pt = (byte*)&sector;
XMEMCPY(i, pt, sizeof(word64));
return wc_AesXtsDecrypt(aes, out, in, sz, (const byte*)i, AES_BLOCK_SIZE);
}
#ifdef WOLFSSL_AESNI
#if defined(USE_INTEL_SPEEDUP)
#define HAVE_INTEL_AVX1
#define HAVE_INTEL_AVX2
#endif /* USE_INTEL_SPEEDUP */
void AES_XTS_encrypt_aesni(const unsigned char *in, unsigned char *out, word32 sz,
const unsigned char* i, const unsigned char* key,
const unsigned char* key2, int nr)
XASM_LINK("AES_XTS_encrypt_aesni");
#ifdef WOLFSSL_AESXTS_STREAM
void AES_XTS_init_aesni(unsigned char* i, const unsigned char* tweak_key,
int tweak_nr)
XASM_LINK("AES_XTS_init_aesni");
void AES_XTS_encrypt_update_aesni(const unsigned char *in, unsigned char *out, word32 sz,
const unsigned char* key, unsigned char *i, int nr)
XASM_LINK("AES_XTS_encrypt_update_aesni");
#endif
#ifdef HAVE_INTEL_AVX1
void AES_XTS_encrypt_avx1(const unsigned char *in, unsigned char *out,
word32 sz, const unsigned char* i,
const unsigned char* key, const unsigned char* key2,
int nr)
XASM_LINK("AES_XTS_encrypt_avx1");
#ifdef WOLFSSL_AESXTS_STREAM
void AES_XTS_init_avx1(unsigned char* i, const unsigned char* tweak_key,
int tweak_nr)
XASM_LINK("AES_XTS_init_avx1");
void AES_XTS_encrypt_update_avx1(const unsigned char *in, unsigned char *out, word32 sz,
const unsigned char* key, unsigned char *i, int nr)
XASM_LINK("AES_XTS_encrypt_update_avx1");
#endif
#endif /* HAVE_INTEL_AVX1 */
#ifdef HAVE_AES_DECRYPT
void AES_XTS_decrypt_aesni(const unsigned char *in, unsigned char *out, word32 sz,
const unsigned char* i, const unsigned char* key,
const unsigned char* key2, int nr)
XASM_LINK("AES_XTS_decrypt_aesni");
#ifdef WOLFSSL_AESXTS_STREAM
void AES_XTS_decrypt_update_aesni(const unsigned char *in, unsigned char *out, word32 sz,
const unsigned char* key, unsigned char *i, int nr)
XASM_LINK("AES_XTS_decrypt_update_aesni");
#endif
#ifdef HAVE_INTEL_AVX1
void AES_XTS_decrypt_avx1(const unsigned char *in, unsigned char *out,
word32 sz, const unsigned char* i,
const unsigned char* key, const unsigned char* key2,
int nr)
XASM_LINK("AES_XTS_decrypt_avx1");
#ifdef WOLFSSL_AESXTS_STREAM
void AES_XTS_decrypt_update_avx1(const unsigned char *in, unsigned char *out, word32 sz,
const unsigned char* key, unsigned char *i, int nr)
XASM_LINK("AES_XTS_decrypt_update_avx1");
#endif
#endif /* HAVE_INTEL_AVX1 */
#endif /* HAVE_AES_DECRYPT */
#endif /* WOLFSSL_AESNI */
#if !defined(WOLFSSL_ARMASM) || defined(WOLFSSL_ARMASM_NO_HW_CRYPTO)
#ifdef HAVE_AES_ECB
/* helper function for encrypting / decrypting full buffer at once */
static WARN_UNUSED_RESULT int _AesXtsHelper(
Aes* aes, byte* out, const byte* in, word32 sz, int dir)
{
word32 outSz = sz;
word32 totalSz = (sz / AES_BLOCK_SIZE) * AES_BLOCK_SIZE; /* total bytes */
byte* pt = out;
outSz -= AES_BLOCK_SIZE;
while (outSz > 0) {
word32 j;
byte carry = 0;
/* multiply by shift left and propagate carry */
for (j = 0; j < AES_BLOCK_SIZE && outSz > 0; j++, outSz--) {
byte tmpC;
tmpC = (pt[j] >> 7) & 0x01;
pt[j+AES_BLOCK_SIZE] = (byte)((pt[j] << 1) + carry);
carry = tmpC;
}
if (carry) {
pt[AES_BLOCK_SIZE] ^= GF_XTS;
}
pt += AES_BLOCK_SIZE;
}
xorbuf(out, in, totalSz);
#ifndef WOLFSSL_RISCV_ASM
if (dir == AES_ENCRYPTION) {
return _AesEcbEncrypt(aes, out, out, totalSz);
}
else {
return _AesEcbDecrypt(aes, out, out, totalSz);
}
#else
if (dir == AES_ENCRYPTION) {
return wc_AesEcbEncrypt(aes, out, out, totalSz);
}
else {
return wc_AesEcbDecrypt(aes, out, out, totalSz);
}
#endif
}
#endif /* HAVE_AES_ECB */
/* AES with XTS mode. (XTS) XEX encryption with Tweak and cipher text Stealing.
*
* xaes AES keys to use for block encrypt/decrypt
* out output buffer to hold cipher text
* in input plain text buffer to encrypt
* sz size of both out and in buffers
* i value to use for tweak
*
* returns 0 on success
*/
/* Software AES - XTS Encrypt */
static int AesXtsEncryptUpdate_sw(XtsAes* xaes, byte* out, const byte* in,
word32 sz,
byte *i);
static int AesXtsEncrypt_sw(XtsAes* xaes, byte* out, const byte* in, word32 sz,
const byte* i)
{
int ret;
byte tweak_block[AES_BLOCK_SIZE];
ret = wc_AesEncryptDirect(&xaes->tweak, tweak_block, i);
if (ret != 0)
return ret;
return AesXtsEncryptUpdate_sw(xaes, out, in, sz, tweak_block);
}
#ifdef WOLFSSL_AESXTS_STREAM
/* Block-streaming AES-XTS tweak setup.
*
* xaes AES keys to use for block encrypt/decrypt
* i readwrite value to use for tweak
*
* returns 0 on success
*/
static int AesXtsInitTweak_sw(XtsAes* xaes, byte* i) {
return wc_AesEncryptDirect(&xaes->tweak, i, i);
}
#endif /* WOLFSSL_AESXTS_STREAM */
/* Block-streaming AES-XTS.
*
* Supply block-aligned input data with successive calls. Final call need not
* be block aligned.
*
* xaes AES keys to use for block encrypt/decrypt
* out output buffer to hold cipher text
* in input plain text buffer to encrypt
* sz size of both out and in buffers
*
* returns 0 on success
*/
/* Software AES - XTS Encrypt */
static int AesXtsEncryptUpdate_sw(XtsAes* xaes, byte* out, const byte* in,
word32 sz,
byte *i)
{
int ret = 0;
word32 blocks = (sz / AES_BLOCK_SIZE);
Aes *aes = &xaes->aes;
#ifdef HAVE_AES_ECB
/* encrypt all of buffer at once when possible */
if (in != out) { /* can not handle inline */
XMEMCPY(out, i, AES_BLOCK_SIZE);
if ((ret = _AesXtsHelper(aes, out, in, sz, AES_ENCRYPTION)) != 0)
return ret;
}
#endif
while (blocks > 0) {
word32 j;
byte carry = 0;
#ifdef HAVE_AES_ECB
if (in == out)
#endif
{ /* check for if inline */
byte buf[AES_BLOCK_SIZE];
XMEMCPY(buf, in, AES_BLOCK_SIZE);
xorbuf(buf, i, AES_BLOCK_SIZE);
ret = wc_AesEncryptDirect(aes, out, buf);
if (ret != 0)
return ret;
}
xorbuf(out, i, AES_BLOCK_SIZE);
/* multiply by shift left and propagate carry */
for (j = 0; j < AES_BLOCK_SIZE; j++) {
byte tmpC;
tmpC = (i[j] >> 7) & 0x01;
i[j] = (byte)((i[j] << 1) + carry);
carry = tmpC;
}
if (carry) {
i[0] ^= GF_XTS;
}
in += AES_BLOCK_SIZE;
out += AES_BLOCK_SIZE;
sz -= AES_BLOCK_SIZE;
blocks--;
}
/* stealing operation of XTS to handle left overs */
if (sz > 0) {
byte buf[AES_BLOCK_SIZE];
XMEMCPY(buf, out - AES_BLOCK_SIZE, AES_BLOCK_SIZE);
if (sz >= AES_BLOCK_SIZE) { /* extra sanity check before copy */
return BUFFER_E;
}
if (in != out) {
XMEMCPY(out, buf, sz);
XMEMCPY(buf, in, sz);
}
else {
byte buf2[AES_BLOCK_SIZE];
XMEMCPY(buf2, buf, sz);
XMEMCPY(buf, in, sz);
XMEMCPY(out, buf2, sz);
}
xorbuf(buf, i, AES_BLOCK_SIZE);
ret = wc_AesEncryptDirect(aes, out - AES_BLOCK_SIZE, buf);
if (ret == 0)
xorbuf(out - AES_BLOCK_SIZE, i, AES_BLOCK_SIZE);
}
return ret;
}
/* AES with XTS mode. (XTS) XEX encryption with Tweak and cipher text Stealing.
*
* xaes AES keys to use for block encrypt/decrypt
* out output buffer to hold cipher text
* in input plain text buffer to encrypt
* sz size of both out and in buffers
* i value to use for tweak
* iSz size of i buffer, should always be AES_BLOCK_SIZE but having this input
* adds a sanity check on how the user calls the function.
*
* returns 0 on success
*/
int wc_AesXtsEncrypt(XtsAes* xaes, byte* out, const byte* in, word32 sz,
const byte* i, word32 iSz)
{
int ret;
Aes *aes;
if (xaes == NULL || out == NULL || in == NULL) {
return BAD_FUNC_ARG;
}
#if FIPS_VERSION3_GE(6,0,0)
/* SP800-38E - Restrict data unit to 2^20 blocks per key. A block is
* AES_BLOCK_SIZE or 16-bytes (128-bits). So each key may only be used to
* protect up to 1,048,576 blocks of AES_BLOCK_SIZE (16,777,216 bytes)
*/
if (sz > FIPS_AES_XTS_MAX_BYTES_PER_TWEAK) {
WOLFSSL_MSG("Request exceeds allowed bytes per SP800-38E");
return BAD_FUNC_ARG;
}
#endif
aes = &xaes->aes;
if (aes->keylen == 0) {
WOLFSSL_MSG("wc_AesXtsEncrypt called with unset encryption key.");
return BAD_FUNC_ARG;
}
if (iSz < AES_BLOCK_SIZE) {
return BAD_FUNC_ARG;
}
if (sz < AES_BLOCK_SIZE) {
WOLFSSL_MSG("Plain text input too small for encryption");
return BAD_FUNC_ARG;
}
{
#ifdef WOLFSSL_AESNI
if (aes->use_aesni) {
SAVE_VECTOR_REGISTERS(return _svr_ret;);
#if defined(HAVE_INTEL_AVX1)
if (IS_INTEL_AVX1(intel_flags)) {
AES_XTS_encrypt_avx1(in, out, sz, i,
(const byte*)aes->key,
(const byte*)xaes->tweak.key,
(int)aes->rounds);
ret = 0;
}
else
#endif
{
AES_XTS_encrypt_aesni(in, out, sz, i,
(const byte*)aes->key,
(const byte*)xaes->tweak.key,
(int)aes->rounds);
ret = 0;
}
RESTORE_VECTOR_REGISTERS();
}
else
#endif
{
ret = AesXtsEncrypt_sw(xaes, out, in, sz, i);
}
}
return ret;
}
#ifdef WOLFSSL_AESXTS_STREAM
/* Block-streaming AES-XTS.
*
* xaes AES keys to use for block encrypt/decrypt
* i readwrite value to use for tweak
* iSz size of i buffer, should always be AES_BLOCK_SIZE but having this input
* adds a sanity check on how the user calls the function.
*
* returns 0 on success
*/
int wc_AesXtsEncryptInit(XtsAes* xaes, const byte* i, word32 iSz,
struct XtsAesStreamData *stream)
{
int ret;
Aes *aes;
if ((xaes == NULL) || (i == NULL) || (stream == NULL)) {
return BAD_FUNC_ARG;
}
if (iSz < AES_BLOCK_SIZE) {
return BAD_FUNC_ARG;
}
aes = &xaes->aes;
if (aes->keylen == 0) {
WOLFSSL_MSG("wc_AesXtsEncrypt called with unset encryption key.");
return BAD_FUNC_ARG;
}
if (iSz < AES_BLOCK_SIZE) {
return BAD_FUNC_ARG;
}
XMEMCPY(stream->tweak_block, i, AES_BLOCK_SIZE);
stream->bytes_crypted_with_this_tweak = 0;
{
#ifdef WOLFSSL_AESNI
if (aes->use_aesni) {
SAVE_VECTOR_REGISTERS(return _svr_ret;);
#if defined(HAVE_INTEL_AVX1)
if (IS_INTEL_AVX1(intel_flags)) {
AES_XTS_init_avx1(stream->tweak_block,
(const byte*)xaes->tweak.key,
(int)xaes->tweak.rounds);
ret = 0;
}
else
#endif
{
AES_XTS_init_aesni(stream->tweak_block,
(const byte*)xaes->tweak.key,
(int)xaes->tweak.rounds);
ret = 0;
}
RESTORE_VECTOR_REGISTERS();
}
else
#endif /* WOLFSSL_AESNI */
{
ret = AesXtsInitTweak_sw(xaes, stream->tweak_block);
}
}
return ret;
}
/* Block-streaming AES-XTS
*
* Note that sz must be >= AES_BLOCK_SIZE in each call, and must be a multiple
* of AES_BLOCK_SIZE in each call to wc_AesXtsEncryptUpdate().
* wc_AesXtsEncryptFinal() can handle any length >= AES_BLOCK_SIZE.
*
* xaes AES keys to use for block encrypt/decrypt
* out output buffer to hold cipher text
* in input plain text buffer to encrypt
* sz size of both out and in buffers -- must be >= AES_BLOCK_SIZE.
* i value to use for tweak
* iSz size of i buffer, should always be AES_BLOCK_SIZE but having this input
* adds a sanity check on how the user calls the function.
*
* returns 0 on success
*/
static int AesXtsEncryptUpdate(XtsAes* xaes, byte* out, const byte* in, word32 sz,
struct XtsAesStreamData *stream)
{
int ret;
#ifdef WOLFSSL_AESNI
Aes *aes;
#endif
if (xaes == NULL || out == NULL || in == NULL) {
return BAD_FUNC_ARG;
}
#ifdef WOLFSSL_AESNI
aes = &xaes->aes;
#endif
if (sz < AES_BLOCK_SIZE) {
WOLFSSL_MSG("Plain text input too small for encryption");
return BAD_FUNC_ARG;
}
if (stream->bytes_crypted_with_this_tweak & ((word32)AES_BLOCK_SIZE - 1U))
{
WOLFSSL_MSG("Call to AesXtsEncryptUpdate after previous finalizing call");
return BAD_FUNC_ARG;
}
#ifndef WC_AESXTS_STREAM_NO_REQUEST_ACCOUNTING
(void)WC_SAFE_SUM_WORD32(stream->bytes_crypted_with_this_tweak, sz,
stream->bytes_crypted_with_this_tweak);
#endif
#if FIPS_VERSION3_GE(6,0,0)
/* SP800-38E - Restrict data unit to 2^20 blocks per key. A block is
* AES_BLOCK_SIZE or 16-bytes (128-bits). So each key may only be used to
* protect up to 1,048,576 blocks of AES_BLOCK_SIZE (16,777,216 bytes)
*/
if (stream->bytes_crypted_with_this_tweak >
FIPS_AES_XTS_MAX_BYTES_PER_TWEAK)
{
WOLFSSL_MSG("Request exceeds allowed bytes per SP800-38E");
return BAD_FUNC_ARG;
}
#endif
{
#ifdef WOLFSSL_AESNI
if (aes->use_aesni) {
SAVE_VECTOR_REGISTERS(return _svr_ret;);
#if defined(HAVE_INTEL_AVX1)
if (IS_INTEL_AVX1(intel_flags)) {
AES_XTS_encrypt_update_avx1(in, out, sz,
(const byte*)aes->key,
stream->tweak_block,
(int)aes->rounds);
ret = 0;
}
else
#endif
{
AES_XTS_encrypt_update_aesni(in, out, sz,
(const byte*)aes->key,
stream->tweak_block,
(int)aes->rounds);
ret = 0;
}
RESTORE_VECTOR_REGISTERS();
}
else
#endif /* WOLFSSL_AESNI */
{
ret = AesXtsEncryptUpdate_sw(xaes, out, in, sz, stream->tweak_block);
}
}
return ret;
}
int wc_AesXtsEncryptUpdate(XtsAes* xaes, byte* out, const byte* in, word32 sz,
struct XtsAesStreamData *stream)
{
if (stream == NULL)
return BAD_FUNC_ARG;
if (sz & ((word32)AES_BLOCK_SIZE - 1U))
return BAD_FUNC_ARG;
return AesXtsEncryptUpdate(xaes, out, in, sz, stream);
}
int wc_AesXtsEncryptFinal(XtsAes* xaes, byte* out, const byte* in, word32 sz,
struct XtsAesStreamData *stream)
{
int ret;
if (stream == NULL)
return BAD_FUNC_ARG;
if (sz > 0)
ret = AesXtsEncryptUpdate(xaes, out, in, sz, stream);
else
ret = 0;
/* force the count odd, to assure error on attempt to AesXtsEncryptUpdate()
* after finalization.
*/
stream->bytes_crypted_with_this_tweak |= 1U;
ForceZero(stream->tweak_block, AES_BLOCK_SIZE);
#ifdef WOLFSSL_CHECK_MEM_ZERO
wc_MemZero_Check(stream->tweak_block, AES_BLOCK_SIZE);
#endif
return ret;
}
#endif /* WOLFSSL_AESXTS_STREAM */
/* Same process as encryption but use aes_decrypt key.
*
* xaes AES keys to use for block encrypt/decrypt
* out output buffer to hold plain text
* in input cipher text buffer to decrypt
* sz size of both out and in buffers
* i value to use for tweak
*
* returns 0 on success
*/
/* Software AES - XTS Decrypt */
static int AesXtsDecryptUpdate_sw(XtsAes* xaes, byte* out, const byte* in,
word32 sz, byte *i);
static int AesXtsDecrypt_sw(XtsAes* xaes, byte* out, const byte* in, word32 sz,
const byte* i)
{
int ret;
byte tweak_block[AES_BLOCK_SIZE];
ret = wc_AesEncryptDirect(&xaes->tweak, tweak_block, i);
if (ret != 0)
return ret;
return AesXtsDecryptUpdate_sw(xaes, out, in, sz, tweak_block);
}
/* Block-streaming AES-XTS.
*
* Same process as encryption but use decrypt key.
*
* Supply block-aligned input data with successive calls. Final call need not
* be block aligned.
*
* xaes AES keys to use for block encrypt/decrypt
* out output buffer to hold plain text
* in input cipher text buffer to decrypt
* sz size of both out and in buffers
* i value to use for tweak
*
* returns 0 on success
*/
/* Software AES - XTS Decrypt */
static int AesXtsDecryptUpdate_sw(XtsAes* xaes, byte* out, const byte* in,
word32 sz, byte *i)
{
int ret = 0;
word32 blocks = (sz / AES_BLOCK_SIZE);
#ifdef WC_AES_XTS_SUPPORT_SIMULTANEOUS_ENC_AND_DEC_KEYS
Aes *aes = &xaes->aes_decrypt;
#else
Aes *aes = &xaes->aes;
#endif
word32 j;
byte carry = 0;
byte stl = (sz % AES_BLOCK_SIZE);
/* if Stealing then break out of loop one block early to handle special
* case */
if (stl > 0) {
blocks--;
}
#ifdef HAVE_AES_ECB
/* decrypt all of buffer at once when possible */
if (in != out) { /* can not handle inline */
XMEMCPY(out, i, AES_BLOCK_SIZE);
if ((ret = _AesXtsHelper(aes, out, in, sz, AES_DECRYPTION)) != 0)
return ret;
}
#endif
while (blocks > 0) {
#ifdef HAVE_AES_ECB
if (in == out)
#endif
{ /* check for if inline */
byte buf[AES_BLOCK_SIZE];
XMEMCPY(buf, in, AES_BLOCK_SIZE);
xorbuf(buf, i, AES_BLOCK_SIZE);
ret = wc_AesDecryptDirect(aes, out, buf);
if (ret != 0)
return ret;
}
xorbuf(out, i, AES_BLOCK_SIZE);
/* multiply by shift left and propagate carry */
for (j = 0; j < AES_BLOCK_SIZE; j++) {
byte tmpC;
tmpC = (i[j] >> 7) & 0x01;
i[j] = (byte)((i[j] << 1) + carry);
carry = tmpC;
}
if (carry) {
i[0] ^= GF_XTS;
}
carry = 0;
in += AES_BLOCK_SIZE;
out += AES_BLOCK_SIZE;
sz -= AES_BLOCK_SIZE;
blocks--;
}
/* stealing operation of XTS to handle left overs */
if (sz >= AES_BLOCK_SIZE) {
byte buf[AES_BLOCK_SIZE];
byte tmp2[AES_BLOCK_SIZE];
/* multiply by shift left and propagate carry */
for (j = 0; j < AES_BLOCK_SIZE; j++) {
byte tmpC;
tmpC = (i[j] >> 7) & 0x01;
tmp2[j] = (byte)((i[j] << 1) + carry);
carry = tmpC;
}
if (carry) {
tmp2[0] ^= GF_XTS;
}
XMEMCPY(buf, in, AES_BLOCK_SIZE);
xorbuf(buf, tmp2, AES_BLOCK_SIZE);
ret = wc_AesDecryptDirect(aes, out, buf);
if (ret != 0)
return ret;
xorbuf(out, tmp2, AES_BLOCK_SIZE);
/* tmp2 holds partial | last */
XMEMCPY(tmp2, out, AES_BLOCK_SIZE);
in += AES_BLOCK_SIZE;
out += AES_BLOCK_SIZE;
sz -= AES_BLOCK_SIZE;
/* Make buffer with end of cipher text | last */
XMEMCPY(buf, tmp2, AES_BLOCK_SIZE);
if (sz >= AES_BLOCK_SIZE) { /* extra sanity check before copy */
return BUFFER_E;
}
XMEMCPY(buf, in, sz);
XMEMCPY(out, tmp2, sz);
xorbuf(buf, i, AES_BLOCK_SIZE);
ret = wc_AesDecryptDirect(aes, tmp2, buf);
if (ret != 0)
return ret;
xorbuf(tmp2, i, AES_BLOCK_SIZE);
XMEMCPY(out - AES_BLOCK_SIZE, tmp2, AES_BLOCK_SIZE);
}
return ret;
}
/* Same process as encryption but Aes key is AES_DECRYPTION type.
*
* xaes AES keys to use for block encrypt/decrypt
* out output buffer to hold plain text
* in input cipher text buffer to decrypt
* sz size of both out and in buffers
* i value to use for tweak
* iSz size of i buffer, should always be AES_BLOCK_SIZE but having this input
* adds a sanity check on how the user calls the function.
*
* returns 0 on success
*/
int wc_AesXtsDecrypt(XtsAes* xaes, byte* out, const byte* in, word32 sz,
const byte* i, word32 iSz)
{
int ret;
Aes *aes;
if (xaes == NULL || out == NULL || in == NULL) {
return BAD_FUNC_ARG;
}
#ifdef WC_AES_XTS_SUPPORT_SIMULTANEOUS_ENC_AND_DEC_KEYS
aes = &xaes->aes_decrypt;
#else
aes = &xaes->aes;
#endif
/* FIPS TODO: SP800-38E - Restrict data unit to 2^20 blocks per key. A block is
* AES_BLOCK_SIZE or 16-bytes (128-bits). So each key may only be used to
* protect up to 1,048,576 blocks of AES_BLOCK_SIZE (16,777,216 bytes or
* 134,217,728-bits) Add helpful printout and message along with BAD_FUNC_ARG
* return whenever sz / AES_BLOCK_SIZE > 1,048,576 or equal to that and sz is
* not a sequence of complete blocks.
*/
if (aes->keylen == 0) {
WOLFSSL_MSG("wc_AesXtsDecrypt called with unset decryption key.");
return BAD_FUNC_ARG;
}
if (iSz < AES_BLOCK_SIZE) {
return BAD_FUNC_ARG;
}
if (sz < AES_BLOCK_SIZE) {
WOLFSSL_MSG("Cipher text input too small for decryption");
return BAD_FUNC_ARG;
}
{
#ifdef WOLFSSL_AESNI
if (aes->use_aesni) {
SAVE_VECTOR_REGISTERS(return _svr_ret;);
#if defined(HAVE_INTEL_AVX1)
if (IS_INTEL_AVX1(intel_flags)) {
AES_XTS_decrypt_avx1(in, out, sz, i,
(const byte*)aes->key,
(const byte*)xaes->tweak.key,
(int)aes->rounds);
ret = 0;
}
else
#endif
{
AES_XTS_decrypt_aesni(in, out, sz, i,
(const byte*)aes->key,
(const byte*)xaes->tweak.key,
(int)aes->rounds);
ret = 0;
}
RESTORE_VECTOR_REGISTERS();
}
else
#endif
{
ret = AesXtsDecrypt_sw(xaes, out, in, sz, i);
}
return ret;
}
}
#ifdef WOLFSSL_AESXTS_STREAM
/* Same process as encryption but Aes key is AES_DECRYPTION type.
*
* xaes AES keys to use for block encrypt/decrypt
* i readwrite value to use for tweak
* iSz size of i buffer, should always be AES_BLOCK_SIZE but having this input
* adds a sanity check on how the user calls the function.
*
* returns 0 on success
*/
int wc_AesXtsDecryptInit(XtsAes* xaes, const byte* i, word32 iSz,
struct XtsAesStreamData *stream)
{
int ret;
Aes *aes;
if (xaes == NULL) {
return BAD_FUNC_ARG;
}
#ifdef WC_AES_XTS_SUPPORT_SIMULTANEOUS_ENC_AND_DEC_KEYS
aes = &xaes->aes_decrypt;
#else
aes = &xaes->aes;
#endif
if (aes->keylen == 0) {
WOLFSSL_MSG("wc_AesXtsDecrypt called with unset decryption key.");
return BAD_FUNC_ARG;
}
if (iSz < AES_BLOCK_SIZE) {
return BAD_FUNC_ARG;
}
XMEMCPY(stream->tweak_block, i, AES_BLOCK_SIZE);
stream->bytes_crypted_with_this_tweak = 0;
{
#ifdef WOLFSSL_AESNI
if (aes->use_aesni) {
SAVE_VECTOR_REGISTERS(return _svr_ret;);
#if defined(HAVE_INTEL_AVX1)
if (IS_INTEL_AVX1(intel_flags)) {
AES_XTS_init_avx1(stream->tweak_block,
(const byte*)xaes->tweak.key,
(int)xaes->tweak.rounds);
ret = 0;
}
else
#endif
{
AES_XTS_init_aesni(stream->tweak_block,
(const byte*)xaes->tweak.key,
(int)xaes->tweak.rounds);
ret = 0;
}
RESTORE_VECTOR_REGISTERS();
}
else
#endif /* WOLFSSL_AESNI */
{
ret = AesXtsInitTweak_sw(xaes, stream->tweak_block);
}
}
return ret;
}
/* Block-streaming AES-XTS
*
* Note that sz must be >= AES_BLOCK_SIZE in each call, and must be a multiple
* of AES_BLOCK_SIZE in each call to wc_AesXtsDecryptUpdate().
* wc_AesXtsDecryptFinal() can handle any length >= AES_BLOCK_SIZE.
*
* xaes AES keys to use for block encrypt/decrypt
* out output buffer to hold plain text
* in input cipher text buffer to decrypt
* sz size of both out and in buffers
* i tweak buffer of size AES_BLOCK_SIZE.
*
* returns 0 on success
*/
static int AesXtsDecryptUpdate(XtsAes* xaes, byte* out, const byte* in, word32 sz,
struct XtsAesStreamData *stream)
{
int ret;
#ifdef WOLFSSL_AESNI
Aes *aes;
#endif
if (xaes == NULL || out == NULL || in == NULL) {
return BAD_FUNC_ARG;
}
#ifdef WOLFSSL_AESNI
#ifdef WC_AES_XTS_SUPPORT_SIMULTANEOUS_ENC_AND_DEC_KEYS
aes = &xaes->aes_decrypt;
#else
aes = &xaes->aes;
#endif
#endif
if (sz < AES_BLOCK_SIZE) {
WOLFSSL_MSG("Cipher text input too small for decryption");
return BAD_FUNC_ARG;
}
if (stream->bytes_crypted_with_this_tweak & ((word32)AES_BLOCK_SIZE - 1U))
{
WOLFSSL_MSG("Call to AesXtsDecryptUpdate after previous finalizing call");
return BAD_FUNC_ARG;
}
#ifndef WC_AESXTS_STREAM_NO_REQUEST_ACCOUNTING
(void)WC_SAFE_SUM_WORD32(stream->bytes_crypted_with_this_tweak, sz,
stream->bytes_crypted_with_this_tweak);
#endif
{
#ifdef WOLFSSL_AESNI
if (aes->use_aesni) {
SAVE_VECTOR_REGISTERS(return _svr_ret;);
#if defined(HAVE_INTEL_AVX1)
if (IS_INTEL_AVX1(intel_flags)) {
AES_XTS_decrypt_update_avx1(in, out, sz,
(const byte*)aes->key,
stream->tweak_block,
(int)aes->rounds);
ret = 0;
}
else
#endif
{
AES_XTS_decrypt_update_aesni(in, out, sz,
(const byte*)aes->key,
stream->tweak_block,
(int)aes->rounds);
ret = 0;
}
RESTORE_VECTOR_REGISTERS();
}
else
#endif /* WOLFSSL_AESNI */
{
ret = AesXtsDecryptUpdate_sw(xaes, out, in, sz,
stream->tweak_block);
}
}
return ret;
}
int wc_AesXtsDecryptUpdate(XtsAes* xaes, byte* out, const byte* in, word32 sz,
struct XtsAesStreamData *stream)
{
if (stream == NULL)
return BAD_FUNC_ARG;
if (sz & ((word32)AES_BLOCK_SIZE - 1U))
return BAD_FUNC_ARG;
return AesXtsDecryptUpdate(xaes, out, in, sz, stream);
}
int wc_AesXtsDecryptFinal(XtsAes* xaes, byte* out, const byte* in, word32 sz,
struct XtsAesStreamData *stream)
{
int ret;
if (stream == NULL)
return BAD_FUNC_ARG;
if (sz > 0)
ret = AesXtsDecryptUpdate(xaes, out, in, sz, stream);
else
ret = 0;
ForceZero(stream->tweak_block, AES_BLOCK_SIZE);
/* force the count odd, to assure error on attempt to AesXtsEncryptUpdate()
* after finalization.
*/
stream->bytes_crypted_with_this_tweak |= 1U;
#ifdef WOLFSSL_CHECK_MEM_ZERO
wc_MemZero_Check(stream->tweak_block, AES_BLOCK_SIZE);
#endif
return ret;
}
#endif /* WOLFSSL_AESXTS_STREAM */
#endif /* !WOLFSSL_ARMASM || WOLFSSL_ARMASM_NO_HW_CRYPTO */
/* Same as wc_AesXtsEncryptSector but the sector gets incremented by one every
* sectorSz bytes
*
* xaes AES keys to use for block encrypt
* out output buffer to hold cipher text
* in input plain text buffer to encrypt
* sz size of both out and in buffers
* sector value to use for tweak
* sectorSz size of the sector
*
* returns 0 on success
*/
int wc_AesXtsEncryptConsecutiveSectors(XtsAes* aes, byte* out, const byte* in,
word32 sz, word64 sector, word32 sectorSz)
{
int ret = 0;
word32 iter = 0;
word32 sectorCount;
word32 remainder;
if (aes == NULL || out == NULL || in == NULL || sectorSz == 0) {
return BAD_FUNC_ARG;
}
if (sz < AES_BLOCK_SIZE) {
WOLFSSL_MSG("Cipher text input too small for encryption");
return BAD_FUNC_ARG;
}
sectorCount = sz / sectorSz;
remainder = sz % sectorSz;
while (sectorCount) {
ret = wc_AesXtsEncryptSector(aes, out + (iter * sectorSz),
in + (iter * sectorSz), sectorSz, sector);
if (ret != 0)
break;
sectorCount--;
iter++;
sector++;
}
if (remainder && ret == 0)
ret = wc_AesXtsEncryptSector(aes, out + (iter * sectorSz),
in + (iter * sectorSz), remainder, sector);
return ret;
}
/* Same as wc_AesXtsEncryptConsecutiveSectors but Aes key is AES_DECRYPTION type
*
* xaes AES keys to use for block decrypt
* out output buffer to hold cipher text
* in input plain text buffer to encrypt
* sz size of both out and in buffers
* sector value to use for tweak
* sectorSz size of the sector
*
* returns 0 on success
*/
int wc_AesXtsDecryptConsecutiveSectors(XtsAes* aes, byte* out, const byte* in,
word32 sz, word64 sector, word32 sectorSz)
{
int ret = 0;
word32 iter = 0;
word32 sectorCount;
word32 remainder;
if (aes == NULL || out == NULL || in == NULL || sectorSz == 0) {
return BAD_FUNC_ARG;
}
if (sz < AES_BLOCK_SIZE) {
WOLFSSL_MSG("Cipher text input too small for decryption");
return BAD_FUNC_ARG;
}
sectorCount = sz / sectorSz;
remainder = sz % sectorSz;
while (sectorCount) {
ret = wc_AesXtsDecryptSector(aes, out + (iter * sectorSz),
in + (iter * sectorSz), sectorSz, sector);
if (ret != 0)
break;
sectorCount--;
iter++;
sector++;
}
if (remainder && ret == 0)
ret = wc_AesXtsDecryptSector(aes, out + (iter * sectorSz),
in + (iter * sectorSz), remainder, sector);
return ret;
}
#endif /* WOLFSSL_AES_XTS */
#ifdef WOLFSSL_AES_SIV
/*
* See RFC 5297 Section 2.4.
*/
static WARN_UNUSED_RESULT int S2V(
const byte* key, word32 keySz, const byte* assoc, word32 assocSz,
const byte* nonce, word32 nonceSz, const byte* data,
word32 dataSz, byte* out)
{
#ifdef WOLFSSL_SMALL_STACK
byte* tmp[3] = {NULL, NULL, NULL};
int i;
Cmac* cmac;
#else
byte tmp[3][AES_BLOCK_SIZE];
Cmac cmac[1];
#endif
word32 macSz = AES_BLOCK_SIZE;
int ret = 0;
word32 zeroBytes;
#ifdef WOLFSSL_SMALL_STACK
for (i = 0; i < 3; ++i) {
tmp[i] = (byte*)XMALLOC(AES_BLOCK_SIZE, NULL, DYNAMIC_TYPE_TMP_BUFFER);
if (tmp[i] == NULL) {
ret = MEMORY_E;
break;
}
}
if (ret == 0)
#endif
{
XMEMSET(tmp[1], 0, AES_BLOCK_SIZE);
XMEMSET(tmp[2], 0, AES_BLOCK_SIZE);
ret = wc_AesCmacGenerate(tmp[0], &macSz, tmp[1], AES_BLOCK_SIZE,
key, keySz);
if (ret == 0) {
ShiftAndXorRb(tmp[1], tmp[0]);
ret = wc_AesCmacGenerate(tmp[0], &macSz, assoc, assocSz, key,
keySz);
if (ret == 0) {
xorbuf(tmp[1], tmp[0], AES_BLOCK_SIZE);
}
}
}
if (ret == 0) {
if (nonceSz > 0) {
ShiftAndXorRb(tmp[0], tmp[1]);
ret = wc_AesCmacGenerate(tmp[1], &macSz, nonce, nonceSz, key,
keySz);
if (ret == 0) {
xorbuf(tmp[0], tmp[1], AES_BLOCK_SIZE);
}
}
else {
XMEMCPY(tmp[0], tmp[1], AES_BLOCK_SIZE);
}
}
if (ret == 0) {
if (dataSz >= AES_BLOCK_SIZE) {
#ifdef WOLFSSL_SMALL_STACK
cmac = (Cmac*)XMALLOC(sizeof(Cmac), NULL, DYNAMIC_TYPE_CMAC);
if (cmac == NULL) {
ret = MEMORY_E;
}
if (ret == 0)
#endif
{
#ifdef WOLFSSL_CHECK_MEM_ZERO
/* Aes part is checked by wc_AesFree. */
wc_MemZero_Add("wc_AesCmacGenerate cmac",
((unsigned char *)cmac) + sizeof(Aes),
sizeof(Cmac) - sizeof(Aes));
#endif
xorbuf(tmp[0], data + (dataSz - AES_BLOCK_SIZE),
AES_BLOCK_SIZE);
ret = wc_InitCmac(cmac, key, keySz, WC_CMAC_AES, NULL);
if (ret == 0) {
ret = wc_CmacUpdate(cmac, data, dataSz - AES_BLOCK_SIZE);
}
if (ret == 0) {
ret = wc_CmacUpdate(cmac, tmp[0], AES_BLOCK_SIZE);
}
if (ret == 0) {
ret = wc_CmacFinal(cmac, out, &macSz);
}
}
#ifdef WOLFSSL_SMALL_STACK
if (cmac != NULL) {
XFREE(cmac, NULL, DYNAMIC_TYPE_CMAC);
}
#elif defined(WOLFSSL_CHECK_MEM_ZERO)
wc_MemZero_Check(cmac, sizeof(Cmac));
#endif
}
else {
XMEMCPY(tmp[2], data, dataSz);
tmp[2][dataSz] |= 0x80;
zeroBytes = AES_BLOCK_SIZE - (dataSz + 1);
if (zeroBytes != 0) {
XMEMSET(tmp[2] + dataSz + 1, 0, zeroBytes);
}
ShiftAndXorRb(tmp[1], tmp[0]);
xorbuf(tmp[1], tmp[2], AES_BLOCK_SIZE);
ret = wc_AesCmacGenerate(out, &macSz, tmp[1], AES_BLOCK_SIZE, key,
keySz);
}
}
#ifdef WOLFSSL_SMALL_STACK
for (i = 0; i < 3; ++i) {
if (tmp[i] != NULL) {
XFREE(tmp[i], NULL, DYNAMIC_TYPE_TMP_BUFFER);
}
}
#endif
return ret;
}
static WARN_UNUSED_RESULT int AesSivCipher(
const byte* key, word32 keySz, const byte* assoc,
word32 assocSz, const byte* nonce, word32 nonceSz,
const byte* data, word32 dataSz, byte* siv, byte* out,
int enc)
{
int ret = 0;
#ifdef WOLFSSL_SMALL_STACK
Aes* aes = NULL;
#else
Aes aes[1];
#endif
byte sivTmp[AES_BLOCK_SIZE];
if (key == NULL || siv == NULL || out == NULL) {
WOLFSSL_MSG("Bad parameter");
ret = BAD_FUNC_ARG;
}
if (ret == 0 && keySz != 32 && keySz != 48 && keySz != 64) {
WOLFSSL_MSG("Bad key size. Must be 256, 384, or 512 bits.");
ret = BAD_FUNC_ARG;
}
if (ret == 0) {
if (enc == 1) {
ret = S2V(key, keySz / 2, assoc, assocSz, nonce, nonceSz, data,
dataSz, sivTmp);
if (ret != 0) {
WOLFSSL_MSG("S2V failed.");
}
else {
XMEMCPY(siv, sivTmp, AES_BLOCK_SIZE);
}
}
else {
XMEMCPY(sivTmp, siv, AES_BLOCK_SIZE);
}
}
#ifdef WOLFSSL_SMALL_STACK
if (ret == 0) {
aes = (Aes*)XMALLOC(sizeof(Aes), NULL, DYNAMIC_TYPE_AES);
if (aes == NULL) {
ret = MEMORY_E;
}
}
#endif
if (ret == 0) {
ret = wc_AesInit(aes, NULL, INVALID_DEVID);
if (ret != 0) {
WOLFSSL_MSG("Failed to initialized AES object.");
}
}
if (ret == 0 && dataSz > 0) {
sivTmp[12] &= 0x7f;
sivTmp[8] &= 0x7f;
ret = wc_AesSetKey(aes, key + keySz / 2, keySz / 2, sivTmp,
AES_ENCRYPTION);
if (ret != 0) {
WOLFSSL_MSG("Failed to set key for AES-CTR.");
}
else {
ret = wc_AesCtrEncrypt(aes, out, data, dataSz);
if (ret != 0) {
WOLFSSL_MSG("AES-CTR encryption failed.");
}
}
}
if (ret == 0 && enc == 0) {
ret = S2V(key, keySz / 2, assoc, assocSz, nonce, nonceSz, out, dataSz,
sivTmp);
if (ret != 0) {
WOLFSSL_MSG("S2V failed.");
}
if (XMEMCMP(siv, sivTmp, AES_BLOCK_SIZE) != 0) {
WOLFSSL_MSG("Computed SIV doesn't match received SIV.");
ret = AES_SIV_AUTH_E;
}
}
wc_AesFree(aes);
#ifdef WOLFSSL_SMALL_STACK
XFREE(aes, NULL, DYNAMIC_TYPE_AES);
#endif
return ret;
}
/*
* See RFC 5297 Section 2.6.
*/
int wc_AesSivEncrypt(const byte* key, word32 keySz, const byte* assoc,
word32 assocSz, const byte* nonce, word32 nonceSz,
const byte* in, word32 inSz, byte* siv, byte* out)
{
return AesSivCipher(key, keySz, assoc, assocSz, nonce, nonceSz, in, inSz,
siv, out, 1);
}
/*
* See RFC 5297 Section 2.7.
*/
int wc_AesSivDecrypt(const byte* key, word32 keySz, const byte* assoc,
word32 assocSz, const byte* nonce, word32 nonceSz,
const byte* in, word32 inSz, byte* siv, byte* out)
{
return AesSivCipher(key, keySz, assoc, assocSz, nonce, nonceSz, in, inSz,
siv, out, 0);
}
#endif /* WOLFSSL_AES_SIV */
#if defined(WOLFSSL_AES_EAX)
/*
* AES EAX one-shot API
* Encrypts input data and computes an auth tag over the input
* auth data and ciphertext
*
* Returns 0 on success
* Returns error code on failure
*/
int wc_AesEaxEncryptAuth(const byte* key, word32 keySz, byte* out,
const byte* in, word32 inSz,
const byte* nonce, word32 nonceSz,
/* output computed auth tag */
byte* authTag, word32 authTagSz,
/* input data to authenticate */
const byte* authIn, word32 authInSz)
{
#if defined(WOLFSSL_SMALL_STACK)
AesEax *eax;
#else
AesEax eax_mem;
AesEax *eax = &eax_mem;
#endif
int ret;
int eaxInited = 0;
if (key == NULL || out == NULL || in == NULL || nonce == NULL
|| authTag == NULL || authIn == NULL) {
return BAD_FUNC_ARG;
}
#if defined(WOLFSSL_SMALL_STACK)
if ((eax = (AesEax *)XMALLOC(sizeof(AesEax),
NULL,
DYNAMIC_TYPE_AES_EAX)) == NULL) {
return MEMORY_E;
}
#endif
if ((ret = wc_AesEaxInit(eax,
key, keySz,
nonce, nonceSz,
authIn, authInSz)) != 0) {
goto cleanup;
}
eaxInited = 1;
if ((ret = wc_AesEaxEncryptUpdate(eax, out, in, inSz, NULL, 0)) != 0) {
goto cleanup;
}
if ((ret = wc_AesEaxEncryptFinal(eax, authTag, authTagSz)) != 0) {
goto cleanup;
}
cleanup:
if (eaxInited)
wc_AesEaxFree(eax);
#if defined(WOLFSSL_SMALL_STACK)
XFREE(eax, NULL, DYNAMIC_TYPE_AES_EAX);
#endif
return ret;
}
/*
* AES EAX one-shot API
* Decrypts and authenticates data against a supplied auth tag
*
* Returns 0 on success
* Returns error code on failure
*/
int wc_AesEaxDecryptAuth(const byte* key, word32 keySz, byte* out,
const byte* in, word32 inSz,
const byte* nonce, word32 nonceSz,
/* auth tag to verify against */
const byte* authTag, word32 authTagSz,
/* input data to authenticate */
const byte* authIn, word32 authInSz)
{
#if defined(WOLFSSL_SMALL_STACK)
AesEax *eax;
#else
AesEax eax_mem;
AesEax *eax = &eax_mem;
#endif
int ret;
int eaxInited = 0;
if (key == NULL || out == NULL || in == NULL || nonce == NULL
|| authTag == NULL || authIn == NULL) {
return BAD_FUNC_ARG;
}
#if defined(WOLFSSL_SMALL_STACK)
if ((eax = (AesEax *)XMALLOC(sizeof(AesEax),
NULL,
DYNAMIC_TYPE_AES_EAX)) == NULL) {
return MEMORY_E;
}
#endif
if ((ret = wc_AesEaxInit(eax,
key, keySz,
nonce, nonceSz,
authIn, authInSz)) != 0) {
goto cleanup;
}
eaxInited = 1;
if ((ret = wc_AesEaxDecryptUpdate(eax, out, in, inSz, NULL, 0)) != 0) {
goto cleanup;
}
if ((ret = wc_AesEaxDecryptFinal(eax, authTag, authTagSz)) != 0) {
goto cleanup;
}
cleanup:
if (eaxInited)
wc_AesEaxFree(eax);
#if defined(WOLFSSL_SMALL_STACK)
XFREE(eax, NULL, DYNAMIC_TYPE_AES_EAX);
#endif
return ret;
}
/*
* AES EAX Incremental API:
* Initializes an AES EAX encryption or decryption operation. This must be
* called before any other EAX APIs are used on the AesEax struct
*
* Returns 0 on success
* Returns error code on failure
*/
int wc_AesEaxInit(AesEax* eax,
const byte* key, word32 keySz,
const byte* nonce, word32 nonceSz,
const byte* authIn, word32 authInSz)
{
int ret = 0;
word32 cmacSize;
int aesInited = 0;
int nonceCmacInited = 0;
int aadCmacInited = 0;
if (eax == NULL || key == NULL || nonce == NULL) {
return BAD_FUNC_ARG;
}
XMEMSET(eax->prefixBuf, 0, sizeof(eax->prefixBuf));
if ((ret = wc_AesInit(&eax->aes, NULL, INVALID_DEVID)) != 0) {
goto out;
}
aesInited = 1;
if ((ret = wc_AesSetKey(&eax->aes,
key,
keySz,
NULL,
AES_ENCRYPTION)) != 0) {
goto out;
}
/*
* OMAC the nonce to use as the IV for CTR encryption and auth tag chunk
* N' = OMAC^0_K(N)
*/
if ((ret = wc_InitCmac(&eax->nonceCmac,
key,
keySz,
WC_CMAC_AES,
NULL)) != 0) {
return ret;
}
nonceCmacInited = 1;
if ((ret = wc_CmacUpdate(&eax->nonceCmac,
eax->prefixBuf,
sizeof(eax->prefixBuf))) != 0) {
goto out;
}
if ((ret = wc_CmacUpdate(&eax->nonceCmac, nonce, nonceSz)) != 0) {
goto out;
}
cmacSize = AES_BLOCK_SIZE;
if ((ret = wc_CmacFinal(&eax->nonceCmac,
eax->nonceCmacFinal,
&cmacSize)) != 0) {
goto out;
}
if ((ret = wc_AesSetIV(&eax->aes, eax->nonceCmacFinal)) != 0) {
goto out;
}
/*
* start the OMAC used to build the auth tag chunk for the AD .
* This CMAC is continued in subsequent update calls when more auth data is
* provided
* H' = OMAC^1_K(H)
*/
eax->prefixBuf[AES_BLOCK_SIZE-1] = 1;
if ((ret = wc_InitCmac(&eax->aadCmac,
key,
keySz,
WC_CMAC_AES,
NULL)) != 0) {
goto out;
}
aadCmacInited = 1;
if ((ret = wc_CmacUpdate(&eax->aadCmac,
eax->prefixBuf,
sizeof(eax->prefixBuf))) != 0) {
goto out;
}
if (authIn != NULL) {
if ((ret = wc_CmacUpdate(&eax->aadCmac, authIn, authInSz)) != 0) {
goto out;
}
}
/*
* start the OMAC to create auth tag chunk for ciphertext. This MAC will be
* updated in subsequent calls to encrypt/decrypt
* C' = OMAC^2_K(C)
*/
eax->prefixBuf[AES_BLOCK_SIZE-1] = 2;
if ((ret = wc_InitCmac(&eax->ciphertextCmac,
key,
keySz,
WC_CMAC_AES,
NULL)) != 0) {
goto out;
}
if ((ret = wc_CmacUpdate(&eax->ciphertextCmac,
eax->prefixBuf,
sizeof(eax->prefixBuf))) != 0) {
goto out;
}
out:
if (ret != 0) {
if (aesInited)
wc_AesFree(&eax->aes);
if (nonceCmacInited)
wc_CmacFree(&eax->nonceCmac);
if (aadCmacInited)
wc_CmacFree(&eax->aadCmac);
}
return ret;
}
/*
* AES EAX Incremental API:
* Encrypts input plaintext using AES EAX mode, adding optional auth data to
* the authentication stream
*
* Returns 0 on success
* Returns error code on failure
*/
int wc_AesEaxEncryptUpdate(AesEax* eax, byte* out,
const byte* in, word32 inSz,
const byte* authIn, word32 authInSz)
{
int ret;
if (eax == NULL || out == NULL || in == NULL) {
return BAD_FUNC_ARG;
}
/*
* Encrypt the plaintext using AES CTR
* C = CTR(M)
*/
if ((ret = wc_AesCtrEncrypt(&eax->aes, out, in, inSz)) != 0) {
return ret;
}
/*
* update OMAC with new ciphertext
* C' = OMAC^2_K(C)
*/
if ((ret = wc_CmacUpdate(&eax->ciphertextCmac, out, inSz)) != 0) {
return ret;
}
/* If there exists new auth data, update the OMAC for that as well */
if (authIn != NULL) {
if ((ret = wc_CmacUpdate(&eax->aadCmac, authIn, authInSz)) != 0) {
return ret;
}
}
return 0;
}
/*
* AES EAX Incremental API:
* Decrypts input ciphertext using AES EAX mode, adding optional auth data to
* the authentication stream
*
* Returns 0 on success
* Returns error code on failure
*/
int wc_AesEaxDecryptUpdate(AesEax* eax, byte* out,
const byte* in, word32 inSz,
const byte* authIn, word32 authInSz)
{
int ret;
if (eax == NULL || out == NULL || in == NULL) {
return BAD_FUNC_ARG;
}
/*
* Decrypt the plaintext using AES CTR
* C = CTR(M)
*/
if ((ret = wc_AesCtrEncrypt(&eax->aes, out, in, inSz)) != 0) {
return ret;
}
/*
* update OMAC with new ciphertext
* C' = OMAC^2_K(C)
*/
if ((ret = wc_CmacUpdate(&eax->ciphertextCmac, in, inSz)) != 0) {
return ret;
}
/* If there exists new auth data, update the OMAC for that as well */
if (authIn != NULL) {
if ((ret = wc_CmacUpdate(&eax->aadCmac, authIn, authInSz)) != 0) {
return ret;
}
}
return 0;
}
/*
* AES EAX Incremental API:
* Provides additional auth data information to the authentication
* stream for an authenticated encryption or decryption operation
*
* Returns 0 on success
* Returns error code on failure
*/
int wc_AesEaxAuthDataUpdate(AesEax* eax, const byte* authIn, word32 authInSz)
{
return wc_CmacUpdate(&eax->aadCmac, authIn, authInSz);
}
/*
* AES EAX Incremental API:
* Finalizes the authenticated encryption operation, computing the auth tag
* over previously supplied auth data and computed ciphertext
*
* Returns 0 on success
* Returns error code on failure
*/
int wc_AesEaxEncryptFinal(AesEax* eax, byte* authTag, word32 authTagSz)
{
word32 cmacSize;
int ret;
word32 i;
if (eax == NULL || authTag == NULL || authTagSz > AES_BLOCK_SIZE) {
return BAD_FUNC_ARG;
}
/* Complete the OMAC for the ciphertext */
cmacSize = AES_BLOCK_SIZE;
if ((ret = wc_CmacFinalNoFree(&eax->ciphertextCmac,
eax->ciphertextCmacFinal,
&cmacSize)) != 0) {
return ret;
}
/* Complete the OMAC for auth data */
cmacSize = AES_BLOCK_SIZE;
if ((ret = wc_CmacFinalNoFree(&eax->aadCmac,
eax->aadCmacFinal,
&cmacSize)) != 0) {
return ret;
}
/*
* Concatenate all three auth tag chunks into the final tag, truncating
* at the specified tag length
* T = Tag [first authTagSz bytes]
*/
for (i = 0; i < authTagSz; i++) {
authTag[i] = eax->nonceCmacFinal[i]
^ eax->aadCmacFinal[i]
^ eax->ciphertextCmacFinal[i];
}
return 0;
}
/*
* AES EAX Incremental API:
* Finalizes the authenticated decryption operation, computing the auth tag
* for the previously supplied auth data and cipher text and validating it
* against a provided auth tag
*
* Returns 0 on success
* Return error code for failure
*/
int wc_AesEaxDecryptFinal(AesEax* eax,
const byte* authIn, word32 authInSz)
{
int ret;
word32 i;
word32 cmacSize;
#if defined(WOLFSSL_SMALL_STACK)
byte *authTag;
#else
byte authTag[AES_BLOCK_SIZE];
#endif
if (eax == NULL || authIn == NULL || authInSz > AES_BLOCK_SIZE) {
return BAD_FUNC_ARG;
}
/* Complete the OMAC for the ciphertext */
cmacSize = AES_BLOCK_SIZE;
if ((ret = wc_CmacFinalNoFree(&eax->ciphertextCmac,
eax->ciphertextCmacFinal,
&cmacSize)) != 0) {
return ret;
}
/* Complete the OMAC for auth data */
cmacSize = AES_BLOCK_SIZE;
if ((ret = wc_CmacFinalNoFree(&eax->aadCmac,
eax->aadCmacFinal,
&cmacSize)) != 0) {
return ret;
}
#if defined(WOLFSSL_SMALL_STACK)
authTag = (byte*)XMALLOC(AES_BLOCK_SIZE, NULL, DYNAMIC_TYPE_TMP_BUFFER);
if (authTag == NULL) {
return MEMORY_E;
}
#endif
/*
* Concatenate all three auth tag chunks into the final tag, truncating
* at the specified tag length
* T = Tag [first authInSz bytes]
*/
for (i = 0; i < authInSz; i++) {
authTag[i] = eax->nonceCmacFinal[i]
^ eax->aadCmacFinal[i]
^ eax->ciphertextCmacFinal[i];
}
if (ConstantCompare((const byte*)authTag, authIn, (int)authInSz) != 0) {
ret = AES_EAX_AUTH_E;
}
else {
ret = 0;
}
#if defined(WOLFSSL_SMALL_STACK)
XFREE(authTag, NULL, DYNAMIC_TYPE_TMP_BUFFER);
#endif
return ret;
}
/*
* Frees the underlying CMAC and AES contexts. Must be called when done using
* the AES EAX context structure.
*
* Returns 0 on success
* Returns error code on failure
*/
int wc_AesEaxFree(AesEax* eax)
{
if (eax == NULL) {
return BAD_FUNC_ARG;
}
(void)wc_CmacFree(&eax->ciphertextCmac);
(void)wc_CmacFree(&eax->aadCmac);
wc_AesFree(&eax->aes);
return 0;
}
#endif /* WOLFSSL_AES_EAX */
#endif /* !NO_AES */