Files
MAX_CARLINK_A270S/MXC_A27-PCB4.5-270T/lib/wolfssl/src/ssl.c
2025-01-21 16:49:37 +08:00

24820 lines
701 KiB
C

/* ssl.c
*
* Copyright (C) 2006-2023 wolfSSL Inc.
*
* This file is part of wolfSSL.
*
* wolfSSL is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* wolfSSL is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <wolfssl/wolfcrypt/settings.h>
#if defined(OPENSSL_EXTRA) && !defined(_WIN32)
/* turn on GNU extensions for XISASCII */
#undef _GNU_SOURCE
#define _GNU_SOURCE
#endif
#if !defined(WOLFCRYPT_ONLY) || defined(OPENSSL_EXTRA) || \
defined(OPENSSL_EXTRA_X509_SMALL)
#include <wolfssl/internal.h>
#include <wolfssl/error-ssl.h>
#include <wolfssl/wolfcrypt/coding.h>
#include <wolfssl/wolfcrypt/kdf.h>
#ifdef NO_INLINE
#include <wolfssl/wolfcrypt/misc.h>
#else
#define WOLFSSL_MISC_INCLUDED
#include <wolfcrypt/src/misc.c>
#endif
#ifdef HAVE_ERRNO_H
#include <errno.h>
#endif
#if !defined(WOLFSSL_ALLOW_NO_SUITES) && !defined(WOLFCRYPT_ONLY)
#if defined(NO_DH) && !defined(HAVE_ECC) && !defined(WOLFSSL_STATIC_RSA) \
&& !defined(WOLFSSL_STATIC_DH) && !defined(WOLFSSL_STATIC_PSK) \
&& !defined(HAVE_CURVE25519) && !defined(HAVE_CURVE448)
#error "No cipher suites defined because DH disabled, ECC disabled, "
"and no static suites defined. Please see top of README"
#endif
#ifdef WOLFSSL_CERT_GEN
/* need access to Cert struct for creating certificate */
#include <wolfssl/wolfcrypt/asn_public.h>
#endif
#endif
#if !defined(WOLFCRYPT_ONLY) && (defined(OPENSSL_EXTRA) \
|| defined(OPENSSL_EXTRA_X509_SMALL) \
|| defined(HAVE_WEBSERVER) || defined(WOLFSSL_KEY_GEN))
#include <wolfssl/openssl/evp.h>
/* openssl headers end, wolfssl internal headers next */
#endif
#include <wolfssl/wolfcrypt/wc_encrypt.h>
#ifndef NO_RSA
#include <wolfssl/wolfcrypt/rsa.h>
#endif
#ifdef OPENSSL_EXTRA
/* openssl headers begin */
#include <wolfssl/openssl/ssl.h>
#include <wolfssl/openssl/aes.h>
#ifndef WOLFCRYPT_ONLY
#include <wolfssl/openssl/hmac.h>
#include <wolfssl/openssl/cmac.h>
#endif
#include <wolfssl/openssl/crypto.h>
#include <wolfssl/openssl/des.h>
#include <wolfssl/openssl/bn.h>
#include <wolfssl/openssl/buffer.h>
#include <wolfssl/openssl/dh.h>
#include <wolfssl/openssl/rsa.h>
#include <wolfssl/openssl/fips_rand.h>
#include <wolfssl/openssl/pem.h>
#include <wolfssl/openssl/ec.h>
#include <wolfssl/openssl/ec25519.h>
#include <wolfssl/openssl/ed25519.h>
#include <wolfssl/openssl/ec448.h>
#include <wolfssl/openssl/ed448.h>
#include <wolfssl/openssl/ecdsa.h>
#include <wolfssl/openssl/ecdh.h>
#include <wolfssl/openssl/err.h>
#include <wolfssl/openssl/modes.h>
#include <wolfssl/openssl/opensslv.h>
#include <wolfssl/openssl/rc4.h>
#include <wolfssl/openssl/stack.h>
#include <wolfssl/openssl/x509_vfy.h>
/* openssl headers end, wolfssl internal headers next */
#include <wolfssl/wolfcrypt/hmac.h>
#include <wolfssl/wolfcrypt/random.h>
#include <wolfssl/wolfcrypt/des3.h>
#include <wolfssl/wolfcrypt/ecc.h>
#include <wolfssl/wolfcrypt/md4.h>
#include <wolfssl/wolfcrypt/md5.h>
#include <wolfssl/wolfcrypt/arc4.h>
#include <wolfssl/wolfcrypt/curve25519.h>
#include <wolfssl/wolfcrypt/ed25519.h>
#include <wolfssl/wolfcrypt/curve448.h>
#if defined(HAVE_PQC)
#if defined(HAVE_FALCON)
#include <wolfssl/wolfcrypt/falcon.h>
#endif /* HAVE_FALCON */
#if defined(HAVE_DILITHIUM)
#include <wolfssl/wolfcrypt/dilithium.h>
#endif /* HAVE_DILITHIUM */
#if defined(HAVE_SPHINCS)
#include <wolfssl/wolfcrypt/sphincs.h>
#endif /* HAVE_SPHINCS */
#endif /* HAVE_PQC */
#if defined(OPENSSL_ALL) || defined(HAVE_STUNNEL)
#ifdef HAVE_OCSP
#include <wolfssl/openssl/ocsp.h>
#endif
#include <wolfssl/openssl/lhash.h>
#include <wolfssl/openssl/txt_db.h>
#endif /* WITH_STUNNEL */
#if defined(WOLFSSL_SHA512) || defined(WOLFSSL_SHA384)
#include <wolfssl/wolfcrypt/sha512.h>
#endif
#if defined(WOLFCRYPT_HAVE_SRP) && !defined(NO_SHA256) \
&& !defined(WC_NO_RNG)
#include <wolfssl/wolfcrypt/srp.h>
#endif
#endif
#if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)
#include <wolfssl/openssl/x509v3.h>
int wolfssl_bn_get_value(WOLFSSL_BIGNUM* bn, mp_int* mpi);
int wolfssl_bn_set_value(WOLFSSL_BIGNUM** bn, mp_int* mpi);
#endif
#if defined(WOLFSSL_QT)
#include <wolfssl/wolfcrypt/sha.h>
#endif
#ifdef NO_ASN
#include <wolfssl/wolfcrypt/dh.h>
#endif
#endif /* !WOLFCRYPT_ONLY || OPENSSL_EXTRA */
/*
* OPENSSL_COMPATIBLE_DEFAULTS:
* Enable default behaviour that is compatible with OpenSSL. For example
* SSL_CTX by default doesn't verify the loaded certs. Enabling this
* should make porting to new projects easier.
* WOLFSSL_CHECK_ALERT_ON_ERR:
* Check for alerts during the handshake in the event of an error.
* NO_SESSION_CACHE_REF:
* wolfSSL_get_session on a client will return a reference to the internal
* ClientCache by default for backwards compatibility. This define will
* make wolfSSL_get_session return a reference to ssl->session. The returned
* pointer will be freed with the related WOLFSSL object.
* SESSION_CACHE_DYNAMIC_MEM:
* Dynamically allocate sessions for the session cache from the heap, as
* opposed to the default which allocates from the stack. Allocates
* memory only when a session is added to the cache, frees memory after the
* session is no longer being used. Recommended for memory-constrained
* systems.
* WOLFSSL_SYS_CA_CERTS
* Enables ability to load system CA certs from the OS via
* wolfSSL_CTX_load_system_CA_certs.
*/
#define WOLFSSL_SSL_MISC_INCLUDED
#include "src/ssl_misc.c"
#define WOLFSSL_EVP_INCLUDED
#include "wolfcrypt/src/evp.c"
/* Crypto code uses EVP APIs. */
#define WOLFSSL_SSL_CRYPTO_INCLUDED
#include "src/ssl_crypto.c"
#ifndef WOLFCRYPT_ONLY
#define WOLFSSL_SSL_CERTMAN_INCLUDED
#include "src/ssl_certman.c"
#define WOLFSSL_SSL_SESS_INCLUDED
#include "src/ssl_sess.c"
#endif
#if (defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)) && \
!defined(WOLFCRYPT_ONLY)
/* Convert shortname to NID.
*
* For OpenSSL compatibility.
*
* This function shouldn't exist!
* Uses defines in wolfssl/openssl/evp.h.
* Uses EccEnumToNID which uses defines in wolfssl/openssl/ec.h.
*
* @param [in] sn Short name of OID.
* @return NID corresponding to shortname on success.
* @return NID_undef when not recognized.
*/
int wc_OBJ_sn2nid(const char *sn)
{
const struct {
const char *sn;
int nid;
} sn2nid[] = {
#ifndef NO_CERTS
{WOLFSSL_COMMON_NAME, NID_commonName},
{WOLFSSL_COUNTRY_NAME, NID_countryName},
{WOLFSSL_LOCALITY_NAME, NID_localityName},
{WOLFSSL_STATE_NAME, NID_stateOrProvinceName},
{WOLFSSL_ORG_NAME, NID_organizationName},
{WOLFSSL_ORGUNIT_NAME, NID_organizationalUnitName},
#ifdef WOLFSSL_CERT_NAME_ALL
{WOLFSSL_NAME, NID_name},
{WOLFSSL_INITIALS, NID_initials},
{WOLFSSL_GIVEN_NAME, NID_givenName},
{WOLFSSL_DNQUALIFIER, NID_dnQualifier},
#endif
{WOLFSSL_EMAIL_ADDR, NID_emailAddress},
#endif
{"SHA1", NID_sha1},
{NULL, -1}};
int i;
#ifdef HAVE_ECC
char curveName[ECC_MAXNAME + 1];
int eccEnum;
#endif
WOLFSSL_ENTER("wc_OBJ_sn2nid");
for(i=0; sn2nid[i].sn != NULL; i++) {
if (XSTRCMP(sn, sn2nid[i].sn) == 0) {
return sn2nid[i].nid;
}
}
#ifdef HAVE_ECC
if (XSTRLEN(sn) > ECC_MAXNAME)
return NID_undef;
/* Nginx uses this OpenSSL string. */
if (XSTRCMP(sn, "prime256v1") == 0)
sn = "SECP256R1";
/* OpenSSL allows lowercase curve names */
for (i = 0; i < (int)(sizeof(curveName) - 1) && *sn; i++) {
curveName[i] = (char)XTOUPPER((unsigned char) *sn++);
}
curveName[i] = '\0';
/* find based on name and return NID */
for (i = 0;
#ifndef WOLFSSL_ECC_CURVE_STATIC
ecc_sets[i].size != 0 && ecc_sets[i].name != NULL;
#else
ecc_sets[i].size != 0;
#endif
i++) {
if (XSTRCMP(curveName, ecc_sets[i].name) == 0) {
eccEnum = ecc_sets[i].id;
/* Convert enum value in ecc_curve_id to OpenSSL NID */
return EccEnumToNID(eccEnum);
}
}
#endif /* HAVE_ECC */
return NID_undef;
}
#endif /* OPENSSL_EXTRA || OPENSSL_EXTRA_X509_SMALL */
#ifndef WOLFCRYPT_ONLY
#if !defined(NO_RSA) || !defined(NO_DH) || defined(HAVE_ECC) || \
(defined(OPENSSL_EXTRA) && defined(WOLFSSL_KEY_GEN) && !defined(NO_DSA))
#define HAVE_GLOBAL_RNG /* consolidate flags for using globalRNG */
static WC_RNG globalRNG;
static volatile int initGlobalRNG = 0;
static WC_MAYBE_UNUSED wolfSSL_Mutex globalRNGMutex
WOLFSSL_MUTEX_INITIALIZER_CLAUSE(globalRNGMutex);
#ifndef WOLFSSL_MUTEX_INITIALIZER
static int globalRNGMutex_valid = 0;
#endif
#if defined(OPENSSL_EXTRA) && defined(HAVE_HASHDRBG)
static WOLFSSL_DRBG_CTX* gDrbgDefCtx = NULL;
#endif
WC_RNG* wolfssl_get_global_rng(void)
{
WC_RNG* ret = NULL;
if (initGlobalRNG == 0)
WOLFSSL_MSG("Global RNG no Init");
else
ret = &globalRNG;
return ret;
}
/* Make a global RNG and return.
*
* @return Global RNG on success.
* @return NULL on error.
*/
WC_RNG* wolfssl_make_global_rng(void)
{
WC_RNG* ret;
#ifdef HAVE_GLOBAL_RNG
/* Get the global random number generator instead. */
ret = wolfssl_get_global_rng();
#ifdef OPENSSL_EXTRA
if (ret == NULL) {
/* Create a global random if possible. */
(void)wolfSSL_RAND_Init();
ret = wolfssl_get_global_rng();
}
#endif
#else
WOLFSSL_ERROR_MSG("Bad RNG Init");
ret = NULL;
#endif
return ret;
}
/* Too many defines to check explicitly - prototype it and always include
* for RSA, DH, ECC and DSA for BN. */
WC_RNG* wolfssl_make_rng(WC_RNG* rng, int* local);
/* Make a random number generator or get global if possible.
*
* Global may not be available and NULL will be returned.
*
* @param [in, out] rng Local random number generator.
* @param [out] local Local random number generator returned.
* @return NULL on failure.
* @return A random number generator object.
*/
WC_RNG* wolfssl_make_rng(WC_RNG* rng, int* local)
{
WC_RNG* ret = NULL;
/* Assume not local until one created. */
*local = 0;
#ifdef WOLFSSL_SMALL_STACK
/* Allocate RNG object . */
rng = (WC_RNG*)XMALLOC(sizeof(WC_RNG), NULL, DYNAMIC_TYPE_RNG);
#endif
/* Check we have a local RNG object and initialize. */
if ((rng != NULL) && (wc_InitRng(rng) == 0)) {
ret = rng;
*local = 1;
}
if (ret == NULL) {
#ifdef HAVE_GLOBAL_RNG
WOLFSSL_MSG("Bad RNG Init, trying global");
#endif
ret = wolfssl_make_global_rng();
}
if (ret != rng) {
#ifdef WOLFSSL_SMALL_STACK
XFREE(rng, NULL, DYNAMIC_TYPE_RNG);
#endif
}
return ret;
}
#endif
#ifdef OPENSSL_EXTRA
/* WOLFSSL_NO_OPENSSL_RAND_CB: Allows way to reduce code size for
* OPENSSL_EXTRA where RAND callbacks are not used */
#ifndef WOLFSSL_NO_OPENSSL_RAND_CB
static const WOLFSSL_RAND_METHOD* gRandMethods = NULL;
static wolfSSL_Mutex gRandMethodMutex
WOLFSSL_MUTEX_INITIALIZER_CLAUSE(gRandMethodMutex);
#ifndef WOLFSSL_MUTEX_INITIALIZER
static int gRandMethodsInit = 0;
#endif
#endif /* !WOLFSSL_NO_OPENSSL_RAND_CB */
#endif /* OPENSSL_EXTRA */
#define WOLFSSL_SSL_BN_INCLUDED
#include "src/ssl_bn.c"
#ifndef OPENSSL_EXTRA_NO_ASN1
#define WOLFSSL_SSL_ASN1_INCLUDED
#include "src/ssl_asn1.c"
#endif /* OPENSSL_EXTRA_NO_ASN1 */
#define WOLFSSL_PK_INCLUDED
#include "src/pk.c"
#include <wolfssl/wolfcrypt/hpke.h>
#if defined(WOLFSSL_TLS13) && defined(HAVE_ECH)
/* create the hpke key and ech config to send to clients */
int wolfSSL_CTX_GenerateEchConfig(WOLFSSL_CTX* ctx, const char* publicName,
word16 kemId, word16 kdfId, word16 aeadId)
{
int ret = 0;
word16 encLen = DHKEM_X25519_ENC_LEN;
#ifdef WOLFSSL_SMALL_STACK
Hpke* hpke = NULL;
WC_RNG* rng;
#else
Hpke hpke[1];
WC_RNG rng[1];
#endif
if (ctx == NULL || publicName == NULL)
return BAD_FUNC_ARG;
#ifdef WOLFSSL_SMALL_STACK
rng = (WC_RNG*)XMALLOC(sizeof(WC_RNG), ctx->heap, DYNAMIC_TYPE_RNG);
if (rng == NULL)
return MEMORY_E;
#endif
ret = wc_InitRng(rng);
if (ret != 0) {
#ifdef WOLFSSL_SMALL_STACK
XFREE(rng, ctx->heap, DYNAMIC_TYPE_RNG);
#endif
return ret;
}
ctx->echConfigs = (WOLFSSL_EchConfig*)XMALLOC(sizeof(WOLFSSL_EchConfig),
ctx->heap, DYNAMIC_TYPE_TMP_BUFFER);
if (ctx->echConfigs == NULL)
ret = MEMORY_E;
else
XMEMSET(ctx->echConfigs, 0, sizeof(WOLFSSL_EchConfig));
/* set random config id */
if (ret == 0)
ret = wc_RNG_GenerateByte(rng, &ctx->echConfigs->configId);
/* if 0 is selected for algorithms use default, may change with draft */
if (kemId == 0)
kemId = DHKEM_X25519_HKDF_SHA256;
if (kdfId == 0)
kdfId = HKDF_SHA256;
if (aeadId == 0)
aeadId = HPKE_AES_128_GCM;
if (ret == 0) {
/* set the kem id */
ctx->echConfigs->kemId = kemId;
/* set the cipher suite, only 1 for now */
ctx->echConfigs->numCipherSuites = 1;
ctx->echConfigs->cipherSuites = (EchCipherSuite*)XMALLOC(
sizeof(EchCipherSuite), ctx->heap, DYNAMIC_TYPE_TMP_BUFFER);
if (ctx->echConfigs->cipherSuites == NULL) {
ret = MEMORY_E;
}
else {
ctx->echConfigs->cipherSuites[0].kdfId = kdfId;
ctx->echConfigs->cipherSuites[0].aeadId = aeadId;
}
}
#ifdef WOLFSSL_SMALL_STACK
if (ret == 0) {
hpke = (Hpke*)XMALLOC(sizeof(Hpke), ctx->heap, DYNAMIC_TYPE_TMP_BUFFER);
if (hpke == NULL)
ret = MEMORY_E;
}
#endif
if (ret == 0)
ret = wc_HpkeInit(hpke, kemId, kdfId, aeadId, ctx->heap);
/* generate the receiver private key */
if (ret == 0)
ret = wc_HpkeGenerateKeyPair(hpke, &ctx->echConfigs->receiverPrivkey,
rng);
/* done with RNG */
wc_FreeRng(rng);
/* serialize the receiver key */
if (ret == 0)
ret = wc_HpkeSerializePublicKey(hpke, ctx->echConfigs->receiverPrivkey,
ctx->echConfigs->receiverPubkey, &encLen);
if (ret == 0) {
ctx->echConfigs->publicName = (char*)XMALLOC(XSTRLEN(publicName) + 1,
ctx->heap, DYNAMIC_TYPE_TMP_BUFFER);
if (ctx->echConfigs->publicName == NULL) {
ret = MEMORY_E;
}
else {
XMEMCPY(ctx->echConfigs->publicName, publicName,
XSTRLEN(publicName) + 1);
}
}
if (ret != 0) {
if (ctx->echConfigs) {
XFREE(ctx->echConfigs->cipherSuites, ctx->heap,
DYNAMIC_TYPE_TMP_BUFFER);
XFREE(ctx->echConfigs->publicName, ctx->heap,
DYNAMIC_TYPE_TMP_BUFFER);
XFREE(ctx->echConfigs, ctx->heap, DYNAMIC_TYPE_TMP_BUFFER);
/* set to null to avoid double free in cleanup */
ctx->echConfigs = NULL;
}
}
if (ret == 0)
ret = WOLFSSL_SUCCESS;
#ifdef WOLFSSL_SMALL_STACK
XFREE(hpke, ctx->heap, DYNAMIC_TYPE_TMP_BUFFER);
XFREE(rng, ctx->heap, DYNAMIC_TYPE_RNG);
#endif
return ret;
}
/* get the ech configs that the server context is using */
int wolfSSL_CTX_GetEchConfigs(WOLFSSL_CTX* ctx, byte* output,
word32* outputLen) {
if (ctx == NULL || outputLen == NULL)
return BAD_FUNC_ARG;
/* if we don't have ech configs */
if (ctx->echConfigs == NULL) {
return WOLFSSL_FATAL_ERROR;
}
return GetEchConfigsEx(ctx->echConfigs, output, outputLen);
}
/* set the ech config from base64 for our client ssl object, base64 is the
* format ech configs are sent using dns records */
int wolfSSL_SetEchConfigsBase64(WOLFSSL* ssl, char* echConfigs64,
word32 echConfigs64Len)
{
int ret = 0;
word32 decodedLen = echConfigs64Len * 3 / 4 + 1;
byte* decodedConfigs;
if (ssl == NULL || echConfigs64 == NULL || echConfigs64Len == 0)
return BAD_FUNC_ARG;
/* already have ech configs */
if (ssl->options.useEch == 1) {
return WOLFSSL_FATAL_ERROR;
}
decodedConfigs = (byte*)XMALLOC(decodedLen, ssl->heap,
DYNAMIC_TYPE_TMP_BUFFER);
if (decodedConfigs == NULL)
return MEMORY_E;
decodedConfigs[decodedLen - 1] = 0;
/* decode the echConfigs */
ret = Base64_Decode((byte*)echConfigs64, echConfigs64Len,
decodedConfigs, &decodedLen);
if (ret != 0) {
XFREE(decodedConfigs, ssl->heap, DYNAMIC_TYPE_TMP_BUFFER);
return ret;
}
ret = wolfSSL_SetEchConfigs(ssl, decodedConfigs, decodedLen);
XFREE(decodedConfigs, ssl->heap, DYNAMIC_TYPE_TMP_BUFFER);
return ret;
}
/* set the ech config from a raw buffer, this is the format ech configs are
* sent using retry_configs from the ech server */
int wolfSSL_SetEchConfigs(WOLFSSL* ssl, const byte* echConfigs,
word32 echConfigsLen)
{
int ret = 0;
int i;
int j;
word16 totalLength;
word16 version;
word16 length;
word16 hpkePubkeyLen;
word16 cipherSuitesLen;
word16 publicNameLen;
WOLFSSL_EchConfig* configList = NULL;
WOLFSSL_EchConfig* workingConfig = NULL;
WOLFSSL_EchConfig* lastConfig = NULL;
byte* echConfig = NULL;
if (ssl == NULL || echConfigs == NULL || echConfigsLen == 0)
return BAD_FUNC_ARG;
/* already have ech configs */
if (ssl->options.useEch == 1) {
return WOLFSSL_FATAL_ERROR;
}
/* check that the total length is well formed */
ato16(echConfigs, &totalLength);
if (totalLength != echConfigsLen - 2) {
return WOLFSSL_FATAL_ERROR;
}
/* skip the total length uint16_t */
i = 2;
do {
echConfig = (byte*)echConfigs + i;
ato16(echConfig, &version);
ato16(echConfig + 2, &length);
/* if the version does not match */
if (version != TLSX_ECH) {
/* we hit the end of the configs */
if ( (word32)i + 2 >= echConfigsLen ) {
break;
}
/* skip this config, +4 for version and length */
i += length + 4;
continue;
}
/* check if the length will overrun the buffer */
if ((word32)i + length + 4 > echConfigsLen) {
break;
}
if (workingConfig == NULL) {
workingConfig =
(WOLFSSL_EchConfig*)XMALLOC(sizeof(WOLFSSL_EchConfig),
ssl->heap, DYNAMIC_TYPE_TMP_BUFFER);
configList = workingConfig;
if (workingConfig != NULL) {
workingConfig->next = NULL;
}
}
else {
lastConfig = workingConfig;
workingConfig->next =
(WOLFSSL_EchConfig*)XMALLOC(sizeof(WOLFSSL_EchConfig),
ssl->heap, DYNAMIC_TYPE_TMP_BUFFER);
workingConfig = workingConfig->next;
}
if (workingConfig == NULL) {
ret = MEMORY_E;
break;
}
XMEMSET(workingConfig, 0, sizeof(WOLFSSL_EchConfig));
/* rawLen */
workingConfig->rawLen = length + 4;
/* raw body */
workingConfig->raw = (byte*)XMALLOC(workingConfig->rawLen,
ssl->heap, DYNAMIC_TYPE_TMP_BUFFER);
if (workingConfig->raw == NULL) {
ret = MEMORY_E;
break;
}
XMEMCPY(workingConfig->raw, echConfig, workingConfig->rawLen);
/* skip over version and length */
echConfig += 4;
/* configId, 1 byte */
workingConfig->configId = *(echConfig);
echConfig++;
/* kemId, 2 bytes */
ato16(echConfig, &workingConfig->kemId);
echConfig += 2;
/* hpke public_key length, 2 bytes */
ato16(echConfig, &hpkePubkeyLen);
echConfig += 2;
/* hpke public_key */
XMEMCPY(workingConfig->receiverPubkey, echConfig, hpkePubkeyLen);
echConfig += hpkePubkeyLen;
/* cipherSuitesLen */
ato16(echConfig, &cipherSuitesLen);
workingConfig->cipherSuites = (EchCipherSuite*)XMALLOC(cipherSuitesLen,
ssl->heap, DYNAMIC_TYPE_TMP_BUFFER);
if (workingConfig->cipherSuites == NULL) {
ret = MEMORY_E;
break;
}
echConfig += 2;
workingConfig->numCipherSuites = cipherSuitesLen / 4;
/* cipherSuites */
for (j = 0; j < workingConfig->numCipherSuites; j++) {
ato16(echConfig + j * 4, &workingConfig->cipherSuites[j].kdfId);
ato16(echConfig + j * 4 + 2,
&workingConfig->cipherSuites[j].aeadId);
}
echConfig += cipherSuitesLen;
/* publicNameLen */
ato16(echConfig, &publicNameLen);
workingConfig->publicName = (char*)XMALLOC(publicNameLen + 1,
ssl->heap, DYNAMIC_TYPE_TMP_BUFFER);
if (workingConfig->publicName == NULL) {
ret = MEMORY_E;
break;
}
echConfig += 2;
/* publicName */
XMEMCPY(workingConfig->publicName, echConfig, publicNameLen);
/* null terminated */
workingConfig->publicName[publicNameLen] = 0;
/* add length to go to next config, +4 for version and length */
i += length + 4;
/* check that we support this config */
for (j = 0; j < HPKE_SUPPORTED_KEM_LEN; j++) {
if (hpkeSupportedKem[j] == workingConfig->kemId)
break;
}
/* if we don't support the kem or at least one cipher suite */
if (j >= HPKE_SUPPORTED_KEM_LEN ||
EchConfigGetSupportedCipherSuite(workingConfig) < 0)
{
XFREE(workingConfig->cipherSuites, ssl->heap,
DYNAMIC_TYPE_TMP_BUFFER);
XFREE(workingConfig->publicName, ssl->heap,
DYNAMIC_TYPE_TMP_BUFFER);
XFREE(workingConfig->raw, ssl->heap, DYNAMIC_TYPE_TMP_BUFFER);
workingConfig = lastConfig;
}
} while ((word32)i < echConfigsLen);
/* if we found valid configs */
if (ret == 0 && configList != NULL) {
ssl->options.useEch = 1;
ssl->echConfigs = configList;
return WOLFSSL_SUCCESS;
}
workingConfig = configList;
while (workingConfig != NULL) {
lastConfig = workingConfig;
workingConfig = workingConfig->next;
XFREE(lastConfig->cipherSuites, ssl->heap, DYNAMIC_TYPE_TMP_BUFFER);
XFREE(lastConfig->publicName, ssl->heap, DYNAMIC_TYPE_TMP_BUFFER);
XFREE(lastConfig->raw, ssl->heap, DYNAMIC_TYPE_TMP_BUFFER);
XFREE(lastConfig, ssl->heap, DYNAMIC_TYPE_TMP_BUFFER);
}
if (ret == 0)
return WOLFSSL_FATAL_ERROR;
return ret;
}
/* get the raw ech config from our struct */
int GetEchConfig(WOLFSSL_EchConfig* config, byte* output, word32* outputLen)
{
int i;
word16 totalLen = 0;
if (config == NULL || (output == NULL && outputLen == NULL))
return BAD_FUNC_ARG;
/* 2 for version */
totalLen += 2;
/* 2 for length */
totalLen += 2;
/* 1 for configId */
totalLen += 1;
/* 2 for kemId */
totalLen += 2;
/* 2 for hpke_len */
totalLen += 2;
/* hpke_pub_key */
switch (config->kemId) {
case DHKEM_P256_HKDF_SHA256:
totalLen += DHKEM_P256_ENC_LEN;
break;
case DHKEM_P384_HKDF_SHA384:
totalLen += DHKEM_P384_ENC_LEN;
break;
case DHKEM_P521_HKDF_SHA512:
totalLen += DHKEM_P521_ENC_LEN;
break;
case DHKEM_X25519_HKDF_SHA256:
totalLen += DHKEM_X25519_ENC_LEN;
break;
case DHKEM_X448_HKDF_SHA512:
totalLen += DHKEM_X448_ENC_LEN;
break;
}
/* cipherSuitesLen */
totalLen += 2;
/* cipherSuites */
totalLen += config->numCipherSuites * 4;
/* public name len */
totalLen += 2;
/* public name */
totalLen += XSTRLEN(config->publicName);
/* trailing zeros */
totalLen += 2;
if (output == NULL) {
*outputLen = totalLen;
return LENGTH_ONLY_E;
}
if (totalLen > *outputLen) {
*outputLen = totalLen;
return INPUT_SIZE_E;
}
/* version */
c16toa(TLSX_ECH, output);
output += 2;
/* length - 4 for version and length itself */
c16toa(totalLen - 4, output);
output += 2;
/* configId */
*output = config->configId;
output++;
/* kemId */
c16toa(config->kemId, output);
output += 2;
/* length and key itself */
switch (config->kemId) {
case DHKEM_P256_HKDF_SHA256:
c16toa(DHKEM_P256_ENC_LEN, output);
output += 2;
XMEMCPY(output, config->receiverPubkey, DHKEM_P256_ENC_LEN);
output += DHKEM_P256_ENC_LEN;
break;
case DHKEM_P384_HKDF_SHA384:
c16toa(DHKEM_P384_ENC_LEN, output);
output += 2;
XMEMCPY(output, config->receiverPubkey, DHKEM_P384_ENC_LEN);
output += DHKEM_P384_ENC_LEN;
break;
case DHKEM_P521_HKDF_SHA512:
c16toa(DHKEM_P521_ENC_LEN, output);
output += 2;
XMEMCPY(output, config->receiverPubkey, DHKEM_P521_ENC_LEN);
output += DHKEM_P521_ENC_LEN;
break;
case DHKEM_X25519_HKDF_SHA256:
c16toa(DHKEM_X25519_ENC_LEN, output);
output += 2;
XMEMCPY(output, config->receiverPubkey, DHKEM_X25519_ENC_LEN);
output += DHKEM_X25519_ENC_LEN;
break;
case DHKEM_X448_HKDF_SHA512:
c16toa(DHKEM_X448_ENC_LEN, output);
output += 2;
XMEMCPY(output, config->receiverPubkey, DHKEM_X448_ENC_LEN);
output += DHKEM_X448_ENC_LEN;
break;
}
/* cipherSuites len */
c16toa(config->numCipherSuites * 4, output);
output += 2;
/* cipherSuites */
for (i = 0; i < config->numCipherSuites; i++) {
c16toa(config->cipherSuites[i].kdfId, output);
output += 2;
c16toa(config->cipherSuites[i].aeadId, output);
output += 2;
}
/* publicName len */
c16toa(XSTRLEN(config->publicName), output);
output += 2;
/* publicName */
XMEMCPY(output, config->publicName,
XSTRLEN(config->publicName));
output += XSTRLEN(config->publicName);
/* terminating zeros */
c16toa(0, output);
/* output += 2; */
*outputLen = totalLen;
return 0;
}
/* wrapper function to get ech configs from application code */
int wolfSSL_GetEchConfigs(WOLFSSL* ssl, byte* output, word32* outputLen)
{
if (ssl == NULL || outputLen == NULL)
return BAD_FUNC_ARG;
/* if we don't have ech configs */
if (ssl->options.useEch != 1) {
return WOLFSSL_FATAL_ERROR;
}
return GetEchConfigsEx(ssl->echConfigs, output, outputLen);
}
/* get the raw ech configs from our linked list of ech config structs */
int GetEchConfigsEx(WOLFSSL_EchConfig* configs, byte* output, word32* outputLen)
{
int ret = 0;
WOLFSSL_EchConfig* workingConfig = NULL;
byte* outputStart = output;
word32 totalLen = 2;
word32 workingOutputLen;
if (configs == NULL || outputLen == NULL)
return BAD_FUNC_ARG;
workingOutputLen = *outputLen - totalLen;
/* skip over total length which we fill in later */
if (output != NULL)
output += 2;
workingConfig = configs;
while (workingConfig != NULL) {
/* get this config */
ret = GetEchConfig(workingConfig, output, &workingOutputLen);
if (output != NULL)
output += workingOutputLen;
/* add this config's length to the total length */
totalLen += workingOutputLen;
if (totalLen > *outputLen)
workingOutputLen = 0;
else
workingOutputLen = *outputLen - totalLen;
/* only error we break on, other 2 we need to keep finding length */
if (ret == WC_NO_ERR_TRACE(BAD_FUNC_ARG))
return BAD_FUNC_ARG;
workingConfig = workingConfig->next;
}
if (output == NULL) {
*outputLen = totalLen;
return LENGTH_ONLY_E;
}
if (totalLen > *outputLen) {
*outputLen = totalLen;
return INPUT_SIZE_E;
}
/* total size -2 for size itself */
c16toa(totalLen - 2, outputStart);
*outputLen = totalLen;
return WOLFSSL_SUCCESS;
}
#endif /* WOLFSSL_TLS13 && HAVE_ECH */
#if defined(WOLFSSL_RENESAS_TSIP_TLS) || defined(WOLFSSL_RENESAS_FSPSM_TLS)
#include <wolfssl/wolfcrypt/port/Renesas/renesas_cmn.h>
#endif
/* prevent multiple mutex initializations */
static volatile WOLFSSL_GLOBAL int initRefCount = 0;
/* init ref count mutex */
static WOLFSSL_GLOBAL wolfSSL_Mutex inits_count_mutex
WOLFSSL_MUTEX_INITIALIZER_CLAUSE(inits_count_mutex);
#ifndef WOLFSSL_MUTEX_INITIALIZER
static WOLFSSL_GLOBAL int inits_count_mutex_valid = 0;
#endif
/* Create a new WOLFSSL_CTX struct and return the pointer to created struct.
WOLFSSL_METHOD pointer passed in is given to ctx to manage.
This function frees the passed in WOLFSSL_METHOD struct on failure and on
success is freed when ctx is freed.
*/
WOLFSSL_CTX* wolfSSL_CTX_new_ex(WOLFSSL_METHOD* method, void* heap)
{
WOLFSSL_CTX* ctx = NULL;
WOLFSSL_ENTER("wolfSSL_CTX_new_ex");
if (initRefCount == 0) {
/* user no longer forced to call Init themselves */
int ret = wolfSSL_Init();
if (ret != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("wolfSSL_Init failed");
WOLFSSL_LEAVE("wolfSSL_CTX_new_ex", 0);
if (method != NULL) {
XFREE(method, heap, DYNAMIC_TYPE_METHOD);
}
return NULL;
}
}
if (method == NULL)
return ctx;
ctx = (WOLFSSL_CTX*)XMALLOC(sizeof(WOLFSSL_CTX), heap, DYNAMIC_TYPE_CTX);
if (ctx) {
int ret;
ret = InitSSL_Ctx(ctx, method, heap);
#ifdef WOLFSSL_STATIC_MEMORY
if (heap != NULL) {
ctx->onHeapHint = 1; /* free the memory back to heap when done */
}
#endif
if (ret < 0) {
WOLFSSL_MSG("Init CTX failed");
wolfSSL_CTX_free(ctx);
ctx = NULL;
}
#if defined(OPENSSL_EXTRA) && defined(WOLFCRYPT_HAVE_SRP) \
&& !defined(NO_SHA256) && !defined(WC_NO_RNG)
else {
ctx->srp = (Srp*)XMALLOC(sizeof(Srp), heap, DYNAMIC_TYPE_SRP);
if (ctx->srp == NULL){
WOLFSSL_MSG("Init CTX failed");
wolfSSL_CTX_free(ctx);
return NULL;
}
XMEMSET(ctx->srp, 0, sizeof(Srp));
}
#endif
}
else {
WOLFSSL_MSG("Alloc CTX failed, method freed");
XFREE(method, heap, DYNAMIC_TYPE_METHOD);
}
#ifdef OPENSSL_COMPATIBLE_DEFAULTS
if (ctx) {
wolfSSL_CTX_set_verify(ctx, SSL_VERIFY_NONE, NULL);
wolfSSL_CTX_set_mode(ctx, SSL_MODE_AUTO_RETRY);
if (wolfSSL_CTX_set_min_proto_version(ctx,
(method->version.major == DTLS_MAJOR) ?
DTLS1_VERSION : SSL3_VERSION) != WOLFSSL_SUCCESS ||
#ifdef HAVE_ANON
wolfSSL_CTX_allow_anon_cipher(ctx) != WOLFSSL_SUCCESS ||
#endif
wolfSSL_CTX_set_group_messages(ctx) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("Setting OpenSSL CTX defaults failed");
wolfSSL_CTX_free(ctx);
ctx = NULL;
}
}
#endif
WOLFSSL_LEAVE("wolfSSL_CTX_new_ex", 0);
return ctx;
}
WOLFSSL_ABI
WOLFSSL_CTX* wolfSSL_CTX_new(WOLFSSL_METHOD* method)
{
#ifdef WOLFSSL_HEAP_TEST
/* if testing the heap hint then set top level CTX to have test value */
return wolfSSL_CTX_new_ex(method, (void*)WOLFSSL_HEAP_TEST);
#else
return wolfSSL_CTX_new_ex(method, NULL);
#endif
}
/* increases CTX reference count to track proper time to "free" */
int wolfSSL_CTX_up_ref(WOLFSSL_CTX* ctx)
{
int ret;
wolfSSL_RefInc(&ctx->ref, &ret);
#ifdef WOLFSSL_REFCNT_ERROR_RETURN
return ((ret == 0) ? WOLFSSL_SUCCESS : WOLFSSL_FAILURE);
#else
(void)ret;
return WOLFSSL_SUCCESS;
#endif
}
WOLFSSL_ABI
void wolfSSL_CTX_free(WOLFSSL_CTX* ctx)
{
WOLFSSL_ENTER("wolfSSL_CTX_free");
if (ctx) {
#if defined(OPENSSL_EXTRA) && defined(WOLFCRYPT_HAVE_SRP) \
&& !defined(NO_SHA256) && !defined(WC_NO_RNG)
if (ctx->srp != NULL) {
if (ctx->srp_password != NULL){
XFREE(ctx->srp_password, ctx->heap, DYNAMIC_TYPE_SRP);
ctx->srp_password = NULL;
}
wc_SrpTerm(ctx->srp);
XFREE(ctx->srp, ctx->heap, DYNAMIC_TYPE_SRP);
ctx->srp = NULL;
}
#endif
FreeSSL_Ctx(ctx);
}
WOLFSSL_LEAVE("wolfSSL_CTX_free", 0);
}
#ifdef HAVE_ENCRYPT_THEN_MAC
/**
* Sets whether Encrypt-Then-MAC extension can be negotiated against context.
* The default value: enabled.
*
* ctx SSL/TLS context.
* set Whether to allow or not: 1 is allow and 0 is disallow.
* returns WOLFSSL_SUCCESS
*/
int wolfSSL_CTX_AllowEncryptThenMac(WOLFSSL_CTX *ctx, int set)
{
ctx->disallowEncThenMac = !set;
return WOLFSSL_SUCCESS;
}
/**
* Sets whether Encrypt-Then-MAC extension can be negotiated against context.
* The default value comes from context.
*
* ctx SSL/TLS context.
* set Whether to allow or not: 1 is allow and 0 is disallow.
* returns WOLFSSL_SUCCESS
*/
int wolfSSL_AllowEncryptThenMac(WOLFSSL *ssl, int set)
{
ssl->options.disallowEncThenMac = !set;
return WOLFSSL_SUCCESS;
}
#endif
#ifdef SINGLE_THREADED
/* no locking in single threaded mode, allow a CTX level rng to be shared with
* WOLFSSL objects, WOLFSSL_SUCCESS on ok */
int wolfSSL_CTX_new_rng(WOLFSSL_CTX* ctx)
{
WC_RNG* rng;
int ret;
if (ctx == NULL) {
return BAD_FUNC_ARG;
}
rng = (WC_RNG*)XMALLOC(sizeof(WC_RNG), ctx->heap, DYNAMIC_TYPE_RNG);
if (rng == NULL) {
return MEMORY_E;
}
#ifndef HAVE_FIPS
ret = wc_InitRng_ex(rng, ctx->heap, ctx->devId);
#else
ret = wc_InitRng(rng);
#endif
if (ret != 0) {
XFREE(rng, ctx->heap, DYNAMIC_TYPE_RNG);
return ret;
}
ctx->rng = rng;
return WOLFSSL_SUCCESS;
}
#endif
WOLFSSL_ABI
WOLFSSL* wolfSSL_new(WOLFSSL_CTX* ctx)
{
WOLFSSL* ssl = NULL;
int ret = 0;
WOLFSSL_ENTER("wolfSSL_new");
if (ctx == NULL) {
WOLFSSL_MSG("wolfSSL_new ctx is null");
return NULL;
}
ssl = (WOLFSSL*) XMALLOC(sizeof(WOLFSSL), ctx->heap, DYNAMIC_TYPE_SSL);
if (ssl == NULL) {
WOLFSSL_MSG_EX("ssl xmalloc failed to allocate %d bytes",
(int)sizeof(WOLFSSL));
}
else {
ret = InitSSL(ssl, ctx, 0);
if (ret < 0) {
WOLFSSL_MSG_EX("wolfSSL_new failed during InitSSL. err = %d", ret);
FreeSSL(ssl, ctx->heap);
ssl = NULL;
}
else if (ret == 0) {
WOLFSSL_MSG("wolfSSL_new InitSSL success");
}
else {
/* Only success (0) or negative values should ever be seen. */
WOLFSSL_MSG_EX("WARNING: wolfSSL_new unexpected InitSSL return"
" value = %d", ret);
} /* InitSSL check */
} /* ssl XMALLOC success */
WOLFSSL_LEAVE("wolfSSL_new InitSSL =", ret);
(void)ret;
return ssl;
}
WOLFSSL_ABI
void wolfSSL_free(WOLFSSL* ssl)
{
WOLFSSL_ENTER("wolfSSL_free");
if (ssl) {
WOLFSSL_MSG_EX("Free SSL: %p", (wc_ptr_t)ssl);
FreeSSL(ssl, ssl->ctx->heap);
}
else {
WOLFSSL_MSG("Free SSL: wolfSSL_free already null");
}
WOLFSSL_LEAVE("wolfSSL_free", 0);
}
int wolfSSL_is_server(WOLFSSL* ssl)
{
if (ssl == NULL)
return BAD_FUNC_ARG;
return ssl->options.side == WOLFSSL_SERVER_END;
}
#ifdef HAVE_WRITE_DUP
/*
* Release resources around WriteDup object
*
* ssl WOLFSSL object
*
* no return, destruction so make best attempt
*/
void FreeWriteDup(WOLFSSL* ssl)
{
int doFree = 0;
WOLFSSL_ENTER("FreeWriteDup");
if (ssl->dupWrite) {
if (wc_LockMutex(&ssl->dupWrite->dupMutex) == 0) {
ssl->dupWrite->dupCount--;
if (ssl->dupWrite->dupCount == 0) {
doFree = 1;
} else {
WOLFSSL_MSG("WriteDup count not zero, no full free");
}
wc_UnLockMutex(&ssl->dupWrite->dupMutex);
}
}
if (doFree) {
WOLFSSL_MSG("Doing WriteDup full free, count to zero");
wc_FreeMutex(&ssl->dupWrite->dupMutex);
XFREE(ssl->dupWrite, ssl->heap, DYNAMIC_TYPE_WRITEDUP);
}
}
/*
* duplicate existing ssl members into dup needed for writing
*
* dup write only WOLFSSL
* ssl existing WOLFSSL
*
* 0 on success
*/
static int DupSSL(WOLFSSL* dup, WOLFSSL* ssl)
{
word16 tmp_weOwnRng;
/* shared dupWrite setup */
ssl->dupWrite = (WriteDup*)XMALLOC(sizeof(WriteDup), ssl->heap,
DYNAMIC_TYPE_WRITEDUP);
if (ssl->dupWrite == NULL) {
return MEMORY_E;
}
XMEMSET(ssl->dupWrite, 0, sizeof(WriteDup));
if (wc_InitMutex(&ssl->dupWrite->dupMutex) != 0) {
XFREE(ssl->dupWrite, ssl->heap, DYNAMIC_TYPE_WRITEDUP);
ssl->dupWrite = NULL;
return BAD_MUTEX_E;
}
ssl->dupWrite->dupCount = 2; /* both sides have a count to start */
dup->dupWrite = ssl->dupWrite; /* each side uses */
tmp_weOwnRng = dup->options.weOwnRng;
/* copy write parts over to dup writer */
XMEMCPY(&dup->specs, &ssl->specs, sizeof(CipherSpecs));
XMEMCPY(&dup->options, &ssl->options, sizeof(Options));
XMEMCPY(&dup->keys, &ssl->keys, sizeof(Keys));
XMEMCPY(&dup->encrypt, &ssl->encrypt, sizeof(Ciphers));
XMEMCPY(&dup->version, &ssl->version, sizeof(ProtocolVersion));
XMEMCPY(&dup->chVersion, &ssl->chVersion, sizeof(ProtocolVersion));
#ifdef HAVE_ONE_TIME_AUTH
#ifdef HAVE_POLY1305
if (ssl->auth.setup && ssl->auth.poly1305 != NULL) {
dup->auth.poly1305 = (Poly1305*)XMALLOC(sizeof(Poly1305), dup->heap,
DYNAMIC_TYPE_CIPHER);
if (dup->auth.poly1305 == NULL)
return MEMORY_E;
dup->auth.setup = 1;
}
#endif
#endif
/* dup side now owns encrypt/write ciphers */
XMEMSET(&ssl->encrypt, 0, sizeof(Ciphers));
dup->IOCB_WriteCtx = ssl->IOCB_WriteCtx;
dup->CBIOSend = ssl->CBIOSend;
#ifdef OPENSSL_EXTRA
dup->cbioFlag = ssl->cbioFlag;
#endif
dup->wfd = ssl->wfd;
dup->wflags = ssl->wflags;
#ifndef WOLFSSL_AEAD_ONLY
dup->hmac = ssl->hmac;
#endif
#ifdef HAVE_TRUNCATED_HMAC
dup->truncated_hmac = ssl->truncated_hmac;
#endif
/* Restore rng option */
dup->options.weOwnRng = tmp_weOwnRng;
/* unique side dup setup */
dup->dupSide = WRITE_DUP_SIDE;
ssl->dupSide = READ_DUP_SIDE;
return 0;
}
/*
* duplicate a WOLFSSL object post handshake for writing only
* turn existing object into read only. Allows concurrent access from two
* different threads.
*
* ssl existing WOLFSSL object
*
* return dup'd WOLFSSL object on success
*/
WOLFSSL* wolfSSL_write_dup(WOLFSSL* ssl)
{
WOLFSSL* dup = NULL;
int ret = 0;
(void)ret;
WOLFSSL_ENTER("wolfSSL_write_dup");
if (ssl == NULL) {
return ssl;
}
if (ssl->options.handShakeDone == 0) {
WOLFSSL_MSG("wolfSSL_write_dup called before handshake complete");
return NULL;
}
if (ssl->dupWrite) {
WOLFSSL_MSG("wolfSSL_write_dup already called once");
return NULL;
}
dup = (WOLFSSL*) XMALLOC(sizeof(WOLFSSL), ssl->ctx->heap, DYNAMIC_TYPE_SSL);
if (dup) {
if ( (ret = InitSSL(dup, ssl->ctx, 1)) < 0) {
FreeSSL(dup, ssl->ctx->heap);
dup = NULL;
} else if ( (ret = DupSSL(dup, ssl)) < 0) {
FreeSSL(dup, ssl->ctx->heap);
dup = NULL;
}
}
WOLFSSL_LEAVE("wolfSSL_write_dup", ret);
return dup;
}
/*
* Notify write dup side of fatal error or close notify
*
* ssl WOLFSSL object
* err Notify err
*
* 0 on success
*/
int NotifyWriteSide(WOLFSSL* ssl, int err)
{
int ret;
WOLFSSL_ENTER("NotifyWriteSide");
ret = wc_LockMutex(&ssl->dupWrite->dupMutex);
if (ret == 0) {
ssl->dupWrite->dupErr = err;
ret = wc_UnLockMutex(&ssl->dupWrite->dupMutex);
}
return ret;
}
#endif /* HAVE_WRITE_DUP */
#ifdef HAVE_POLY1305
/* set if to use old poly 1 for yes 0 to use new poly */
int wolfSSL_use_old_poly(WOLFSSL* ssl, int value)
{
(void)ssl;
(void)value;
#ifndef WOLFSSL_NO_TLS12
WOLFSSL_ENTER("wolfSSL_use_old_poly");
WOLFSSL_MSG("Warning SSL connection auto detects old/new and this function"
"is depreciated");
ssl->options.oldPoly = (word16)value;
WOLFSSL_LEAVE("wolfSSL_use_old_poly", 0);
#endif
return 0;
}
#endif
WOLFSSL_ABI
int wolfSSL_set_fd(WOLFSSL* ssl, int fd)
{
int ret;
WOLFSSL_ENTER("wolfSSL_set_fd");
if (ssl == NULL) {
return BAD_FUNC_ARG;
}
ret = wolfSSL_set_read_fd(ssl, fd);
if (ret == WOLFSSL_SUCCESS) {
ret = wolfSSL_set_write_fd(ssl, fd);
}
return ret;
}
#ifdef WOLFSSL_DTLS
int wolfSSL_set_dtls_fd_connected(WOLFSSL* ssl, int fd)
{
int ret;
WOLFSSL_ENTER("wolfSSL_set_dtls_fd_connected");
if (ssl == NULL) {
return BAD_FUNC_ARG;
}
ret = wolfSSL_set_fd(ssl, fd);
if (ret == WOLFSSL_SUCCESS)
ssl->buffers.dtlsCtx.connected = 1;
return ret;
}
#endif
int wolfSSL_set_read_fd(WOLFSSL* ssl, int fd)
{
WOLFSSL_ENTER("wolfSSL_set_read_fd");
if (ssl == NULL) {
return BAD_FUNC_ARG;
}
ssl->rfd = fd; /* not used directly to allow IO callbacks */
ssl->IOCB_ReadCtx = &ssl->rfd;
#ifdef WOLFSSL_DTLS
ssl->buffers.dtlsCtx.connected = 0;
if (ssl->options.dtls) {
ssl->IOCB_ReadCtx = &ssl->buffers.dtlsCtx;
ssl->buffers.dtlsCtx.rfd = fd;
}
#endif
WOLFSSL_LEAVE("wolfSSL_set_read_fd", WOLFSSL_SUCCESS);
return WOLFSSL_SUCCESS;
}
int wolfSSL_set_write_fd(WOLFSSL* ssl, int fd)
{
WOLFSSL_ENTER("wolfSSL_set_write_fd");
if (ssl == NULL) {
return BAD_FUNC_ARG;
}
ssl->wfd = fd; /* not used directly to allow IO callbacks */
ssl->IOCB_WriteCtx = &ssl->wfd;
#ifdef WOLFSSL_DTLS
ssl->buffers.dtlsCtx.connected = 0;
if (ssl->options.dtls) {
ssl->IOCB_WriteCtx = &ssl->buffers.dtlsCtx;
ssl->buffers.dtlsCtx.wfd = fd;
}
#endif
WOLFSSL_LEAVE("wolfSSL_set_write_fd", WOLFSSL_SUCCESS);
return WOLFSSL_SUCCESS;
}
/**
* Get the name of cipher at priority level passed in.
*/
char* wolfSSL_get_cipher_list(int priority)
{
const CipherSuiteInfo* ciphers = GetCipherNames();
if (priority >= GetCipherNamesSize() || priority < 0) {
return 0;
}
return (char*)ciphers[priority].name;
}
/**
* Get the name of cipher at priority level passed in.
*/
char* wolfSSL_get_cipher_list_ex(WOLFSSL* ssl, int priority)
{
if (ssl == NULL) {
return NULL;
}
else {
const char* cipher;
if ((cipher = wolfSSL_get_cipher_name_internal(ssl)) != NULL) {
if (priority == 0) {
return (char*)cipher;
}
else {
return NULL;
}
}
else {
return wolfSSL_get_cipher_list(priority);
}
}
}
int wolfSSL_get_ciphers(char* buf, int len)
{
const CipherSuiteInfo* ciphers = GetCipherNames();
int ciphersSz = GetCipherNamesSize();
int i;
if (buf == NULL || len <= 0)
return BAD_FUNC_ARG;
/* Add each member to the buffer delimited by a : */
for (i = 0; i < ciphersSz; i++) {
int cipherNameSz = (int)XSTRLEN(ciphers[i].name);
if (cipherNameSz + 1 < len) {
XSTRNCPY(buf, ciphers[i].name, len);
buf += cipherNameSz;
if (i < ciphersSz - 1)
*buf++ = ':';
*buf = 0;
len -= cipherNameSz + 1;
}
else
return BUFFER_E;
}
return WOLFSSL_SUCCESS;
}
#ifndef NO_ERROR_STRINGS
/* places a list of all supported cipher suites in TLS_* format into "buf"
* return WOLFSSL_SUCCESS on success */
int wolfSSL_get_ciphers_iana(char* buf, int len)
{
const CipherSuiteInfo* ciphers = GetCipherNames();
int ciphersSz = GetCipherNamesSize();
int i;
int cipherNameSz;
if (buf == NULL || len <= 0)
return BAD_FUNC_ARG;
/* Add each member to the buffer delimited by a : */
for (i = 0; i < ciphersSz; i++) {
#ifndef NO_CIPHER_SUITE_ALIASES
if (ciphers[i].flags & WOLFSSL_CIPHER_SUITE_FLAG_NAMEALIAS)
continue;
#endif
cipherNameSz = (int)XSTRLEN(ciphers[i].name_iana);
if (cipherNameSz + 1 < len) {
XSTRNCPY(buf, ciphers[i].name_iana, len);
buf += cipherNameSz;
if (i < ciphersSz - 1)
*buf++ = ':';
*buf = 0;
len -= cipherNameSz + 1;
}
else
return BUFFER_E;
}
return WOLFSSL_SUCCESS;
}
#endif /* NO_ERROR_STRINGS */
const char* wolfSSL_get_shared_ciphers(WOLFSSL* ssl, char* buf, int len)
{
const char* cipher;
if (ssl == NULL)
return NULL;
cipher = wolfSSL_get_cipher_name_iana(ssl);
len = (int)min((word32)len, (int)(XSTRLEN(cipher) + 1));
XMEMCPY(buf, cipher, len);
return buf;
}
int wolfSSL_get_fd(const WOLFSSL* ssl)
{
int fd = -1;
WOLFSSL_ENTER("wolfSSL_get_fd");
if (ssl) {
fd = ssl->rfd;
}
WOLFSSL_LEAVE("wolfSSL_get_fd", fd);
return fd;
}
int wolfSSL_dtls(WOLFSSL* ssl)
{
int dtlsOpt = 0;
if (ssl)
dtlsOpt = ssl->options.dtls;
return dtlsOpt;
}
#if !defined(NO_CERTS)
/* Set whether mutual authentication is required for connections.
* Server side only.
*
* ctx The SSL/TLS CTX object.
* req 1 to indicate required and 0 when not.
* returns BAD_FUNC_ARG when ctx is NULL, SIDE_ERROR when not a server and
* 0 on success.
*/
int wolfSSL_CTX_mutual_auth(WOLFSSL_CTX* ctx, int req)
{
if (ctx == NULL)
return BAD_FUNC_ARG;
if (ctx->method->side == WOLFSSL_CLIENT_END)
return SIDE_ERROR;
ctx->mutualAuth = (byte)req;
return 0;
}
/* Set whether mutual authentication is required for the connection.
* Server side only.
*
* ssl The SSL/TLS object.
* req 1 to indicate required and 0 when not.
* returns BAD_FUNC_ARG when ssl is NULL, or not using TLS v1.3,
* SIDE_ERROR when not a client and 0 on success.
*/
int wolfSSL_mutual_auth(WOLFSSL* ssl, int req)
{
if (ssl == NULL)
return BAD_FUNC_ARG;
if (ssl->options.side == WOLFSSL_SERVER_END)
return SIDE_ERROR;
ssl->options.mutualAuth = (word16)req;
return 0;
}
#endif /* NO_CERTS */
#ifdef WOLFSSL_WOLFSENTRY_HOOKS
int wolfSSL_CTX_set_AcceptFilter(
WOLFSSL_CTX *ctx,
NetworkFilterCallback_t AcceptFilter,
void *AcceptFilter_arg)
{
if (ctx == NULL)
return BAD_FUNC_ARG;
ctx->AcceptFilter = AcceptFilter;
ctx->AcceptFilter_arg = AcceptFilter_arg;
return 0;
}
int wolfSSL_set_AcceptFilter(
WOLFSSL *ssl,
NetworkFilterCallback_t AcceptFilter,
void *AcceptFilter_arg)
{
if (ssl == NULL)
return BAD_FUNC_ARG;
ssl->AcceptFilter = AcceptFilter;
ssl->AcceptFilter_arg = AcceptFilter_arg;
return 0;
}
int wolfSSL_CTX_set_ConnectFilter(
WOLFSSL_CTX *ctx,
NetworkFilterCallback_t ConnectFilter,
void *ConnectFilter_arg)
{
if (ctx == NULL)
return BAD_FUNC_ARG;
ctx->ConnectFilter = ConnectFilter;
ctx->ConnectFilter_arg = ConnectFilter_arg;
return 0;
}
int wolfSSL_set_ConnectFilter(
WOLFSSL *ssl,
NetworkFilterCallback_t ConnectFilter,
void *ConnectFilter_arg)
{
if (ssl == NULL)
return BAD_FUNC_ARG;
ssl->ConnectFilter = ConnectFilter;
ssl->ConnectFilter_arg = ConnectFilter_arg;
return 0;
}
#endif /* WOLFSSL_WOLFSENTRY_HOOKS */
#ifndef WOLFSSL_LEANPSK
#if defined(WOLFSSL_DTLS) && defined(XINET_PTON) && \
!defined(WOLFSSL_NO_SOCK) && defined(HAVE_SOCKADDR)
void* wolfSSL_dtls_create_peer(int port, char* ip)
{
SOCKADDR_IN *addr;
addr = (SOCKADDR_IN*)XMALLOC(sizeof(*addr), NULL,
DYNAMIC_TYPE_SOCKADDR);
if (addr == NULL) {
return NULL;
}
addr->sin_family = AF_INET;
addr->sin_port = XHTONS((word16)port);
if (XINET_PTON(AF_INET, ip, &addr->sin_addr) < 1) {
XFREE(addr, NULL, DYNAMIC_TYPE_SOCKADDR);
return NULL;
}
return addr;
}
int wolfSSL_dtls_free_peer(void* addr)
{
XFREE(addr, NULL, DYNAMIC_TYPE_SOCKADDR);
return WOLFSSL_SUCCESS;
}
#endif
int wolfSSL_dtls_set_peer(WOLFSSL* ssl, void* peer, unsigned int peerSz)
{
#ifdef WOLFSSL_DTLS
void* sa;
if (ssl == NULL)
return WOLFSSL_FAILURE;
if (peer == NULL || peerSz == 0) {
if (ssl->buffers.dtlsCtx.peer.sa != NULL)
XFREE(ssl->buffers.dtlsCtx.peer.sa,ssl->heap,DYNAMIC_TYPE_SOCKADDR);
ssl->buffers.dtlsCtx.peer.sa = NULL;
ssl->buffers.dtlsCtx.peer.sz = 0;
ssl->buffers.dtlsCtx.peer.bufSz = 0;
ssl->buffers.dtlsCtx.userSet = 0;
return WOLFSSL_SUCCESS;
}
sa = (void*)XMALLOC(peerSz, ssl->heap, DYNAMIC_TYPE_SOCKADDR);
if (sa != NULL) {
if (ssl->buffers.dtlsCtx.peer.sa != NULL) {
XFREE(ssl->buffers.dtlsCtx.peer.sa,ssl->heap,DYNAMIC_TYPE_SOCKADDR);
ssl->buffers.dtlsCtx.peer.sa = NULL;
}
XMEMCPY(sa, peer, peerSz);
ssl->buffers.dtlsCtx.peer.sa = sa;
ssl->buffers.dtlsCtx.peer.sz = peerSz;
ssl->buffers.dtlsCtx.peer.bufSz = peerSz;
ssl->buffers.dtlsCtx.userSet = 1;
return WOLFSSL_SUCCESS;
}
return WOLFSSL_FAILURE;
#else
(void)ssl;
(void)peer;
(void)peerSz;
return WOLFSSL_NOT_IMPLEMENTED;
#endif
}
int wolfSSL_dtls_get_peer(WOLFSSL* ssl, void* peer, unsigned int* peerSz)
{
#ifdef WOLFSSL_DTLS
if (ssl == NULL) {
return WOLFSSL_FAILURE;
}
if (peer != NULL && peerSz != NULL
&& *peerSz >= ssl->buffers.dtlsCtx.peer.sz
&& ssl->buffers.dtlsCtx.peer.sa != NULL) {
*peerSz = ssl->buffers.dtlsCtx.peer.sz;
XMEMCPY(peer, ssl->buffers.dtlsCtx.peer.sa, *peerSz);
return WOLFSSL_SUCCESS;
}
return WOLFSSL_FAILURE;
#else
(void)ssl;
(void)peer;
(void)peerSz;
return WOLFSSL_NOT_IMPLEMENTED;
#endif
}
#if defined(WOLFSSL_SCTP) && defined(WOLFSSL_DTLS)
int wolfSSL_CTX_dtls_set_sctp(WOLFSSL_CTX* ctx)
{
WOLFSSL_ENTER("wolfSSL_CTX_dtls_set_sctp");
if (ctx == NULL)
return BAD_FUNC_ARG;
ctx->dtlsSctp = 1;
return WOLFSSL_SUCCESS;
}
int wolfSSL_dtls_set_sctp(WOLFSSL* ssl)
{
WOLFSSL_ENTER("wolfSSL_dtls_set_sctp");
if (ssl == NULL)
return BAD_FUNC_ARG;
ssl->options.dtlsSctp = 1;
return WOLFSSL_SUCCESS;
}
#endif /* WOLFSSL_DTLS && WOLFSSL_SCTP */
#if (defined(WOLFSSL_SCTP) || defined(WOLFSSL_DTLS_MTU)) && \
defined(WOLFSSL_DTLS)
int wolfSSL_CTX_dtls_set_mtu(WOLFSSL_CTX* ctx, word16 newMtu)
{
if (ctx == NULL || newMtu > MAX_RECORD_SIZE)
return BAD_FUNC_ARG;
ctx->dtlsMtuSz = newMtu;
return WOLFSSL_SUCCESS;
}
int wolfSSL_dtls_set_mtu(WOLFSSL* ssl, word16 newMtu)
{
if (ssl == NULL)
return BAD_FUNC_ARG;
if (newMtu > MAX_RECORD_SIZE) {
ssl->error = BAD_FUNC_ARG;
return WOLFSSL_FAILURE;
}
ssl->dtlsMtuSz = newMtu;
return WOLFSSL_SUCCESS;
}
#endif /* WOLFSSL_DTLS && (WOLFSSL_SCTP || WOLFSSL_DTLS_MTU) */
#ifdef WOLFSSL_SRTP
static const WOLFSSL_SRTP_PROTECTION_PROFILE gSrtpProfiles[] = {
/* AES CCM 128, Salt:112-bits, Auth HMAC-SHA1 Tag: 80-bits
* (master_key:128bits + master_salt:112bits) * 2 = 480 bits (60) */
{"SRTP_AES128_CM_SHA1_80", SRTP_AES128_CM_SHA1_80,
(((128 + 112) * 2) / 8) },
/* AES CCM 128, Salt:112-bits, Auth HMAC-SHA1 Tag: 32-bits
* (master_key:128bits + master_salt:112bits) * 2 = 480 bits (60) */
{"SRTP_AES128_CM_SHA1_32", SRTP_AES128_CM_SHA1_32,
(((128 + 112) * 2) / 8) },
/* NULL Cipher, Salt:112-bits, Auth HMAC-SHA1 Tag 80-bits */
{"SRTP_NULL_SHA1_80", SRTP_NULL_SHA1_80, ((112 * 2) / 8)},
/* NULL Cipher, Salt:112-bits, Auth HMAC-SHA1 Tag 32-bits */
{"SRTP_NULL_SHA1_32", SRTP_NULL_SHA1_32, ((112 * 2) / 8)},
/* AES GCM 128, Salt: 96-bits, Auth GCM Tag 128-bits
* (master_key:128bits + master_salt:96bits) * 2 = 448 bits (56) */
{"SRTP_AEAD_AES_128_GCM", SRTP_AEAD_AES_128_GCM, (((128 + 96) * 2) / 8) },
/* AES GCM 256, Salt: 96-bits, Auth GCM Tag 128-bits
* (master_key:256bits + master_salt:96bits) * 2 = 704 bits (88) */
{"SRTP_AEAD_AES_256_GCM", SRTP_AEAD_AES_256_GCM, (((256 + 96) * 2) / 8) },
};
static const WOLFSSL_SRTP_PROTECTION_PROFILE* DtlsSrtpFindProfile(
const char* profile_str, word32 profile_str_len, unsigned long id)
{
int i;
const WOLFSSL_SRTP_PROTECTION_PROFILE* profile = NULL;
for (i=0;
i<(int)(sizeof(gSrtpProfiles)/sizeof(WOLFSSL_SRTP_PROTECTION_PROFILE));
i++) {
if (profile_str != NULL) {
word32 srtp_profile_len = (word32)XSTRLEN(gSrtpProfiles[i].name);
if (srtp_profile_len == profile_str_len &&
XMEMCMP(gSrtpProfiles[i].name, profile_str, profile_str_len)
== 0) {
profile = &gSrtpProfiles[i];
break;
}
}
else if (id != 0 && gSrtpProfiles[i].id == id) {
profile = &gSrtpProfiles[i];
break;
}
}
return profile;
}
/* profile_str: accepts ":" colon separated list of SRTP profiles */
static int DtlsSrtpSelProfiles(word16* id, const char* profile_str)
{
const WOLFSSL_SRTP_PROTECTION_PROFILE* profile;
const char *current, *next = NULL;
word32 length = 0, current_length;
*id = 0; /* reset destination ID's */
if (profile_str == NULL) {
return WOLFSSL_FAILURE;
}
/* loop on end of line or colon ":" */
next = profile_str;
length = (word32)XSTRLEN(profile_str);
do {
current = next;
next = XSTRSTR(current, ":");
if (next) {
current_length = (word32)(next - current);
++next; /* ++ needed to skip ':' */
} else {
current_length = (word32)XSTRLEN(current);
}
if (current_length < length)
length = current_length;
profile = DtlsSrtpFindProfile(current, current_length, 0);
if (profile != NULL) {
*id |= (1 << profile->id); /* selected bit based on ID */
}
} while (next != NULL);
return WOLFSSL_SUCCESS;
}
int wolfSSL_CTX_set_tlsext_use_srtp(WOLFSSL_CTX* ctx, const char* profile_str)
{
int ret = WOLFSSL_FAILURE;
if (ctx != NULL) {
ret = DtlsSrtpSelProfiles(&ctx->dtlsSrtpProfiles, profile_str);
}
return ret;
}
int wolfSSL_set_tlsext_use_srtp(WOLFSSL* ssl, const char* profile_str)
{
int ret = WOLFSSL_FAILURE;
if (ssl != NULL) {
ret = DtlsSrtpSelProfiles(&ssl->dtlsSrtpProfiles, profile_str);
}
return ret;
}
const WOLFSSL_SRTP_PROTECTION_PROFILE* wolfSSL_get_selected_srtp_profile(
WOLFSSL* ssl)
{
const WOLFSSL_SRTP_PROTECTION_PROFILE* profile = NULL;
if (ssl) {
profile = DtlsSrtpFindProfile(NULL, 0, ssl->dtlsSrtpId);
}
return profile;
}
#ifndef NO_WOLFSSL_STUB
WOLF_STACK_OF(WOLFSSL_SRTP_PROTECTION_PROFILE)* wolfSSL_get_srtp_profiles(
WOLFSSL* ssl)
{
/* Not yet implemented - should return list of available SRTP profiles
* ssl->dtlsSrtpProfiles */
(void)ssl;
return NULL;
}
#endif
#define DTLS_SRTP_KEYING_MATERIAL_LABEL "EXTRACTOR-dtls_srtp"
int wolfSSL_export_dtls_srtp_keying_material(WOLFSSL* ssl,
unsigned char* out, size_t* olen)
{
const WOLFSSL_SRTP_PROTECTION_PROFILE* profile = NULL;
if (ssl == NULL || olen == NULL) {
return BAD_FUNC_ARG;
}
profile = DtlsSrtpFindProfile(NULL, 0, ssl->dtlsSrtpId);
if (profile == NULL) {
WOLFSSL_MSG("Not using DTLS SRTP");
return EXT_MISSING;
}
if (out == NULL) {
*olen = (size_t)profile->kdfBits;
return LENGTH_ONLY_E;
}
if (*olen < (size_t)profile->kdfBits) {
return BUFFER_E;
}
return wolfSSL_export_keying_material(ssl, out, profile->kdfBits,
DTLS_SRTP_KEYING_MATERIAL_LABEL,
XSTR_SIZEOF(DTLS_SRTP_KEYING_MATERIAL_LABEL), NULL, 0, 0);
}
#endif /* WOLFSSL_SRTP */
#ifdef WOLFSSL_DTLS_DROP_STATS
int wolfSSL_dtls_get_drop_stats(WOLFSSL* ssl,
word32* macDropCount, word32* replayDropCount)
{
int ret;
WOLFSSL_ENTER("wolfSSL_dtls_get_drop_stats");
if (ssl == NULL)
ret = BAD_FUNC_ARG;
else {
ret = WOLFSSL_SUCCESS;
if (macDropCount != NULL)
*macDropCount = ssl->macDropCount;
if (replayDropCount != NULL)
*replayDropCount = ssl->replayDropCount;
}
WOLFSSL_LEAVE("wolfSSL_dtls_get_drop_stats", ret);
return ret;
}
#endif /* WOLFSSL_DTLS_DROP_STATS */
#if defined(WOLFSSL_MULTICAST)
int wolfSSL_CTX_mcast_set_member_id(WOLFSSL_CTX* ctx, word16 id)
{
int ret = 0;
WOLFSSL_ENTER("wolfSSL_CTX_mcast_set_member_id");
if (ctx == NULL || id > 255)
ret = BAD_FUNC_ARG;
if (ret == 0) {
ctx->haveEMS = 0;
ctx->haveMcast = 1;
ctx->mcastID = (byte)id;
#ifndef WOLFSSL_USER_IO
ctx->CBIORecv = EmbedReceiveFromMcast;
#endif /* WOLFSSL_USER_IO */
ret = WOLFSSL_SUCCESS;
}
WOLFSSL_LEAVE("wolfSSL_CTX_mcast_set_member_id", ret);
return ret;
}
int wolfSSL_mcast_get_max_peers(void)
{
return WOLFSSL_MULTICAST_PEERS;
}
#ifdef WOLFSSL_DTLS
static WC_INLINE word32 UpdateHighwaterMark(word32 cur, word32 first,
word32 second, word32 high)
{
word32 newCur = 0;
if (cur < first)
newCur = first;
else if (cur < second)
newCur = second;
else if (cur < high)
newCur = high;
return newCur;
}
#endif /* WOLFSSL_DTLS */
int wolfSSL_set_secret(WOLFSSL* ssl, word16 epoch,
const byte* preMasterSecret, word32 preMasterSz,
const byte* clientRandom, const byte* serverRandom,
const byte* suite)
{
int ret = 0;
WOLFSSL_ENTER("wolfSSL_set_secret");
if (ssl == NULL || preMasterSecret == NULL ||
preMasterSz == 0 || preMasterSz > ENCRYPT_LEN ||
clientRandom == NULL || serverRandom == NULL || suite == NULL) {
ret = BAD_FUNC_ARG;
}
if (ret == 0 && ssl->arrays->preMasterSecret == NULL) {
ssl->arrays->preMasterSz = ENCRYPT_LEN;
ssl->arrays->preMasterSecret = (byte*)XMALLOC(ENCRYPT_LEN, ssl->heap,
DYNAMIC_TYPE_SECRET);
if (ssl->arrays->preMasterSecret == NULL) {
ret = MEMORY_E;
}
}
if (ret == 0) {
XMEMCPY(ssl->arrays->preMasterSecret, preMasterSecret, preMasterSz);
XMEMSET(ssl->arrays->preMasterSecret + preMasterSz, 0,
ENCRYPT_LEN - preMasterSz);
ssl->arrays->preMasterSz = preMasterSz;
XMEMCPY(ssl->arrays->clientRandom, clientRandom, RAN_LEN);
XMEMCPY(ssl->arrays->serverRandom, serverRandom, RAN_LEN);
ssl->options.cipherSuite0 = suite[0];
ssl->options.cipherSuite = suite[1];
ret = SetCipherSpecs(ssl);
}
if (ret == 0)
ret = MakeTlsMasterSecret(ssl);
if (ret == 0) {
ssl->keys.encryptionOn = 1;
ret = SetKeysSide(ssl, ENCRYPT_AND_DECRYPT_SIDE);
}
if (ret == 0) {
if (ssl->options.dtls) {
#ifdef WOLFSSL_DTLS
WOLFSSL_DTLS_PEERSEQ* peerSeq;
int i;
ssl->keys.dtls_epoch = epoch;
for (i = 0, peerSeq = ssl->keys.peerSeq;
i < WOLFSSL_DTLS_PEERSEQ_SZ;
i++, peerSeq++) {
peerSeq->nextEpoch = epoch;
peerSeq->prevSeq_lo = peerSeq->nextSeq_lo;
peerSeq->prevSeq_hi = peerSeq->nextSeq_hi;
peerSeq->nextSeq_lo = 0;
peerSeq->nextSeq_hi = 0;
XMEMCPY(peerSeq->prevWindow, peerSeq->window, DTLS_SEQ_SZ);
XMEMSET(peerSeq->window, 0, DTLS_SEQ_SZ);
peerSeq->highwaterMark = UpdateHighwaterMark(0,
ssl->ctx->mcastFirstSeq,
ssl->ctx->mcastSecondSeq,
ssl->ctx->mcastMaxSeq);
}
#else
(void)epoch;
#endif
}
FreeHandshakeResources(ssl);
ret = WOLFSSL_SUCCESS;
}
else {
if (ssl)
ssl->error = ret;
ret = WOLFSSL_FATAL_ERROR;
}
WOLFSSL_LEAVE("wolfSSL_set_secret", ret);
return ret;
}
#ifdef WOLFSSL_DTLS
int wolfSSL_mcast_peer_add(WOLFSSL* ssl, word16 peerId, int sub)
{
WOLFSSL_DTLS_PEERSEQ* p = NULL;
int ret = WOLFSSL_SUCCESS;
int i;
WOLFSSL_ENTER("wolfSSL_mcast_peer_add");
if (ssl == NULL || peerId > 255)
return BAD_FUNC_ARG;
if (!sub) {
/* Make sure it isn't already present, while keeping the first
* open spot. */
for (i = 0; i < WOLFSSL_DTLS_PEERSEQ_SZ; i++) {
if (ssl->keys.peerSeq[i].peerId == INVALID_PEER_ID)
p = &ssl->keys.peerSeq[i];
if (ssl->keys.peerSeq[i].peerId == peerId) {
WOLFSSL_MSG("Peer ID already in multicast peer list.");
p = NULL;
}
}
if (p != NULL) {
XMEMSET(p, 0, sizeof(WOLFSSL_DTLS_PEERSEQ));
p->peerId = peerId;
p->highwaterMark = UpdateHighwaterMark(0,
ssl->ctx->mcastFirstSeq,
ssl->ctx->mcastSecondSeq,
ssl->ctx->mcastMaxSeq);
}
else {
WOLFSSL_MSG("No room in peer list.");
ret = -1;
}
}
else {
for (i = 0; i < WOLFSSL_DTLS_PEERSEQ_SZ; i++) {
if (ssl->keys.peerSeq[i].peerId == peerId)
p = &ssl->keys.peerSeq[i];
}
if (p != NULL) {
p->peerId = INVALID_PEER_ID;
}
else {
WOLFSSL_MSG("Peer not found in list.");
}
}
WOLFSSL_LEAVE("wolfSSL_mcast_peer_add", ret);
return ret;
}
/* If peerId is in the list of peers and its last sequence number is non-zero,
* return 1, otherwise return 0. */
int wolfSSL_mcast_peer_known(WOLFSSL* ssl, unsigned short peerId)
{
int known = 0;
int i;
WOLFSSL_ENTER("wolfSSL_mcast_peer_known");
if (ssl == NULL || peerId > 255) {
return BAD_FUNC_ARG;
}
for (i = 0; i < WOLFSSL_DTLS_PEERSEQ_SZ; i++) {
if (ssl->keys.peerSeq[i].peerId == peerId) {
if (ssl->keys.peerSeq[i].nextSeq_hi ||
ssl->keys.peerSeq[i].nextSeq_lo) {
known = 1;
}
break;
}
}
WOLFSSL_LEAVE("wolfSSL_mcast_peer_known", known);
return known;
}
int wolfSSL_CTX_mcast_set_highwater_cb(WOLFSSL_CTX* ctx, word32 maxSeq,
word32 first, word32 second,
CallbackMcastHighwater cb)
{
if (ctx == NULL || (second && first > second) ||
first > maxSeq || second > maxSeq || cb == NULL) {
return BAD_FUNC_ARG;
}
ctx->mcastHwCb = cb;
ctx->mcastFirstSeq = first;
ctx->mcastSecondSeq = second;
ctx->mcastMaxSeq = maxSeq;
return WOLFSSL_SUCCESS;
}
int wolfSSL_mcast_set_highwater_ctx(WOLFSSL* ssl, void* ctx)
{
if (ssl == NULL || ctx == NULL)
return BAD_FUNC_ARG;
ssl->mcastHwCbCtx = ctx;
return WOLFSSL_SUCCESS;
}
#endif /* WOLFSSL_DTLS */
#endif /* WOLFSSL_MULTICAST */
#endif /* WOLFSSL_LEANPSK */
/* return underlying connect or accept, WOLFSSL_SUCCESS on ok */
int wolfSSL_negotiate(WOLFSSL* ssl)
{
int err = WOLFSSL_FATAL_ERROR;
WOLFSSL_ENTER("wolfSSL_negotiate");
if (ssl == NULL)
return WOLFSSL_FATAL_ERROR;
#ifndef NO_WOLFSSL_SERVER
if (ssl->options.side == WOLFSSL_SERVER_END) {
#ifdef WOLFSSL_TLS13
if (IsAtLeastTLSv1_3(ssl->version))
err = wolfSSL_accept_TLSv13(ssl);
else
#endif
err = wolfSSL_accept(ssl);
}
#endif
#ifndef NO_WOLFSSL_CLIENT
if (ssl->options.side == WOLFSSL_CLIENT_END) {
#ifdef WOLFSSL_TLS13
if (IsAtLeastTLSv1_3(ssl->version))
err = wolfSSL_connect_TLSv13(ssl);
else
#endif
err = wolfSSL_connect(ssl);
}
#endif
(void)ssl;
WOLFSSL_LEAVE("wolfSSL_negotiate", err);
return err;
}
WOLFSSL_ABI
WC_RNG* wolfSSL_GetRNG(WOLFSSL* ssl)
{
if (ssl) {
return ssl->rng;
}
return NULL;
}
#ifndef WOLFSSL_LEANPSK
/* object size based on build */
int wolfSSL_GetObjectSize(void)
{
#ifdef SHOW_SIZES
printf("sizeof suites = %lu\n", (unsigned long)sizeof(Suites));
printf("sizeof ciphers(2) = %lu\n", (unsigned long)sizeof(Ciphers));
#ifndef NO_RC4
printf("\tsizeof arc4 = %lu\n", (unsigned long)sizeof(Arc4));
#endif
printf("\tsizeof aes = %lu\n", (unsigned long)sizeof(Aes));
#ifndef NO_DES3
printf("\tsizeof des3 = %lu\n", (unsigned long)sizeof(Des3));
#endif
#ifdef HAVE_CHACHA
printf("\tsizeof chacha = %lu\n", (unsigned long)sizeof(ChaCha));
#endif
#ifdef WOLFSSL_SM4
printf("\tsizeof sm4 = %lu\n", (unsigned long)sizeof(Sm4));
#endif
printf("sizeof cipher specs = %lu\n", (unsigned long)
sizeof(CipherSpecs));
printf("sizeof keys = %lu\n", (unsigned long)sizeof(Keys));
printf("sizeof Hashes(2) = %lu\n", (unsigned long)sizeof(Hashes));
#ifndef NO_MD5
printf("\tsizeof MD5 = %lu\n", (unsigned long)sizeof(wc_Md5));
#endif
#ifndef NO_SHA
printf("\tsizeof SHA = %lu\n", (unsigned long)sizeof(wc_Sha));
#endif
#ifdef WOLFSSL_SHA224
printf("\tsizeof SHA224 = %lu\n", (unsigned long)sizeof(wc_Sha224));
#endif
#ifndef NO_SHA256
printf("\tsizeof SHA256 = %lu\n", (unsigned long)sizeof(wc_Sha256));
#endif
#ifdef WOLFSSL_SHA384
printf("\tsizeof SHA384 = %lu\n", (unsigned long)sizeof(wc_Sha384));
#endif
#ifdef WOLFSSL_SHA384
printf("\tsizeof SHA512 = %lu\n", (unsigned long)sizeof(wc_Sha512));
#endif
#ifdef WOLFSSL_SM3
printf("\tsizeof sm3 = %lu\n", (unsigned long)sizeof(Sm3));
#endif
printf("sizeof Buffers = %lu\n", (unsigned long)sizeof(Buffers));
printf("sizeof Options = %lu\n", (unsigned long)sizeof(Options));
printf("sizeof Arrays = %lu\n", (unsigned long)sizeof(Arrays));
#ifndef NO_RSA
printf("sizeof RsaKey = %lu\n", (unsigned long)sizeof(RsaKey));
#endif
#ifdef HAVE_ECC
printf("sizeof ecc_key = %lu\n", (unsigned long)sizeof(ecc_key));
#endif
printf("sizeof WOLFSSL_CIPHER = %lu\n", (unsigned long)
sizeof(WOLFSSL_CIPHER));
printf("sizeof WOLFSSL_SESSION = %lu\n", (unsigned long)
sizeof(WOLFSSL_SESSION));
printf("sizeof WOLFSSL = %lu\n", (unsigned long)sizeof(WOLFSSL));
printf("sizeof WOLFSSL_CTX = %lu\n", (unsigned long)
sizeof(WOLFSSL_CTX));
#endif
return sizeof(WOLFSSL);
}
int wolfSSL_CTX_GetObjectSize(void)
{
return sizeof(WOLFSSL_CTX);
}
int wolfSSL_METHOD_GetObjectSize(void)
{
return sizeof(WOLFSSL_METHOD);
}
#endif
#ifdef WOLFSSL_STATIC_MEMORY
int wolfSSL_CTX_load_static_memory(WOLFSSL_CTX** ctx,
wolfSSL_method_func method, unsigned char* buf, unsigned int sz, int flag,
int maxSz)
{
WOLFSSL_HEAP_HINT* hint = NULL;
if (ctx == NULL || buf == NULL) {
return BAD_FUNC_ARG;
}
if (*ctx == NULL && method == NULL) {
return BAD_FUNC_ARG;
}
/* If there is a heap already, capture it in hint. */
if (*ctx && (*ctx)->heap != NULL) {
hint = (*ctx)->heap;
}
if (wc_LoadStaticMemory(&hint, buf, sz, flag, maxSz)) {
WOLFSSL_MSG("Error loading static memory");
return WOLFSSL_FAILURE;
}
if (*ctx) {
if ((*ctx)->heap == NULL) {
(*ctx)->heap = (void*)hint;
}
}
else {
/* create ctx if needed */
*ctx = wolfSSL_CTX_new_ex(method(hint), hint);
if (*ctx == NULL) {
WOLFSSL_MSG("Error creating ctx");
return WOLFSSL_FAILURE;
}
}
return WOLFSSL_SUCCESS;
}
int wolfSSL_is_static_memory(WOLFSSL* ssl, WOLFSSL_MEM_CONN_STATS* mem_stats)
{
if (ssl == NULL) {
return BAD_FUNC_ARG;
}
WOLFSSL_ENTER("wolfSSL_is_static_memory");
#ifndef WOLFSSL_STATIC_MEMORY_LEAN
/* fill out statistics if wanted and WOLFMEM_TRACK_STATS flag */
if (mem_stats != NULL && ssl->heap != NULL) {
WOLFSSL_HEAP_HINT* hint = ((WOLFSSL_HEAP_HINT*)(ssl->heap));
WOLFSSL_HEAP* heap = hint->memory;
if (heap->flag & WOLFMEM_TRACK_STATS && hint->stats != NULL) {
XMEMCPY(mem_stats, hint->stats, sizeof(WOLFSSL_MEM_CONN_STATS));
}
}
#endif
(void)mem_stats;
return (ssl->heap) ? 1 : 0;
}
int wolfSSL_CTX_is_static_memory(WOLFSSL_CTX* ctx, WOLFSSL_MEM_STATS* mem_stats)
{
if (ctx == NULL) {
return BAD_FUNC_ARG;
}
WOLFSSL_ENTER("wolfSSL_CTX_is_static_memory");
#ifndef WOLFSSL_STATIC_MEMORY_LEAN
/* fill out statistics if wanted */
if (mem_stats != NULL && ctx->heap != NULL) {
WOLFSSL_HEAP* heap = ((WOLFSSL_HEAP_HINT*)(ctx->heap))->memory;
if (wolfSSL_GetMemStats(heap, mem_stats) != 1) {
return MEMORY_E;
}
}
#endif
(void)mem_stats;
return (ctx->heap) ? 1 : 0;
}
#endif /* WOLFSSL_STATIC_MEMORY */
/* return max record layer size plaintext input size */
int wolfSSL_GetMaxOutputSize(WOLFSSL* ssl)
{
WOLFSSL_ENTER("wolfSSL_GetMaxOutputSize");
if (ssl == NULL)
return BAD_FUNC_ARG;
if (ssl->options.handShakeState != HANDSHAKE_DONE) {
WOLFSSL_MSG("Handshake not complete yet");
return BAD_FUNC_ARG;
}
return wolfSSL_GetMaxFragSize(ssl, OUTPUT_RECORD_SIZE);
}
/* return record layer size of plaintext input size */
int wolfSSL_GetOutputSize(WOLFSSL* ssl, int inSz)
{
int maxSize;
WOLFSSL_ENTER("wolfSSL_GetOutputSize");
if (inSz < 0)
return BAD_FUNC_ARG;
maxSize = wolfSSL_GetMaxOutputSize(ssl);
if (maxSize < 0)
return maxSize; /* error */
if (inSz > maxSize)
return INPUT_SIZE_E;
return BuildMessage(ssl, NULL, 0, NULL, inSz, application_data, 0, 1, 0,
CUR_ORDER);
}
#ifdef HAVE_ECC
int wolfSSL_CTX_SetMinEccKey_Sz(WOLFSSL_CTX* ctx, short keySz)
{
WOLFSSL_ENTER("wolfSSL_CTX_SetMinEccKey_Sz");
if (ctx == NULL || keySz < 0 || keySz % 8 != 0) {
WOLFSSL_MSG("Key size must be divisible by 8 or ctx was null");
return BAD_FUNC_ARG;
}
ctx->minEccKeySz = keySz / 8;
#ifndef NO_CERTS
ctx->cm->minEccKeySz = keySz / 8;
#endif
return WOLFSSL_SUCCESS;
}
int wolfSSL_SetMinEccKey_Sz(WOLFSSL* ssl, short keySz)
{
WOLFSSL_ENTER("wolfSSL_SetMinEccKey_Sz");
if (ssl == NULL || keySz < 0 || keySz % 8 != 0) {
WOLFSSL_MSG("Key size must be divisible by 8 or ssl was null");
return BAD_FUNC_ARG;
}
ssl->options.minEccKeySz = keySz / 8;
return WOLFSSL_SUCCESS;
}
#endif /* HAVE_ECC */
#ifndef NO_RSA
int wolfSSL_CTX_SetMinRsaKey_Sz(WOLFSSL_CTX* ctx, short keySz)
{
if (ctx == NULL || keySz < 0 || keySz % 8 != 0) {
WOLFSSL_MSG("Key size must be divisible by 8 or ctx was null");
return BAD_FUNC_ARG;
}
ctx->minRsaKeySz = keySz / 8;
ctx->cm->minRsaKeySz = keySz / 8;
return WOLFSSL_SUCCESS;
}
int wolfSSL_SetMinRsaKey_Sz(WOLFSSL* ssl, short keySz)
{
if (ssl == NULL || keySz < 0 || keySz % 8 != 0) {
WOLFSSL_MSG("Key size must be divisible by 8 or ssl was null");
return BAD_FUNC_ARG;
}
ssl->options.minRsaKeySz = keySz / 8;
return WOLFSSL_SUCCESS;
}
#endif /* !NO_RSA */
#ifndef NO_DH
#if !defined(WOLFSSL_OLD_PRIME_CHECK) && !defined(HAVE_FIPS) && \
!defined(HAVE_SELFTEST)
/* Enables or disables the session's DH key prime test. */
int wolfSSL_SetEnableDhKeyTest(WOLFSSL* ssl, int enable)
{
WOLFSSL_ENTER("wolfSSL_SetEnableDhKeyTest");
if (ssl == NULL)
return BAD_FUNC_ARG;
if (!enable)
ssl->options.dhDoKeyTest = 0;
else
ssl->options.dhDoKeyTest = 1;
WOLFSSL_LEAVE("wolfSSL_SetEnableDhKeyTest", WOLFSSL_SUCCESS);
return WOLFSSL_SUCCESS;
}
#endif
int wolfSSL_CTX_SetMinDhKey_Sz(WOLFSSL_CTX* ctx, word16 keySz_bits)
{
if (ctx == NULL || keySz_bits > 16000 || keySz_bits % 8 != 0)
return BAD_FUNC_ARG;
ctx->minDhKeySz = keySz_bits / 8;
return WOLFSSL_SUCCESS;
}
int wolfSSL_SetMinDhKey_Sz(WOLFSSL* ssl, word16 keySz_bits)
{
if (ssl == NULL || keySz_bits > 16000 || keySz_bits % 8 != 0)
return BAD_FUNC_ARG;
ssl->options.minDhKeySz = keySz_bits / 8;
return WOLFSSL_SUCCESS;
}
int wolfSSL_CTX_SetMaxDhKey_Sz(WOLFSSL_CTX* ctx, word16 keySz_bits)
{
if (ctx == NULL || keySz_bits > 16000 || keySz_bits % 8 != 0)
return BAD_FUNC_ARG;
ctx->maxDhKeySz = keySz_bits / 8;
return WOLFSSL_SUCCESS;
}
int wolfSSL_SetMaxDhKey_Sz(WOLFSSL* ssl, word16 keySz_bits)
{
if (ssl == NULL || keySz_bits > 16000 || keySz_bits % 8 != 0)
return BAD_FUNC_ARG;
ssl->options.maxDhKeySz = keySz_bits / 8;
return WOLFSSL_SUCCESS;
}
int wolfSSL_GetDhKey_Sz(WOLFSSL* ssl)
{
if (ssl == NULL)
return BAD_FUNC_ARG;
return (ssl->options.dhKeySz * 8);
}
#endif /* !NO_DH */
WOLFSSL_ABI
int wolfSSL_write(WOLFSSL* ssl, const void* data, int sz)
{
int ret;
WOLFSSL_ENTER("wolfSSL_write");
if (ssl == NULL || data == NULL || sz < 0)
return BAD_FUNC_ARG;
#ifdef WOLFSSL_QUIC
if (WOLFSSL_IS_QUIC(ssl)) {
WOLFSSL_MSG("SSL_write() on QUIC not allowed");
return BAD_FUNC_ARG;
}
#endif
#ifdef HAVE_WRITE_DUP
{ /* local variable scope */
int dupErr = 0; /* local copy */
ret = 0;
if (ssl->dupWrite && ssl->dupSide == READ_DUP_SIDE) {
WOLFSSL_MSG("Read dup side cannot write");
return WRITE_DUP_WRITE_E;
}
if (ssl->dupWrite) {
if (wc_LockMutex(&ssl->dupWrite->dupMutex) != 0) {
return BAD_MUTEX_E;
}
dupErr = ssl->dupWrite->dupErr;
ret = wc_UnLockMutex(&ssl->dupWrite->dupMutex);
}
if (ret != 0) {
ssl->error = ret; /* high priority fatal error */
return WOLFSSL_FATAL_ERROR;
}
if (dupErr != 0) {
WOLFSSL_MSG("Write dup error from other side");
ssl->error = dupErr;
return WOLFSSL_FATAL_ERROR;
}
}
#endif
#ifdef HAVE_ERRNO_H
errno = 0;
#endif
#ifdef OPENSSL_EXTRA
if (ssl->CBIS != NULL) {
ssl->CBIS(ssl, SSL_CB_WRITE, WOLFSSL_SUCCESS);
ssl->cbmode = SSL_CB_WRITE;
}
#endif
ret = SendData(ssl, data, sz);
WOLFSSL_LEAVE("wolfSSL_write", ret);
if (ret < 0)
return WOLFSSL_FATAL_ERROR;
else
return ret;
}
static int wolfSSL_read_internal(WOLFSSL* ssl, void* data, int sz, int peek)
{
int ret;
WOLFSSL_ENTER("wolfSSL_read_internal");
if (ssl == NULL || data == NULL || sz < 0)
return BAD_FUNC_ARG;
#ifdef WOLFSSL_QUIC
if (WOLFSSL_IS_QUIC(ssl)) {
WOLFSSL_MSG("SSL_read() on QUIC not allowed");
return BAD_FUNC_ARG;
}
#endif
#if defined(WOLFSSL_ERROR_CODE_OPENSSL) && defined(OPENSSL_EXTRA)
/* This additional logic is meant to simulate following openSSL behavior:
* After bidirectional SSL_shutdown complete, SSL_read returns 0 and
* SSL_get_error_code returns SSL_ERROR_ZERO_RETURN.
* This behavior is used to know the disconnect of the underlying
* transport layer.
*
* In this logic, CBIORecv is called with a read size of 0 to check the
* transport layer status. It also returns WOLFSSL_FAILURE so that
* SSL_read does not return a positive number on failure.
*/
/* make sure bidirectional TLS shutdown completes */
if (ssl->error == WOLFSSL_ERROR_SYSCALL || ssl->options.shutdownDone) {
/* ask the underlying transport the connection is closed */
if (ssl->CBIORecv(ssl, (char*)data, 0, ssl->IOCB_ReadCtx) ==
WOLFSSL_CBIO_ERR_CONN_CLOSE) {
ssl->options.isClosed = 1;
ssl->error = WOLFSSL_ERROR_ZERO_RETURN;
}
return WOLFSSL_FAILURE;
}
#endif
#ifdef HAVE_WRITE_DUP
if (ssl->dupWrite && ssl->dupSide == WRITE_DUP_SIDE) {
WOLFSSL_MSG("Write dup side cannot read");
return WRITE_DUP_READ_E;
}
#endif
#ifdef HAVE_ERRNO_H
errno = 0;
#endif
ret = ReceiveData(ssl, (byte*)data, sz, peek);
#ifdef HAVE_WRITE_DUP
if (ssl->dupWrite) {
if (ssl->error != 0 && ssl->error != WANT_READ
#ifdef WOLFSSL_ASYNC_CRYPT
&& ssl->error != WC_PENDING_E
#endif
) {
int notifyErr;
WOLFSSL_MSG("Notifying write side of fatal read error");
notifyErr = NotifyWriteSide(ssl, ssl->error);
if (notifyErr < 0) {
ret = ssl->error = notifyErr;
}
}
}
#endif
WOLFSSL_LEAVE("wolfSSL_read_internal", ret);
if (ret < 0)
return WOLFSSL_FATAL_ERROR;
else
return ret;
}
int wolfSSL_peek(WOLFSSL* ssl, void* data, int sz)
{
WOLFSSL_ENTER("wolfSSL_peek");
return wolfSSL_read_internal(ssl, data, sz, TRUE);
}
WOLFSSL_ABI
int wolfSSL_read(WOLFSSL* ssl, void* data, int sz)
{
WOLFSSL_ENTER("wolfSSL_read");
#ifdef OPENSSL_EXTRA
if (ssl == NULL) {
return BAD_FUNC_ARG;
}
if (ssl->CBIS != NULL) {
ssl->CBIS(ssl, SSL_CB_READ, WOLFSSL_SUCCESS);
ssl->cbmode = SSL_CB_READ;
}
#endif
return wolfSSL_read_internal(ssl, data, sz, FALSE);
}
#ifdef WOLFSSL_MULTICAST
int wolfSSL_mcast_read(WOLFSSL* ssl, word16* id, void* data, int sz)
{
int ret = 0;
WOLFSSL_ENTER("wolfSSL_mcast_read");
if (ssl == NULL)
return BAD_FUNC_ARG;
ret = wolfSSL_read_internal(ssl, data, sz, FALSE);
if (ssl->options.dtls && ssl->options.haveMcast && id != NULL)
*id = ssl->keys.curPeerId;
return ret;
}
#endif /* WOLFSSL_MULTICAST */
/* helpers to set the device id, WOLFSSL_SUCCESS on ok */
WOLFSSL_ABI
int wolfSSL_SetDevId(WOLFSSL* ssl, int devId)
{
if (ssl == NULL)
return BAD_FUNC_ARG;
ssl->devId = devId;
return WOLFSSL_SUCCESS;
}
WOLFSSL_ABI
int wolfSSL_CTX_SetDevId(WOLFSSL_CTX* ctx, int devId)
{
if (ctx == NULL)
return BAD_FUNC_ARG;
ctx->devId = devId;
return WOLFSSL_SUCCESS;
}
/* helpers to get device id and heap */
WOLFSSL_ABI
int wolfSSL_CTX_GetDevId(WOLFSSL_CTX* ctx, WOLFSSL* ssl)
{
int devId = INVALID_DEVID;
if (ssl != NULL)
devId = ssl->devId;
if (ctx != NULL && devId == INVALID_DEVID)
devId = ctx->devId;
return devId;
}
void* wolfSSL_CTX_GetHeap(WOLFSSL_CTX* ctx, WOLFSSL* ssl)
{
void* heap = NULL;
if (ctx != NULL)
heap = ctx->heap;
else if (ssl != NULL)
heap = ssl->heap;
return heap;
}
#ifdef HAVE_SNI
WOLFSSL_ABI
int wolfSSL_UseSNI(WOLFSSL* ssl, byte type, const void* data, word16 size)
{
if (ssl == NULL)
return BAD_FUNC_ARG;
return TLSX_UseSNI(&ssl->extensions, type, data, size, ssl->heap);
}
WOLFSSL_ABI
int wolfSSL_CTX_UseSNI(WOLFSSL_CTX* ctx, byte type, const void* data,
word16 size)
{
if (ctx == NULL)
return BAD_FUNC_ARG;
return TLSX_UseSNI(&ctx->extensions, type, data, size, ctx->heap);
}
#ifndef NO_WOLFSSL_SERVER
void wolfSSL_SNI_SetOptions(WOLFSSL* ssl, byte type, byte options)
{
if (ssl && ssl->extensions)
TLSX_SNI_SetOptions(ssl->extensions, type, options);
}
void wolfSSL_CTX_SNI_SetOptions(WOLFSSL_CTX* ctx, byte type, byte options)
{
if (ctx && ctx->extensions)
TLSX_SNI_SetOptions(ctx->extensions, type, options);
}
byte wolfSSL_SNI_Status(WOLFSSL* ssl, byte type)
{
return TLSX_SNI_Status(ssl ? ssl->extensions : NULL, type);
}
word16 wolfSSL_SNI_GetRequest(WOLFSSL* ssl, byte type, void** data)
{
if (data)
*data = NULL;
if (ssl && ssl->extensions)
return TLSX_SNI_GetRequest(ssl->extensions, type, data, 0);
return 0;
}
int wolfSSL_SNI_GetFromBuffer(const byte* clientHello, word32 helloSz,
byte type, byte* sni, word32* inOutSz)
{
if (clientHello && helloSz > 0 && sni && inOutSz && *inOutSz > 0)
return TLSX_SNI_GetFromBuffer(clientHello, helloSz, type, sni, inOutSz);
return BAD_FUNC_ARG;
}
#endif /* NO_WOLFSSL_SERVER */
#endif /* HAVE_SNI */
#ifdef HAVE_TRUSTED_CA
int wolfSSL_UseTrustedCA(WOLFSSL* ssl, byte type,
const byte* certId, word32 certIdSz)
{
if (ssl == NULL)
return BAD_FUNC_ARG;
if (type == WOLFSSL_TRUSTED_CA_PRE_AGREED) {
if (certId != NULL || certIdSz != 0)
return BAD_FUNC_ARG;
}
else if (type == WOLFSSL_TRUSTED_CA_X509_NAME) {
if (certId == NULL || certIdSz == 0)
return BAD_FUNC_ARG;
}
#ifndef NO_SHA
else if (type == WOLFSSL_TRUSTED_CA_KEY_SHA1 ||
type == WOLFSSL_TRUSTED_CA_CERT_SHA1) {
if (certId == NULL || certIdSz != WC_SHA_DIGEST_SIZE)
return BAD_FUNC_ARG;
}
#endif
else
return BAD_FUNC_ARG;
return TLSX_UseTrustedCA(&ssl->extensions,
type, certId, certIdSz, ssl->heap);
}
#endif /* HAVE_TRUSTED_CA */
#ifdef HAVE_MAX_FRAGMENT
#ifndef NO_WOLFSSL_CLIENT
int wolfSSL_UseMaxFragment(WOLFSSL* ssl, byte mfl)
{
if (ssl == NULL)
return BAD_FUNC_ARG;
#ifdef WOLFSSL_ALLOW_MAX_FRAGMENT_ADJUST
/* The following is a non-standard way to reconfigure the max packet size
post-handshake for wolfSSL_write/wolfSSL_read */
if (ssl->options.handShakeState == HANDSHAKE_DONE) {
switch (mfl) {
case WOLFSSL_MFL_2_8 : ssl->max_fragment = 256; break;
case WOLFSSL_MFL_2_9 : ssl->max_fragment = 512; break;
case WOLFSSL_MFL_2_10: ssl->max_fragment = 1024; break;
case WOLFSSL_MFL_2_11: ssl->max_fragment = 2048; break;
case WOLFSSL_MFL_2_12: ssl->max_fragment = 4096; break;
case WOLFSSL_MFL_2_13: ssl->max_fragment = 8192; break;
default: ssl->max_fragment = MAX_RECORD_SIZE; break;
}
return WOLFSSL_SUCCESS;
}
#endif /* WOLFSSL_MAX_FRAGMENT_ADJUST */
/* This call sets the max fragment TLS extension, which gets sent to server.
The server_hello response is what sets the `ssl->max_fragment` in
TLSX_MFL_Parse */
return TLSX_UseMaxFragment(&ssl->extensions, mfl, ssl->heap);
}
int wolfSSL_CTX_UseMaxFragment(WOLFSSL_CTX* ctx, byte mfl)
{
if (ctx == NULL)
return BAD_FUNC_ARG;
return TLSX_UseMaxFragment(&ctx->extensions, mfl, ctx->heap);
}
#endif /* NO_WOLFSSL_CLIENT */
#endif /* HAVE_MAX_FRAGMENT */
#ifdef HAVE_TRUNCATED_HMAC
#ifndef NO_WOLFSSL_CLIENT
int wolfSSL_UseTruncatedHMAC(WOLFSSL* ssl)
{
if (ssl == NULL)
return BAD_FUNC_ARG;
return TLSX_UseTruncatedHMAC(&ssl->extensions, ssl->heap);
}
int wolfSSL_CTX_UseTruncatedHMAC(WOLFSSL_CTX* ctx)
{
if (ctx == NULL)
return BAD_FUNC_ARG;
return TLSX_UseTruncatedHMAC(&ctx->extensions, ctx->heap);
}
#endif /* NO_WOLFSSL_CLIENT */
#endif /* HAVE_TRUNCATED_HMAC */
#ifdef HAVE_CERTIFICATE_STATUS_REQUEST
int wolfSSL_UseOCSPStapling(WOLFSSL* ssl, byte status_type, byte options)
{
WOLFSSL_ENTER("wolfSSL_UseOCSPStapling");
if (ssl == NULL || ssl->options.side != WOLFSSL_CLIENT_END)
return BAD_FUNC_ARG;
return TLSX_UseCertificateStatusRequest(&ssl->extensions, status_type,
options, NULL, ssl->heap, ssl->devId);
}
int wolfSSL_CTX_UseOCSPStapling(WOLFSSL_CTX* ctx, byte status_type,
byte options)
{
WOLFSSL_ENTER("wolfSSL_CTX_UseOCSPStapling");
if (ctx == NULL || ctx->method->side != WOLFSSL_CLIENT_END)
return BAD_FUNC_ARG;
return TLSX_UseCertificateStatusRequest(&ctx->extensions, status_type,
options, NULL, ctx->heap, ctx->devId);
}
#endif /* HAVE_CERTIFICATE_STATUS_REQUEST */
#ifdef HAVE_CERTIFICATE_STATUS_REQUEST_V2
int wolfSSL_UseOCSPStaplingV2(WOLFSSL* ssl, byte status_type, byte options)
{
if (ssl == NULL || ssl->options.side != WOLFSSL_CLIENT_END)
return BAD_FUNC_ARG;
return TLSX_UseCertificateStatusRequestV2(&ssl->extensions, status_type,
options, ssl->heap, ssl->devId);
}
int wolfSSL_CTX_UseOCSPStaplingV2(WOLFSSL_CTX* ctx, byte status_type,
byte options)
{
if (ctx == NULL || ctx->method->side != WOLFSSL_CLIENT_END)
return BAD_FUNC_ARG;
return TLSX_UseCertificateStatusRequestV2(&ctx->extensions, status_type,
options, ctx->heap, ctx->devId);
}
#endif /* HAVE_CERTIFICATE_STATUS_REQUEST_V2 */
/* Elliptic Curves */
#if defined(HAVE_SUPPORTED_CURVES)
static int isValidCurveGroup(word16 name)
{
switch (name) {
case WOLFSSL_ECC_SECP160K1:
case WOLFSSL_ECC_SECP160R1:
case WOLFSSL_ECC_SECP160R2:
case WOLFSSL_ECC_SECP192K1:
case WOLFSSL_ECC_SECP192R1:
case WOLFSSL_ECC_SECP224K1:
case WOLFSSL_ECC_SECP224R1:
case WOLFSSL_ECC_SECP256K1:
case WOLFSSL_ECC_SECP256R1:
case WOLFSSL_ECC_SECP384R1:
case WOLFSSL_ECC_SECP521R1:
case WOLFSSL_ECC_BRAINPOOLP256R1:
case WOLFSSL_ECC_BRAINPOOLP384R1:
case WOLFSSL_ECC_BRAINPOOLP512R1:
case WOLFSSL_ECC_SM2P256V1:
case WOLFSSL_ECC_X25519:
case WOLFSSL_ECC_X448:
case WOLFSSL_FFDHE_2048:
case WOLFSSL_FFDHE_3072:
case WOLFSSL_FFDHE_4096:
case WOLFSSL_FFDHE_6144:
case WOLFSSL_FFDHE_8192:
#ifdef HAVE_PQC
case WOLFSSL_KYBER_LEVEL1:
case WOLFSSL_KYBER_LEVEL3:
case WOLFSSL_KYBER_LEVEL5:
#ifdef HAVE_LIBOQS
case WOLFSSL_P256_KYBER_LEVEL1:
case WOLFSSL_P384_KYBER_LEVEL3:
case WOLFSSL_P521_KYBER_LEVEL5:
#endif
#endif
return 1;
default:
return 0;
}
}
int wolfSSL_UseSupportedCurve(WOLFSSL* ssl, word16 name)
{
if (ssl == NULL || !isValidCurveGroup(name))
return BAD_FUNC_ARG;
ssl->options.userCurves = 1;
#if defined(NO_TLS)
return WOLFSSL_FAILURE;
#else
return TLSX_UseSupportedCurve(&ssl->extensions, name, ssl->heap);
#endif /* NO_TLS */
}
int wolfSSL_CTX_UseSupportedCurve(WOLFSSL_CTX* ctx, word16 name)
{
if (ctx == NULL || !isValidCurveGroup(name))
return BAD_FUNC_ARG;
ctx->userCurves = 1;
#if defined(NO_TLS)
return WOLFSSL_FAILURE;
#else
return TLSX_UseSupportedCurve(&ctx->extensions, name, ctx->heap);
#endif /* NO_TLS */
}
#if defined(OPENSSL_EXTRA)
int wolfSSL_CTX_set1_groups(WOLFSSL_CTX* ctx, int* groups,
int count)
{
int i;
int _groups[WOLFSSL_MAX_GROUP_COUNT];
WOLFSSL_ENTER("wolfSSL_CTX_set1_groups");
if (count == 0) {
WOLFSSL_MSG("Group count is zero");
return WOLFSSL_FAILURE;
}
for (i = 0; i < count; i++) {
if (isValidCurveGroup((word16)groups[i])) {
_groups[i] = groups[i];
}
#ifdef HAVE_ECC
else {
/* groups may be populated with curve NIDs */
int oid = (int)nid2oid(groups[i], oidCurveType);
int name = (int)GetCurveByOID(oid);
if (name == 0) {
WOLFSSL_MSG("Invalid group name");
return WOLFSSL_FAILURE;
}
_groups[i] = name;
}
#else
else {
WOLFSSL_MSG("Invalid group name");
return WOLFSSL_FAILURE;
}
#endif
}
return wolfSSL_CTX_set_groups(ctx, _groups, count) == WOLFSSL_SUCCESS ?
WOLFSSL_SUCCESS : WOLFSSL_FAILURE;
}
int wolfSSL_set1_groups(WOLFSSL* ssl, int* groups, int count)
{
int i;
int _groups[WOLFSSL_MAX_GROUP_COUNT];
WOLFSSL_ENTER("wolfSSL_CTX_set1_groups");
if (count == 0) {
WOLFSSL_MSG("Group count is zero");
return WOLFSSL_FAILURE;
}
for (i = 0; i < count; i++) {
if (isValidCurveGroup((word16)groups[i])) {
_groups[i] = groups[i];
}
#ifdef HAVE_ECC
else {
/* groups may be populated with curve NIDs */
int oid = (int)nid2oid(groups[i], oidCurveType);
int name = (int)GetCurveByOID(oid);
if (name == 0) {
WOLFSSL_MSG("Invalid group name");
return WOLFSSL_FAILURE;
}
_groups[i] = name;
}
#else
else {
WOLFSSL_MSG("Invalid group name");
return WOLFSSL_FAILURE;
}
#endif
}
return wolfSSL_set_groups(ssl, _groups, count) == WOLFSSL_SUCCESS ?
WOLFSSL_SUCCESS : WOLFSSL_FAILURE;
}
#endif /* OPENSSL_EXTRA */
#endif /* HAVE_SUPPORTED_CURVES */
/* Application-Layer Protocol Negotiation */
#ifdef HAVE_ALPN
WOLFSSL_ABI
int wolfSSL_UseALPN(WOLFSSL* ssl, char *protocol_name_list,
word32 protocol_name_listSz, byte options)
{
char *list, *ptr, **token;
word16 len;
int idx = 0;
int ret = WOLFSSL_FAILURE;
WOLFSSL_ENTER("wolfSSL_UseALPN");
if (ssl == NULL || protocol_name_list == NULL)
return BAD_FUNC_ARG;
if (protocol_name_listSz > (WOLFSSL_MAX_ALPN_NUMBER *
WOLFSSL_MAX_ALPN_PROTO_NAME_LEN +
WOLFSSL_MAX_ALPN_NUMBER)) {
WOLFSSL_MSG("Invalid arguments, protocol name list too long");
return BAD_FUNC_ARG;
}
if (!(options & WOLFSSL_ALPN_CONTINUE_ON_MISMATCH) &&
!(options & WOLFSSL_ALPN_FAILED_ON_MISMATCH)) {
WOLFSSL_MSG("Invalid arguments, options not supported");
return BAD_FUNC_ARG;
}
list = (char *)XMALLOC(protocol_name_listSz+1, ssl->heap,
DYNAMIC_TYPE_ALPN);
if (list == NULL) {
WOLFSSL_MSG("Memory failure");
return MEMORY_ERROR;
}
token = (char **)XMALLOC(sizeof(char *) * (WOLFSSL_MAX_ALPN_NUMBER+1),
ssl->heap, DYNAMIC_TYPE_ALPN);
if (token == NULL) {
XFREE(list, ssl->heap, DYNAMIC_TYPE_ALPN);
WOLFSSL_MSG("Memory failure");
return MEMORY_ERROR;
}
XMEMSET(token, 0, sizeof(char *) * (WOLFSSL_MAX_ALPN_NUMBER+1));
XSTRNCPY(list, protocol_name_list, protocol_name_listSz);
list[protocol_name_listSz] = '\0';
/* read all protocol name from the list */
token[idx] = XSTRTOK(list, ",", &ptr);
while (idx < WOLFSSL_MAX_ALPN_NUMBER && token[idx] != NULL)
token[++idx] = XSTRTOK(NULL, ",", &ptr);
/* add protocol name list in the TLS extension in reverse order */
while ((idx--) > 0) {
len = (word16)XSTRLEN(token[idx]);
ret = TLSX_UseALPN(&ssl->extensions, token[idx], len, options,
ssl->heap);
if (ret != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("TLSX_UseALPN failure");
break;
}
}
XFREE(token, ssl->heap, DYNAMIC_TYPE_ALPN);
XFREE(list, ssl->heap, DYNAMIC_TYPE_ALPN);
return ret;
}
int wolfSSL_ALPN_GetProtocol(WOLFSSL* ssl, char **protocol_name, word16 *size)
{
return TLSX_ALPN_GetRequest(ssl ? ssl->extensions : NULL,
(void **)protocol_name, size);
}
int wolfSSL_ALPN_GetPeerProtocol(WOLFSSL* ssl, char **list, word16 *listSz)
{
int i, len;
char *p;
byte *s;
if (ssl == NULL || list == NULL || listSz == NULL)
return BAD_FUNC_ARG;
if (ssl->alpn_peer_requested == NULL
|| ssl->alpn_peer_requested_length == 0)
return BUFFER_ERROR;
/* ssl->alpn_peer_requested are the original bytes sent in a ClientHello,
* formatted as (len-byte chars+)+. To turn n protocols into a
* comma-separated C string, one needs (n-1) commas and a final 0 byte
* which has the same length as the original.
* The returned length is the strlen() of the C string, so -1 of that. */
*listSz = ssl->alpn_peer_requested_length-1;
*list = p = (char *)XMALLOC(ssl->alpn_peer_requested_length, ssl->heap,
DYNAMIC_TYPE_TLSX);
if (p == NULL)
return MEMORY_ERROR;
for (i = 0, s = ssl->alpn_peer_requested;
i < ssl->alpn_peer_requested_length;
p += len, i += len)
{
if (i)
*p++ = ',';
len = s[i++];
/* guard against bad length bytes. */
if (i + len > ssl->alpn_peer_requested_length) {
XFREE(*list, ssl->heap, DYNAMIC_TYPE_TLSX);
*list = NULL;
return WOLFSSL_FAILURE;
}
XMEMCPY(p, s + i, len);
}
*p = 0;
return WOLFSSL_SUCCESS;
}
/* used to free memory allocated by wolfSSL_ALPN_GetPeerProtocol */
int wolfSSL_ALPN_FreePeerProtocol(WOLFSSL* ssl, char **list)
{
if (ssl == NULL) {
return BAD_FUNC_ARG;
}
XFREE(*list, ssl->heap, DYNAMIC_TYPE_TLSX);
*list = NULL;
return WOLFSSL_SUCCESS;
}
#endif /* HAVE_ALPN */
/* Secure Renegotiation */
#ifdef HAVE_SERVER_RENEGOTIATION_INFO
/* user is forcing ability to use secure renegotiation, we discourage it */
int wolfSSL_UseSecureRenegotiation(WOLFSSL* ssl)
{
int ret = WC_NO_ERR_TRACE(BAD_FUNC_ARG);
#if defined(NO_TLS)
(void)ssl;
#else
if (ssl)
ret = TLSX_UseSecureRenegotiation(&ssl->extensions, ssl->heap);
else
ret = BAD_FUNC_ARG;
if (ret == WOLFSSL_SUCCESS) {
TLSX* extension = TLSX_Find(ssl->extensions, TLSX_RENEGOTIATION_INFO);
if (extension)
ssl->secure_renegotiation = (SecureRenegotiation*)extension->data;
}
#endif /* !NO_TLS */
return ret;
}
int wolfSSL_CTX_UseSecureRenegotiation(WOLFSSL_CTX* ctx)
{
if (ctx == NULL)
return BAD_FUNC_ARG;
ctx->useSecureReneg = 1;
return WOLFSSL_SUCCESS;
}
#ifdef HAVE_SECURE_RENEGOTIATION
/* do a secure renegotiation handshake, user forced, we discourage */
static int _Rehandshake(WOLFSSL* ssl)
{
int ret;
if (ssl == NULL)
return BAD_FUNC_ARG;
if (IsAtLeastTLSv1_3(ssl->version)) {
WOLFSSL_MSG("Secure Renegotiation not supported in TLS 1.3");
return SECURE_RENEGOTIATION_E;
}
if (ssl->secure_renegotiation == NULL) {
WOLFSSL_MSG("Secure Renegotiation not forced on by user");
return SECURE_RENEGOTIATION_E;
}
if (ssl->secure_renegotiation->enabled == 0) {
WOLFSSL_MSG("Secure Renegotiation not enabled at extension level");
return SECURE_RENEGOTIATION_E;
}
#ifdef WOLFSSL_DTLS
if (ssl->options.dtls && ssl->keys.dtls_epoch == 0xFFFF) {
WOLFSSL_MSG("Secure Renegotiation not allowed. Epoch would wrap");
return SECURE_RENEGOTIATION_E;
}
#endif
/* If the client started the renegotiation, the server will already
* have processed the client's hello. */
if (ssl->options.side != WOLFSSL_SERVER_END ||
ssl->options.acceptState != ACCEPT_FIRST_REPLY_DONE) {
if (ssl->options.handShakeState != HANDSHAKE_DONE) {
if (!ssl->options.handShakeDone) {
WOLFSSL_MSG("Can't renegotiate until initial "
"handshake complete");
return SECURE_RENEGOTIATION_E;
}
else {
WOLFSSL_MSG("Renegotiation already started. "
"Moving it forward.");
ret = wolfSSL_negotiate(ssl);
if (ret == WOLFSSL_SUCCESS)
ssl->secure_rene_count++;
return ret;
}
}
/* reset handshake states */
ssl->options.sendVerify = 0;
ssl->options.serverState = NULL_STATE;
ssl->options.clientState = NULL_STATE;
ssl->options.connectState = CONNECT_BEGIN;
ssl->options.acceptState = ACCEPT_BEGIN_RENEG;
ssl->options.handShakeState = NULL_STATE;
ssl->options.processReply = 0; /* TODO, move states in internal.h */
XMEMSET(&ssl->msgsReceived, 0, sizeof(ssl->msgsReceived));
ssl->secure_renegotiation->cache_status = SCR_CACHE_NEEDED;
#if !defined(NO_WOLFSSL_SERVER)
if (ssl->options.side == WOLFSSL_SERVER_END) {
ret = SendHelloRequest(ssl);
if (ret != 0) {
ssl->error = ret;
return WOLFSSL_FATAL_ERROR;
}
}
#endif /* !NO_WOLFSSL_SERVER */
ret = InitHandshakeHashes(ssl);
if (ret != 0) {
ssl->error = ret;
return WOLFSSL_FATAL_ERROR;
}
}
ret = wolfSSL_negotiate(ssl);
if (ret == WOLFSSL_SUCCESS)
ssl->secure_rene_count++;
return ret;
}
/* do a secure renegotiation handshake, user forced, we discourage */
int wolfSSL_Rehandshake(WOLFSSL* ssl)
{
int ret;
WOLFSSL_ENTER("wolfSSL_Rehandshake");
if (ssl == NULL)
return WOLFSSL_FAILURE;
#ifdef HAVE_SESSION_TICKET
ret = WOLFSSL_SUCCESS;
#endif
if (ssl->options.side == WOLFSSL_SERVER_END) {
/* Reset option to send certificate verify. */
ssl->options.sendVerify = 0;
/* Reset resuming flag to do full secure handshake. */
ssl->options.resuming = 0;
}
else {
/* Reset resuming flag to do full secure handshake. */
ssl->options.resuming = 0;
#if defined(HAVE_SESSION_TICKET) && !defined(NO_WOLFSSL_CLIENT)
/* Clearing the ticket. */
ret = wolfSSL_UseSessionTicket(ssl);
#endif
}
/* CLIENT/SERVER: Reset peer authentication for full secure handshake. */
ssl->options.peerAuthGood = 0;
#ifdef HAVE_SESSION_TICKET
if (ret == WOLFSSL_SUCCESS)
#endif
ret = _Rehandshake(ssl);
return ret;
}
#ifndef NO_WOLFSSL_CLIENT
/* do a secure resumption handshake, user forced, we discourage */
int wolfSSL_SecureResume(WOLFSSL* ssl)
{
WOLFSSL_ENTER("wolfSSL_SecureResume");
if (ssl == NULL)
return BAD_FUNC_ARG;
if (ssl->options.side == WOLFSSL_SERVER_END) {
ssl->error = SIDE_ERROR;
return WOLFSSL_FATAL_ERROR;
}
return _Rehandshake(ssl);
}
#endif /* NO_WOLFSSL_CLIENT */
#endif /* HAVE_SECURE_RENEGOTIATION */
long wolfSSL_SSL_get_secure_renegotiation_support(WOLFSSL* ssl)
{
WOLFSSL_ENTER("wolfSSL_SSL_get_secure_renegotiation_support");
if (!ssl || !ssl->secure_renegotiation)
return WOLFSSL_FAILURE;
return ssl->secure_renegotiation->enabled;
}
#endif /* HAVE_SECURE_RENEGOTIATION_INFO */
#if defined(HAVE_SESSION_TICKET)
/* Session Ticket */
#if !defined(NO_WOLFSSL_SERVER)
int wolfSSL_CTX_NoTicketTLSv12(WOLFSSL_CTX* ctx)
{
if (ctx == NULL)
return BAD_FUNC_ARG;
ctx->noTicketTls12 = 1;
return WOLFSSL_SUCCESS;
}
int wolfSSL_NoTicketTLSv12(WOLFSSL* ssl)
{
if (ssl == NULL)
return BAD_FUNC_ARG;
ssl->options.noTicketTls12 = 1;
return WOLFSSL_SUCCESS;
}
/* WOLFSSL_SUCCESS on ok */
int wolfSSL_CTX_set_TicketEncCb(WOLFSSL_CTX* ctx, SessionTicketEncCb cb)
{
if (ctx == NULL)
return BAD_FUNC_ARG;
ctx->ticketEncCb = cb;
return WOLFSSL_SUCCESS;
}
/* set hint interval, WOLFSSL_SUCCESS on ok */
int wolfSSL_CTX_set_TicketHint(WOLFSSL_CTX* ctx, int hint)
{
if (ctx == NULL)
return BAD_FUNC_ARG;
ctx->ticketHint = hint;
return WOLFSSL_SUCCESS;
}
/* set user context, WOLFSSL_SUCCESS on ok */
int wolfSSL_CTX_set_TicketEncCtx(WOLFSSL_CTX* ctx, void* userCtx)
{
if (ctx == NULL)
return BAD_FUNC_ARG;
ctx->ticketEncCtx = userCtx;
return WOLFSSL_SUCCESS;
}
/* get user context - returns userCtx on success, NULL on failure */
void* wolfSSL_CTX_get_TicketEncCtx(WOLFSSL_CTX* ctx)
{
if (ctx == NULL)
return NULL;
return ctx->ticketEncCtx;
}
#ifdef WOLFSSL_TLS13
/* set the maximum number of tickets to send
* return WOLFSSL_SUCCESS on success and WOLFSSL_FAILURE on fail
*/
int wolfSSL_CTX_set_num_tickets(WOLFSSL_CTX* ctx, size_t mxTickets)
{
if (ctx == NULL)
return WOLFSSL_FAILURE;
ctx->maxTicketTls13 = (unsigned int)mxTickets;
return WOLFSSL_SUCCESS;
}
/* get the maximum number of tickets to send
* return number of tickets set to be sent
*/
size_t wolfSSL_CTX_get_num_tickets(WOLFSSL_CTX* ctx)
{
if (ctx == NULL)
return 0;
return (size_t)ctx->maxTicketTls13;
}
#endif /* WOLFSSL_TLS13 */
#endif /* !NO_WOLFSSL_SERVER */
#if !defined(NO_WOLFSSL_CLIENT)
int wolfSSL_UseSessionTicket(WOLFSSL* ssl)
{
if (ssl == NULL)
return BAD_FUNC_ARG;
return TLSX_UseSessionTicket(&ssl->extensions, NULL, ssl->heap);
}
int wolfSSL_CTX_UseSessionTicket(WOLFSSL_CTX* ctx)
{
if (ctx == NULL)
return BAD_FUNC_ARG;
return TLSX_UseSessionTicket(&ctx->extensions, NULL, ctx->heap);
}
int wolfSSL_get_SessionTicket(WOLFSSL* ssl, byte* buf, word32* bufSz)
{
if (ssl == NULL || buf == NULL || bufSz == NULL || *bufSz == 0)
return BAD_FUNC_ARG;
if (ssl->session->ticketLen <= *bufSz) {
XMEMCPY(buf, ssl->session->ticket, ssl->session->ticketLen);
*bufSz = ssl->session->ticketLen;
}
else
*bufSz = 0;
return WOLFSSL_SUCCESS;
}
int wolfSSL_set_SessionTicket(WOLFSSL* ssl, const byte* buf,
word32 bufSz)
{
if (ssl == NULL || (buf == NULL && bufSz > 0))
return BAD_FUNC_ARG;
if (bufSz > 0) {
/* Ticket will fit into static ticket */
if (bufSz <= SESSION_TICKET_LEN) {
if (ssl->session->ticketLenAlloc > 0) {
XFREE(ssl->session->ticket, ssl->session->heap,
DYNAMIC_TYPE_SESSION_TICK);
ssl->session->ticketLenAlloc = 0;
ssl->session->ticket = ssl->session->staticTicket;
}
}
else { /* Ticket requires dynamic ticket storage */
/* is dyn buffer big enough */
if (ssl->session->ticketLen < bufSz) {
if (ssl->session->ticketLenAlloc > 0) {
XFREE(ssl->session->ticket, ssl->session->heap,
DYNAMIC_TYPE_SESSION_TICK);
}
ssl->session->ticket = (byte*)XMALLOC(bufSz, ssl->session->heap,
DYNAMIC_TYPE_SESSION_TICK);
if(ssl->session->ticket == NULL) {
ssl->session->ticket = ssl->session->staticTicket;
ssl->session->ticketLenAlloc = 0;
return MEMORY_ERROR;
}
ssl->session->ticketLenAlloc = (word16)bufSz;
}
}
XMEMCPY(ssl->session->ticket, buf, bufSz);
}
ssl->session->ticketLen = (word16)bufSz;
return WOLFSSL_SUCCESS;
}
int wolfSSL_set_SessionTicket_cb(WOLFSSL* ssl,
CallbackSessionTicket cb, void* ctx)
{
if (ssl == NULL)
return BAD_FUNC_ARG;
ssl->session_ticket_cb = cb;
ssl->session_ticket_ctx = ctx;
return WOLFSSL_SUCCESS;
}
#endif /* !NO_WOLFSSL_CLIENT */
#endif /* HAVE_SESSION_TICKET */
#ifdef HAVE_EXTENDED_MASTER
#ifndef NO_WOLFSSL_CLIENT
int wolfSSL_CTX_DisableExtendedMasterSecret(WOLFSSL_CTX* ctx)
{
if (ctx == NULL)
return BAD_FUNC_ARG;
ctx->haveEMS = 0;
return WOLFSSL_SUCCESS;
}
int wolfSSL_DisableExtendedMasterSecret(WOLFSSL* ssl)
{
if (ssl == NULL)
return BAD_FUNC_ARG;
ssl->options.haveEMS = 0;
return WOLFSSL_SUCCESS;
}
#endif
#endif
#ifndef WOLFSSL_LEANPSK
int wolfSSL_send(WOLFSSL* ssl, const void* data, int sz, int flags)
{
int ret;
int oldFlags;
WOLFSSL_ENTER("wolfSSL_send");
if (ssl == NULL || data == NULL || sz < 0)
return BAD_FUNC_ARG;
oldFlags = ssl->wflags;
ssl->wflags = flags;
ret = wolfSSL_write(ssl, data, sz);
ssl->wflags = oldFlags;
WOLFSSL_LEAVE("wolfSSL_send", ret);
return ret;
}
int wolfSSL_recv(WOLFSSL* ssl, void* data, int sz, int flags)
{
int ret;
int oldFlags;
WOLFSSL_ENTER("wolfSSL_recv");
if (ssl == NULL || data == NULL || sz < 0)
return BAD_FUNC_ARG;
oldFlags = ssl->rflags;
ssl->rflags = flags;
ret = wolfSSL_read(ssl, data, sz);
ssl->rflags = oldFlags;
WOLFSSL_LEAVE("wolfSSL_recv", ret);
return ret;
}
#endif
int wolfSSL_SendUserCanceled(WOLFSSL* ssl)
{
int ret = WOLFSSL_FAILURE;
WOLFSSL_ENTER("wolfSSL_recv");
if (ssl != NULL) {
ssl->error = SendAlert(ssl, alert_warning, user_canceled);
if (ssl->error < 0) {
WOLFSSL_ERROR(ssl->error);
}
else {
ret = wolfSSL_shutdown(ssl);
}
}
WOLFSSL_LEAVE("wolfSSL_SendUserCanceled", ret);
return ret;
}
/* WOLFSSL_SUCCESS on ok */
WOLFSSL_ABI
int wolfSSL_shutdown(WOLFSSL* ssl)
{
int ret = WOLFSSL_FATAL_ERROR;
WOLFSSL_ENTER("wolfSSL_shutdown");
if (ssl == NULL)
return WOLFSSL_FATAL_ERROR;
if (ssl->options.quietShutdown) {
WOLFSSL_MSG("quiet shutdown, no close notify sent");
ret = WOLFSSL_SUCCESS;
}
else {
/* try to send close notify, not an error if can't */
if (!ssl->options.isClosed && !ssl->options.connReset &&
!ssl->options.sentNotify) {
ssl->error = SendAlert(ssl, alert_warning, close_notify);
if (ssl->error < 0) {
WOLFSSL_ERROR(ssl->error);
return WOLFSSL_FATAL_ERROR;
}
ssl->options.sentNotify = 1; /* don't send close_notify twice */
if (ssl->options.closeNotify) {
ret = WOLFSSL_SUCCESS;
ssl->options.shutdownDone = 1;
}
else {
ret = WOLFSSL_SHUTDOWN_NOT_DONE;
WOLFSSL_LEAVE("wolfSSL_shutdown", ret);
return ret;
}
}
#ifdef WOLFSSL_SHUTDOWNONCE
if (ssl->options.isClosed || ssl->options.connReset) {
/* Shutdown has already occurred.
* Caller is free to ignore this error. */
return SSL_SHUTDOWN_ALREADY_DONE_E;
}
#endif
/* call wolfSSL_shutdown again for bidirectional shutdown */
if (ssl->options.sentNotify && !ssl->options.closeNotify) {
ret = ProcessReply(ssl);
if ((ret == ZERO_RETURN) ||
(ret == WC_NO_ERR_TRACE(SOCKET_ERROR_E))) {
/* simulate OpenSSL behavior */
ssl->options.shutdownDone = 1;
/* Clear error */
ssl->error = WOLFSSL_ERROR_NONE;
ret = WOLFSSL_SUCCESS;
} else if (ret == WC_NO_ERR_TRACE(MEMORY_E)) {
ret = WOLFSSL_FATAL_ERROR;
} else if (ssl->error == WOLFSSL_ERROR_NONE) {
ret = WOLFSSL_SHUTDOWN_NOT_DONE;
} else {
WOLFSSL_ERROR(ssl->error);
ret = WOLFSSL_FATAL_ERROR;
}
}
}
#if defined(OPENSSL_EXTRA) || defined(WOLFSSL_WPAS_SMALL)
/* reset WOLFSSL structure state for possible reuse */
if (ret == WOLFSSL_SUCCESS) {
if (wolfSSL_clear(ssl) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("could not clear WOLFSSL");
ret = WOLFSSL_FATAL_ERROR;
}
}
#endif
WOLFSSL_LEAVE("wolfSSL_shutdown", ret);
return ret;
}
/* get current error state value */
int wolfSSL_state(WOLFSSL* ssl)
{
if (ssl == NULL) {
return BAD_FUNC_ARG;
}
return ssl->error;
}
WOLFSSL_ABI
int wolfSSL_get_error(WOLFSSL* ssl, int ret)
{
WOLFSSL_ENTER("wolfSSL_get_error");
if (ret > 0)
return WOLFSSL_ERROR_NONE;
if (ssl == NULL)
return BAD_FUNC_ARG;
WOLFSSL_LEAVE("wolfSSL_get_error", ssl->error);
/* make sure converted types are handled in SetErrorString() too */
if (ssl->error == WANT_READ)
return WOLFSSL_ERROR_WANT_READ; /* convert to OpenSSL type */
else if (ssl->error == WANT_WRITE)
return WOLFSSL_ERROR_WANT_WRITE; /* convert to OpenSSL type */
else if (ssl->error == ZERO_RETURN || ssl->options.shutdownDone)
return WOLFSSL_ERROR_ZERO_RETURN; /* convert to OpenSSL type */
#ifdef OPENSSL_EXTRA
else if (ssl->error == WC_NO_ERR_TRACE(SOCKET_PEER_CLOSED_E))
return WOLFSSL_ERROR_SYSCALL; /* convert to OpenSSL type */
#endif
return ssl->error;
}
/* retrieve alert history, WOLFSSL_SUCCESS on ok */
int wolfSSL_get_alert_history(WOLFSSL* ssl, WOLFSSL_ALERT_HISTORY *h)
{
if (ssl && h) {
*h = ssl->alert_history;
}
return WOLFSSL_SUCCESS;
}
#ifdef OPENSSL_EXTRA
/* returns SSL_WRITING, SSL_READING or SSL_NOTHING */
int wolfSSL_want(WOLFSSL* ssl)
{
int rw_state = SSL_NOTHING;
if (ssl) {
if (ssl->error == WANT_READ)
rw_state = SSL_READING;
else if (ssl->error == WANT_WRITE)
rw_state = SSL_WRITING;
}
return rw_state;
}
#endif
/* return TRUE if current error is want read */
int wolfSSL_want_read(WOLFSSL* ssl)
{
WOLFSSL_ENTER("wolfSSL_want_read");
if (ssl->error == WANT_READ)
return 1;
return 0;
}
/* return TRUE if current error is want write */
int wolfSSL_want_write(WOLFSSL* ssl)
{
WOLFSSL_ENTER("wolfSSL_want_write");
if (ssl->error == WANT_WRITE)
return 1;
return 0;
}
char* wolfSSL_ERR_error_string(unsigned long errNumber, char* data)
{
WOLFSSL_ENTER("wolfSSL_ERR_error_string");
if (data) {
SetErrorString((int)errNumber, data);
return data;
}
else {
static char tmp[WOLFSSL_MAX_ERROR_SZ] = {0};
SetErrorString((int)errNumber, tmp);
return tmp;
}
}
void wolfSSL_ERR_error_string_n(unsigned long e, char* buf, unsigned long len)
{
WOLFSSL_ENTER("wolfSSL_ERR_error_string_n");
if (len >= WOLFSSL_MAX_ERROR_SZ)
wolfSSL_ERR_error_string(e, buf);
else {
WOLFSSL_MSG("Error buffer too short, truncating");
if (len) {
char tmp[WOLFSSL_MAX_ERROR_SZ];
wolfSSL_ERR_error_string(e, tmp);
XMEMCPY(buf, tmp, len-1);
buf[len-1] = '\0';
}
}
}
/* don't free temporary arrays at end of handshake */
void wolfSSL_KeepArrays(WOLFSSL* ssl)
{
if (ssl)
ssl->options.saveArrays = 1;
}
/* user doesn't need temporary arrays anymore, Free */
void wolfSSL_FreeArrays(WOLFSSL* ssl)
{
if (ssl && ssl->options.handShakeState == HANDSHAKE_DONE) {
ssl->options.saveArrays = 0;
FreeArrays(ssl, 1);
}
}
/* Set option to indicate that the resources are not to be freed after
* handshake.
*
* ssl The SSL/TLS object.
* returns BAD_FUNC_ARG when ssl is NULL and 0 on success.
*/
int wolfSSL_KeepHandshakeResources(WOLFSSL* ssl)
{
if (ssl == NULL)
return BAD_FUNC_ARG;
ssl->options.keepResources = 1;
return 0;
}
/* Free the handshake resources after handshake.
*
* ssl The SSL/TLS object.
* returns BAD_FUNC_ARG when ssl is NULL and 0 on success.
*/
int wolfSSL_FreeHandshakeResources(WOLFSSL* ssl)
{
if (ssl == NULL)
return BAD_FUNC_ARG;
FreeHandshakeResources(ssl);
return 0;
}
/* Use the client's order of preference when matching cipher suites.
*
* ssl The SSL/TLS context object.
* returns BAD_FUNC_ARG when ssl is NULL and 0 on success.
*/
int wolfSSL_CTX_UseClientSuites(WOLFSSL_CTX* ctx)
{
if (ctx == NULL)
return BAD_FUNC_ARG;
ctx->useClientOrder = 1;
return 0;
}
/* Use the client's order of preference when matching cipher suites.
*
* ssl The SSL/TLS object.
* returns BAD_FUNC_ARG when ssl is NULL and 0 on success.
*/
int wolfSSL_UseClientSuites(WOLFSSL* ssl)
{
if (ssl == NULL)
return BAD_FUNC_ARG;
ssl->options.useClientOrder = 1;
return 0;
}
#ifdef WOLFSSL_DTLS
const byte* wolfSSL_GetDtlsMacSecret(WOLFSSL* ssl, int verify, int epochOrder)
{
#ifndef WOLFSSL_AEAD_ONLY
Keys* keys = NULL;
(void)epochOrder;
if (ssl == NULL)
return NULL;
#ifdef HAVE_SECURE_RENEGOTIATION
switch (epochOrder) {
case PEER_ORDER:
if (IsDtlsMsgSCRKeys(ssl))
keys = &ssl->secure_renegotiation->tmp_keys;
else
keys = &ssl->keys;
break;
case PREV_ORDER:
keys = &ssl->keys;
break;
case CUR_ORDER:
if (DtlsUseSCRKeys(ssl))
keys = &ssl->secure_renegotiation->tmp_keys;
else
keys = &ssl->keys;
break;
default:
WOLFSSL_MSG("Unknown epoch order");
return NULL;
}
#else
keys = &ssl->keys;
#endif
if ( (ssl->options.side == WOLFSSL_CLIENT_END && !verify) ||
(ssl->options.side == WOLFSSL_SERVER_END && verify) )
return keys->client_write_MAC_secret;
else
return keys->server_write_MAC_secret;
#else
(void)ssl;
(void)verify;
(void)epochOrder;
return NULL;
#endif
}
#endif /* WOLFSSL_DTLS */
const byte* wolfSSL_GetMacSecret(WOLFSSL* ssl, int verify)
{
#ifndef WOLFSSL_AEAD_ONLY
if (ssl == NULL)
return NULL;
if ( (ssl->options.side == WOLFSSL_CLIENT_END && !verify) ||
(ssl->options.side == WOLFSSL_SERVER_END && verify) )
return ssl->keys.client_write_MAC_secret;
else
return ssl->keys.server_write_MAC_secret;
#else
(void)ssl;
(void)verify;
return NULL;
#endif
}
int wolfSSL_GetSide(WOLFSSL* ssl)
{
if (ssl)
return ssl->options.side;
return BAD_FUNC_ARG;
}
#ifdef ATOMIC_USER
void wolfSSL_CTX_SetMacEncryptCb(WOLFSSL_CTX* ctx, CallbackMacEncrypt cb)
{
if (ctx)
ctx->MacEncryptCb = cb;
}
void wolfSSL_SetMacEncryptCtx(WOLFSSL* ssl, void *ctx)
{
if (ssl)
ssl->MacEncryptCtx = ctx;
}
void* wolfSSL_GetMacEncryptCtx(WOLFSSL* ssl)
{
if (ssl)
return ssl->MacEncryptCtx;
return NULL;
}
void wolfSSL_CTX_SetDecryptVerifyCb(WOLFSSL_CTX* ctx, CallbackDecryptVerify cb)
{
if (ctx)
ctx->DecryptVerifyCb = cb;
}
void wolfSSL_SetDecryptVerifyCtx(WOLFSSL* ssl, void *ctx)
{
if (ssl)
ssl->DecryptVerifyCtx = ctx;
}
void* wolfSSL_GetDecryptVerifyCtx(WOLFSSL* ssl)
{
if (ssl)
return ssl->DecryptVerifyCtx;
return NULL;
}
#if defined(HAVE_ENCRYPT_THEN_MAC) && !defined(WOLFSSL_AEAD_ONLY)
/**
* Set the callback, against the context, that encrypts then MACs.
*
* ctx SSL/TLS context.
* cb Callback function to use with Encrypt-Then-MAC.
*/
void wolfSSL_CTX_SetEncryptMacCb(WOLFSSL_CTX* ctx, CallbackEncryptMac cb)
{
if (ctx)
ctx->EncryptMacCb = cb;
}
/**
* Set the context to use with callback that encrypts then MACs.
*
* ssl SSL/TLS object.
* ctx Callback function's context.
*/
void wolfSSL_SetEncryptMacCtx(WOLFSSL* ssl, void *ctx)
{
if (ssl)
ssl->EncryptMacCtx = ctx;
}
/**
* Get the context being used with callback that encrypts then MACs.
*
* ssl SSL/TLS object.
* returns callback function's context or NULL if SSL/TLS object is NULL.
*/
void* wolfSSL_GetEncryptMacCtx(WOLFSSL* ssl)
{
if (ssl)
return ssl->EncryptMacCtx;
return NULL;
}
/**
* Set the callback, against the context, that MAC verifies then decrypts.
*
* ctx SSL/TLS context.
* cb Callback function to use with Encrypt-Then-MAC.
*/
void wolfSSL_CTX_SetVerifyDecryptCb(WOLFSSL_CTX* ctx, CallbackVerifyDecrypt cb)
{
if (ctx)
ctx->VerifyDecryptCb = cb;
}
/**
* Set the context to use with callback that MAC verifies then decrypts.
*
* ssl SSL/TLS object.
* ctx Callback function's context.
*/
void wolfSSL_SetVerifyDecryptCtx(WOLFSSL* ssl, void *ctx)
{
if (ssl)
ssl->VerifyDecryptCtx = ctx;
}
/**
* Get the context being used with callback that MAC verifies then decrypts.
*
* ssl SSL/TLS object.
* returns callback function's context or NULL if SSL/TLS object is NULL.
*/
void* wolfSSL_GetVerifyDecryptCtx(WOLFSSL* ssl)
{
if (ssl)
return ssl->VerifyDecryptCtx;
return NULL;
}
#endif /* HAVE_ENCRYPT_THEN_MAC !WOLFSSL_AEAD_ONLY */
const byte* wolfSSL_GetClientWriteKey(WOLFSSL* ssl)
{
if (ssl)
return ssl->keys.client_write_key;
return NULL;
}
const byte* wolfSSL_GetClientWriteIV(WOLFSSL* ssl)
{
if (ssl)
return ssl->keys.client_write_IV;
return NULL;
}
const byte* wolfSSL_GetServerWriteKey(WOLFSSL* ssl)
{
if (ssl)
return ssl->keys.server_write_key;
return NULL;
}
const byte* wolfSSL_GetServerWriteIV(WOLFSSL* ssl)
{
if (ssl)
return ssl->keys.server_write_IV;
return NULL;
}
int wolfSSL_GetKeySize(WOLFSSL* ssl)
{
if (ssl)
return ssl->specs.key_size;
return BAD_FUNC_ARG;
}
int wolfSSL_GetIVSize(WOLFSSL* ssl)
{
if (ssl)
return ssl->specs.iv_size;
return BAD_FUNC_ARG;
}
int wolfSSL_GetBulkCipher(WOLFSSL* ssl)
{
if (ssl)
return ssl->specs.bulk_cipher_algorithm;
return BAD_FUNC_ARG;
}
int wolfSSL_GetCipherType(WOLFSSL* ssl)
{
if (ssl == NULL)
return BAD_FUNC_ARG;
#ifndef WOLFSSL_AEAD_ONLY
if (ssl->specs.cipher_type == block)
return WOLFSSL_BLOCK_TYPE;
if (ssl->specs.cipher_type == stream)
return WOLFSSL_STREAM_TYPE;
#endif
if (ssl->specs.cipher_type == aead)
return WOLFSSL_AEAD_TYPE;
return -1;
}
int wolfSSL_GetCipherBlockSize(WOLFSSL* ssl)
{
if (ssl == NULL)
return BAD_FUNC_ARG;
return ssl->specs.block_size;
}
int wolfSSL_GetAeadMacSize(WOLFSSL* ssl)
{
if (ssl == NULL)
return BAD_FUNC_ARG;
return ssl->specs.aead_mac_size;
}
int wolfSSL_IsTLSv1_1(WOLFSSL* ssl)
{
if (ssl == NULL)
return BAD_FUNC_ARG;
if (ssl->options.tls1_1)
return 1;
return 0;
}
int wolfSSL_GetHmacSize(WOLFSSL* ssl)
{
/* AEAD ciphers don't have HMAC keys */
if (ssl)
return (ssl->specs.cipher_type != aead) ? ssl->specs.hash_size : 0;
return BAD_FUNC_ARG;
}
#ifdef WORD64_AVAILABLE
int wolfSSL_GetPeerSequenceNumber(WOLFSSL* ssl, word64 *seq)
{
if ((ssl == NULL) || (seq == NULL))
return BAD_FUNC_ARG;
*seq = ((word64)ssl->keys.peer_sequence_number_hi << 32) |
ssl->keys.peer_sequence_number_lo;
return !(*seq);
}
int wolfSSL_GetSequenceNumber(WOLFSSL* ssl, word64 *seq)
{
if ((ssl == NULL) || (seq == NULL))
return BAD_FUNC_ARG;
*seq = ((word64)ssl->keys.sequence_number_hi << 32) |
ssl->keys.sequence_number_lo;
return !(*seq);
}
#endif
#endif /* ATOMIC_USER */
#ifndef NO_CERTS
WOLFSSL_CERT_MANAGER* wolfSSL_CTX_GetCertManager(WOLFSSL_CTX* ctx)
{
WOLFSSL_CERT_MANAGER* cm = NULL;
if (ctx)
cm = ctx->cm;
return cm;
}
#endif /* NO_CERTS */
#if !defined(NO_FILESYSTEM) && !defined(NO_STDIO_FILESYSTEM) \
&& defined(XFPRINTF)
void wolfSSL_ERR_print_errors_fp(XFILE fp, int err)
{
char data[WOLFSSL_MAX_ERROR_SZ + 1];
WOLFSSL_ENTER("wolfSSL_ERR_print_errors_fp");
SetErrorString(err, data);
if (XFPRINTF(fp, "%s", data) < 0)
WOLFSSL_MSG("fprintf failed in wolfSSL_ERR_print_errors_fp");
}
#if defined(OPENSSL_EXTRA) || defined(DEBUG_WOLFSSL_VERBOSE)
void wolfSSL_ERR_dump_errors_fp(XFILE fp)
{
wc_ERR_print_errors_fp(fp);
}
void wolfSSL_ERR_print_errors_cb (int (*cb)(const char *str, size_t len,
void *u), void *u)
{
wc_ERR_print_errors_cb(cb, u);
}
#endif
#endif /* !NO_FILESYSTEM && !NO_STDIO_FILESYSTEM && XFPRINTF */
/*
* TODO This ssl parameter needs to be changed to const once our ABI checker
* stops flagging qualifier additions as ABI breaking.
*/
WOLFSSL_ABI
int wolfSSL_pending(WOLFSSL* ssl)
{
WOLFSSL_ENTER("wolfSSL_pending");
if (ssl == NULL)
return WOLFSSL_FAILURE;
return ssl->buffers.clearOutputBuffer.length;
}
int wolfSSL_has_pending(const WOLFSSL* ssl)
{
WOLFSSL_ENTER("wolfSSL_has_pending");
if (ssl == NULL)
return WOLFSSL_FAILURE;
return ssl->buffers.clearOutputBuffer.length > 0;
}
#ifndef WOLFSSL_LEANPSK
/* turn on handshake group messages for context */
int wolfSSL_CTX_set_group_messages(WOLFSSL_CTX* ctx)
{
if (ctx == NULL)
return BAD_FUNC_ARG;
ctx->groupMessages = 1;
return WOLFSSL_SUCCESS;
}
#endif
#ifndef NO_WOLFSSL_CLIENT
/* connect enough to get peer cert chain */
int wolfSSL_connect_cert(WOLFSSL* ssl)
{
int ret;
if (ssl == NULL)
return WOLFSSL_FAILURE;
ssl->options.certOnly = 1;
ret = wolfSSL_connect(ssl);
ssl->options.certOnly = 0;
return ret;
}
#endif
#ifndef WOLFSSL_LEANPSK
/* turn on handshake group messages for ssl object */
int wolfSSL_set_group_messages(WOLFSSL* ssl)
{
if (ssl == NULL)
return BAD_FUNC_ARG;
ssl->options.groupMessages = 1;
return WOLFSSL_SUCCESS;
}
/* make minVersion the internal equivalent SSL version */
static int SetMinVersionHelper(byte* minVersion, int version)
{
#ifdef NO_TLS
(void)minVersion;
#endif
switch (version) {
#if defined(WOLFSSL_ALLOW_SSLV3) && !defined(NO_OLD_TLS)
case WOLFSSL_SSLV3:
*minVersion = SSLv3_MINOR;
break;
#endif
#ifndef NO_TLS
#ifndef NO_OLD_TLS
#ifdef WOLFSSL_ALLOW_TLSV10
case WOLFSSL_TLSV1:
*minVersion = TLSv1_MINOR;
break;
#endif
case WOLFSSL_TLSV1_1:
*minVersion = TLSv1_1_MINOR;
break;
#endif
#ifndef WOLFSSL_NO_TLS12
case WOLFSSL_TLSV1_2:
*minVersion = TLSv1_2_MINOR;
break;
#endif
#endif
#ifdef WOLFSSL_TLS13
case WOLFSSL_TLSV1_3:
*minVersion = TLSv1_3_MINOR;
break;
#endif
#ifdef WOLFSSL_DTLS
case WOLFSSL_DTLSV1:
*minVersion = DTLS_MINOR;
break;
case WOLFSSL_DTLSV1_2:
*minVersion = DTLSv1_2_MINOR;
break;
#ifdef WOLFSSL_DTLS13
case WOLFSSL_DTLSV1_3:
*minVersion = DTLSv1_3_MINOR;
break;
#endif /* WOLFSSL_DTLS13 */
#endif /* WOLFSSL_DTLS */
default:
WOLFSSL_MSG("Bad function argument");
return BAD_FUNC_ARG;
}
return WOLFSSL_SUCCESS;
}
/* Set minimum downgrade version allowed, WOLFSSL_SUCCESS on ok */
WOLFSSL_ABI
int wolfSSL_CTX_SetMinVersion(WOLFSSL_CTX* ctx, int version)
{
WOLFSSL_ENTER("wolfSSL_CTX_SetMinVersion");
if (ctx == NULL) {
WOLFSSL_MSG("Bad function argument");
return BAD_FUNC_ARG;
}
return SetMinVersionHelper(&ctx->minDowngrade, version);
}
/* Set minimum downgrade version allowed, WOLFSSL_SUCCESS on ok */
int wolfSSL_SetMinVersion(WOLFSSL* ssl, int version)
{
WOLFSSL_ENTER("wolfSSL_SetMinVersion");
if (ssl == NULL) {
WOLFSSL_MSG("Bad function argument");
return BAD_FUNC_ARG;
}
return SetMinVersionHelper(&ssl->options.minDowngrade, version);
}
/* Function to get version as WOLFSSL_ enum value for wolfSSL_SetVersion */
int wolfSSL_GetVersion(const WOLFSSL* ssl)
{
if (ssl == NULL)
return BAD_FUNC_ARG;
if (ssl->version.major == SSLv3_MAJOR) {
switch (ssl->version.minor) {
case SSLv3_MINOR :
return WOLFSSL_SSLV3;
case TLSv1_MINOR :
return WOLFSSL_TLSV1;
case TLSv1_1_MINOR :
return WOLFSSL_TLSV1_1;
case TLSv1_2_MINOR :
return WOLFSSL_TLSV1_2;
case TLSv1_3_MINOR :
return WOLFSSL_TLSV1_3;
default:
break;
}
}
return VERSION_ERROR;
}
int wolfSSL_SetVersion(WOLFSSL* ssl, int version)
{
word16 haveRSA = 1;
word16 havePSK = 0;
int keySz = 0;
WOLFSSL_ENTER("wolfSSL_SetVersion");
if (ssl == NULL) {
WOLFSSL_MSG("Bad function argument");
return BAD_FUNC_ARG;
}
switch (version) {
#if defined(WOLFSSL_ALLOW_SSLV3) && !defined(NO_OLD_TLS)
case WOLFSSL_SSLV3:
ssl->version = MakeSSLv3();
break;
#endif
#ifndef NO_TLS
#ifndef NO_OLD_TLS
#ifdef WOLFSSL_ALLOW_TLSV10
case WOLFSSL_TLSV1:
ssl->version = MakeTLSv1();
break;
#endif
case WOLFSSL_TLSV1_1:
ssl->version = MakeTLSv1_1();
break;
#endif
#ifndef WOLFSSL_NO_TLS12
case WOLFSSL_TLSV1_2:
ssl->version = MakeTLSv1_2();
break;
#endif
#ifdef WOLFSSL_TLS13
case WOLFSSL_TLSV1_3:
ssl->version = MakeTLSv1_3();
break;
#endif /* WOLFSSL_TLS13 */
#endif
default:
WOLFSSL_MSG("Bad function argument");
return BAD_FUNC_ARG;
}
#ifdef NO_RSA
haveRSA = 0;
#endif
#ifndef NO_PSK
havePSK = ssl->options.havePSK;
#endif
#ifndef NO_CERTS
keySz = ssl->buffers.keySz;
#endif
if (AllocateSuites(ssl) != 0)
return WOLFSSL_FAILURE;
InitSuites(ssl->suites, ssl->version, keySz, haveRSA, havePSK,
ssl->options.haveDH, ssl->options.haveECDSAsig,
ssl->options.haveECC, TRUE, ssl->options.haveStaticECC,
ssl->options.haveFalconSig, ssl->options.haveDilithiumSig,
ssl->options.useAnon, TRUE, ssl->options.side);
return WOLFSSL_SUCCESS;
}
#endif /* !leanpsk */
#ifndef NO_CERTS
/* hash is the SHA digest of name, just use first 32 bits as hash */
static WC_INLINE word32 HashSigner(const byte* hash)
{
return MakeWordFromHash(hash) % CA_TABLE_SIZE;
}
/* does CA already exist on signer list */
int AlreadySigner(WOLFSSL_CERT_MANAGER* cm, byte* hash)
{
Signer* signers;
int ret = 0;
word32 row;
if (cm == NULL || hash == NULL) {
return ret;
}
row = HashSigner(hash);
if (wc_LockMutex(&cm->caLock) != 0) {
return ret;
}
signers = cm->caTable[row];
while (signers) {
byte* subjectHash;
#ifndef NO_SKID
subjectHash = signers->subjectKeyIdHash;
#else
subjectHash = signers->subjectNameHash;
#endif
if (XMEMCMP(hash, subjectHash, SIGNER_DIGEST_SIZE) == 0) {
ret = 1; /* success */
break;
}
signers = signers->next;
}
wc_UnLockMutex(&cm->caLock);
return ret;
}
#ifdef WOLFSSL_TRUST_PEER_CERT
/* hash is the SHA digest of name, just use first 32 bits as hash */
static WC_INLINE word32 TrustedPeerHashSigner(const byte* hash)
{
return MakeWordFromHash(hash) % TP_TABLE_SIZE;
}
/* does trusted peer already exist on signer list */
int AlreadyTrustedPeer(WOLFSSL_CERT_MANAGER* cm, DecodedCert* cert)
{
TrustedPeerCert* tp;
int ret = 0;
word32 row = TrustedPeerHashSigner(cert->subjectHash);
if (wc_LockMutex(&cm->tpLock) != 0)
return ret;
tp = cm->tpTable[row];
while (tp) {
if (XMEMCMP(cert->subjectHash, tp->subjectNameHash,
SIGNER_DIGEST_SIZE) == 0)
ret = 1;
#ifndef NO_SKID
if (cert->extSubjKeyIdSet) {
/* Compare SKID as well if available */
if (ret == 1 && XMEMCMP(cert->extSubjKeyId, tp->subjectKeyIdHash,
SIGNER_DIGEST_SIZE) != 0)
ret = 0;
}
#endif
if (ret == 1)
break;
tp = tp->next;
}
wc_UnLockMutex(&cm->tpLock);
return ret;
}
/* return Trusted Peer if found, otherwise NULL
type is what to match on
*/
TrustedPeerCert* GetTrustedPeer(void* vp, DecodedCert* cert)
{
WOLFSSL_CERT_MANAGER* cm = (WOLFSSL_CERT_MANAGER*)vp;
TrustedPeerCert* ret = NULL;
TrustedPeerCert* tp = NULL;
word32 row;
if (cm == NULL || cert == NULL)
return NULL;
row = TrustedPeerHashSigner(cert->subjectHash);
if (wc_LockMutex(&cm->tpLock) != 0)
return ret;
tp = cm->tpTable[row];
while (tp) {
if (XMEMCMP(cert->subjectHash, tp->subjectNameHash,
SIGNER_DIGEST_SIZE) == 0)
ret = tp;
#ifndef NO_SKID
if (cert->extSubjKeyIdSet) {
/* Compare SKID as well if available */
if (ret != NULL && XMEMCMP(cert->extSubjKeyId, tp->subjectKeyIdHash,
SIGNER_DIGEST_SIZE) != 0)
ret = NULL;
}
#endif
if (ret != NULL)
break;
tp = tp->next;
}
wc_UnLockMutex(&cm->tpLock);
return ret;
}
int MatchTrustedPeer(TrustedPeerCert* tp, DecodedCert* cert)
{
if (tp == NULL || cert == NULL)
return BAD_FUNC_ARG;
/* subject key id or subject hash has been compared when searching
tpTable for the cert from function GetTrustedPeer */
/* compare signatures */
if (tp->sigLen == cert->sigLength) {
if (XMEMCMP(tp->sig, cert->signature, cert->sigLength)) {
return WOLFSSL_FAILURE;
}
}
else {
return WOLFSSL_FAILURE;
}
return WOLFSSL_SUCCESS;
}
#endif /* WOLFSSL_TRUST_PEER_CERT */
/* return CA if found, otherwise NULL */
Signer* GetCA(void* vp, byte* hash)
{
WOLFSSL_CERT_MANAGER* cm = (WOLFSSL_CERT_MANAGER*)vp;
Signer* ret = NULL;
Signer* signers;
word32 row = 0;
if (cm == NULL || hash == NULL)
return NULL;
row = HashSigner(hash);
if (wc_LockMutex(&cm->caLock) != 0)
return ret;
signers = cm->caTable[row];
while (signers) {
byte* subjectHash;
#ifndef NO_SKID
subjectHash = signers->subjectKeyIdHash;
#else
subjectHash = signers->subjectNameHash;
#endif
if (XMEMCMP(hash, subjectHash, SIGNER_DIGEST_SIZE) == 0) {
ret = signers;
break;
}
signers = signers->next;
}
wc_UnLockMutex(&cm->caLock);
return ret;
}
#ifdef WOLFSSL_AKID_NAME
Signer* GetCAByAKID(void* vp, const byte* issuer, word32 issuerSz,
const byte* serial, word32 serialSz)
{
WOLFSSL_CERT_MANAGER* cm = (WOLFSSL_CERT_MANAGER*)vp;
Signer* ret = NULL;
Signer* signers;
byte nameHash[SIGNER_DIGEST_SIZE];
byte serialHash[SIGNER_DIGEST_SIZE];
word32 row;
if (cm == NULL || issuer == NULL || issuerSz == 0 ||
serial == NULL || serialSz == 0)
return NULL;
if (CalcHashId(issuer, issuerSz, nameHash) != 0 ||
CalcHashId(serial, serialSz, serialHash) != 0)
return NULL;
if (wc_LockMutex(&cm->caLock) != 0)
return ret;
/* Unfortunately we need to look through the entire table */
for (row = 0; row < CA_TABLE_SIZE && ret == NULL; row++) {
for (signers = cm->caTable[row]; signers != NULL;
signers = signers->next) {
if (XMEMCMP(signers->subjectNameHash, nameHash, SIGNER_DIGEST_SIZE)
== 0 && XMEMCMP(signers->serialHash, serialHash,
SIGNER_DIGEST_SIZE) == 0) {
ret = signers;
break;
}
}
}
wc_UnLockMutex(&cm->caLock);
return ret;
}
#endif
#ifndef NO_SKID
/* return CA if found, otherwise NULL. Walk through hash table. */
Signer* GetCAByName(void* vp, byte* hash)
{
WOLFSSL_CERT_MANAGER* cm = (WOLFSSL_CERT_MANAGER*)vp;
Signer* ret = NULL;
Signer* signers;
word32 row;
if (cm == NULL)
return NULL;
if (wc_LockMutex(&cm->caLock) != 0)
return ret;
for (row = 0; row < CA_TABLE_SIZE && ret == NULL; row++) {
signers = cm->caTable[row];
while (signers && ret == NULL) {
if (XMEMCMP(hash, signers->subjectNameHash,
SIGNER_DIGEST_SIZE) == 0) {
ret = signers;
}
signers = signers->next;
}
}
wc_UnLockMutex(&cm->caLock);
return ret;
}
#endif
#ifdef WOLFSSL_TRUST_PEER_CERT
/* add a trusted peer cert to linked list */
int AddTrustedPeer(WOLFSSL_CERT_MANAGER* cm, DerBuffer** pDer, int verify)
{
int ret = 0;
int row = 0;
TrustedPeerCert* peerCert;
DecodedCert* cert;
DerBuffer* der = *pDer;
WOLFSSL_MSG("Adding a Trusted Peer Cert");
cert = (DecodedCert*)XMALLOC(sizeof(DecodedCert), cm->heap,
DYNAMIC_TYPE_DCERT);
if (cert == NULL) {
FreeDer(&der);
return MEMORY_E;
}
InitDecodedCert(cert, der->buffer, der->length, cm->heap);
if ((ret = ParseCert(cert, TRUSTED_PEER_TYPE, verify, cm)) != 0) {
FreeDecodedCert(cert);
XFREE(cert, NULL, DYNAMIC_TYPE_DCERT);
FreeDer(&der);
return ret;
}
WOLFSSL_MSG("\tParsed new trusted peer cert");
peerCert = (TrustedPeerCert*)XMALLOC(sizeof(TrustedPeerCert), cm->heap,
DYNAMIC_TYPE_CERT);
if (peerCert == NULL) {
FreeDecodedCert(cert);
XFREE(cert, cm->heap, DYNAMIC_TYPE_DCERT);
FreeDer(&der);
return MEMORY_E;
}
XMEMSET(peerCert, 0, sizeof(TrustedPeerCert));
#ifndef IGNORE_NAME_CONSTRAINTS
if (peerCert->permittedNames)
FreeNameSubtrees(peerCert->permittedNames, cm->heap);
if (peerCert->excludedNames)
FreeNameSubtrees(peerCert->excludedNames, cm->heap);
#endif
if (AlreadyTrustedPeer(cm, cert)) {
WOLFSSL_MSG("\tAlready have this CA, not adding again");
FreeTrustedPeer(peerCert, cm->heap);
(void)ret;
}
else {
/* add trusted peer signature */
peerCert->sigLen = cert->sigLength;
peerCert->sig = (byte *)XMALLOC(cert->sigLength, cm->heap,
DYNAMIC_TYPE_SIGNATURE);
if (peerCert->sig == NULL) {
FreeDecodedCert(cert);
XFREE(cert, cm->heap, DYNAMIC_TYPE_DCERT);
FreeTrustedPeer(peerCert, cm->heap);
FreeDer(&der);
return MEMORY_E;
}
XMEMCPY(peerCert->sig, cert->signature, cert->sigLength);
/* add trusted peer name */
peerCert->nameLen = cert->subjectCNLen;
peerCert->name = cert->subjectCN;
#ifndef IGNORE_NAME_CONSTRAINTS
peerCert->permittedNames = cert->permittedNames;
peerCert->excludedNames = cert->excludedNames;
#endif
/* add SKID when available and hash of name */
#ifndef NO_SKID
XMEMCPY(peerCert->subjectKeyIdHash, cert->extSubjKeyId,
SIGNER_DIGEST_SIZE);
#endif
XMEMCPY(peerCert->subjectNameHash, cert->subjectHash,
SIGNER_DIGEST_SIZE);
/* If Key Usage not set, all uses valid. */
peerCert->next = NULL;
cert->subjectCN = 0;
#ifndef IGNORE_NAME_CONSTRAINTS
cert->permittedNames = NULL;
cert->excludedNames = NULL;
#endif
row = (int)TrustedPeerHashSigner(peerCert->subjectNameHash);
if (wc_LockMutex(&cm->tpLock) == 0) {
peerCert->next = cm->tpTable[row];
cm->tpTable[row] = peerCert; /* takes ownership */
wc_UnLockMutex(&cm->tpLock);
}
else {
WOLFSSL_MSG("\tTrusted Peer Cert Mutex Lock failed");
FreeDecodedCert(cert);
XFREE(cert, cm->heap, DYNAMIC_TYPE_DCERT);
FreeTrustedPeer(peerCert, cm->heap);
FreeDer(&der);
return BAD_MUTEX_E;
}
}
WOLFSSL_MSG("\tFreeing parsed trusted peer cert");
FreeDecodedCert(cert);
XFREE(cert, cm->heap, DYNAMIC_TYPE_DCERT);
WOLFSSL_MSG("\tFreeing der trusted peer cert");
FreeDer(&der);
WOLFSSL_MSG("\t\tOK Freeing der trusted peer cert");
WOLFSSL_LEAVE("AddTrustedPeer", ret);
return WOLFSSL_SUCCESS;
}
#endif /* WOLFSSL_TRUST_PEER_CERT */
/* owns der, internal now uses too */
/* type flag ids from user or from chain received during verify
don't allow chain ones to be added w/o isCA extension */
int AddCA(WOLFSSL_CERT_MANAGER* cm, DerBuffer** pDer, int type, int verify)
{
int ret;
Signer* signer = NULL;
word32 row;
byte* subjectHash;
#ifdef WOLFSSL_SMALL_STACK
DecodedCert* cert = NULL;
#else
DecodedCert cert[1];
#endif
DerBuffer* der = *pDer;
WOLFSSL_MSG("Adding a CA");
if (cm == NULL) {
FreeDer(pDer);
return BAD_FUNC_ARG;
}
#ifdef WOLFSSL_SMALL_STACK
cert = (DecodedCert*)XMALLOC(sizeof(DecodedCert), NULL,
DYNAMIC_TYPE_DCERT);
if (cert == NULL) {
FreeDer(pDer);
return MEMORY_E;
}
#endif
InitDecodedCert(cert, der->buffer, der->length, cm->heap);
ret = ParseCert(cert, CA_TYPE, verify, cm);
WOLFSSL_MSG("\tParsed new CA");
#ifndef NO_SKID
subjectHash = cert->extSubjKeyId;
#else
subjectHash = cert->subjectHash;
#endif
/* check CA key size */
if (verify) {
switch (cert->keyOID) {
#ifndef NO_RSA
#ifdef WC_RSA_PSS
case RSAPSSk:
#endif
case RSAk:
if (cm->minRsaKeySz < 0 ||
cert->pubKeySize < (word16)cm->minRsaKeySz) {
ret = RSA_KEY_SIZE_E;
WOLFSSL_MSG("\tCA RSA key size error");
}
break;
#endif /* !NO_RSA */
#ifdef HAVE_ECC
case ECDSAk:
if (cm->minEccKeySz < 0 ||
cert->pubKeySize < (word16)cm->minEccKeySz) {
ret = ECC_KEY_SIZE_E;
WOLFSSL_MSG("\tCA ECC key size error");
}
break;
#endif /* HAVE_ECC */
#ifdef HAVE_ED25519
case ED25519k:
if (cm->minEccKeySz < 0 ||
ED25519_KEY_SIZE < (word16)cm->minEccKeySz) {
ret = ECC_KEY_SIZE_E;
WOLFSSL_MSG("\tCA ECC key size error");
}
break;
#endif /* HAVE_ED25519 */
#ifdef HAVE_ED448
case ED448k:
if (cm->minEccKeySz < 0 ||
ED448_KEY_SIZE < (word16)cm->minEccKeySz) {
ret = ECC_KEY_SIZE_E;
WOLFSSL_MSG("\tCA ECC key size error");
}
break;
#endif /* HAVE_ED448 */
#if defined(HAVE_PQC)
#if defined(HAVE_FALCON)
case FALCON_LEVEL1k:
if (cm->minFalconKeySz < 0 ||
FALCON_LEVEL1_KEY_SIZE < (word16)cm->minFalconKeySz) {
ret = FALCON_KEY_SIZE_E;
WOLFSSL_MSG("\tCA Falcon level 1 key size error");
}
break;
case FALCON_LEVEL5k:
if (cm->minFalconKeySz < 0 ||
FALCON_LEVEL5_KEY_SIZE < (word16)cm->minFalconKeySz) {
ret = FALCON_KEY_SIZE_E;
WOLFSSL_MSG("\tCA Falcon level 5 key size error");
}
break;
#endif /* HAVE_FALCON */
#if defined(HAVE_DILITHIUM)
case DILITHIUM_LEVEL2k:
if (cm->minDilithiumKeySz < 0 ||
DILITHIUM_LEVEL2_KEY_SIZE < (word16)cm->minDilithiumKeySz) {
ret = DILITHIUM_KEY_SIZE_E;
WOLFSSL_MSG("\tCA Dilithium level 2 key size error");
}
break;
case DILITHIUM_LEVEL3k:
if (cm->minDilithiumKeySz < 0 ||
DILITHIUM_LEVEL3_KEY_SIZE < (word16)cm->minDilithiumKeySz) {
ret = DILITHIUM_KEY_SIZE_E;
WOLFSSL_MSG("\tCA Dilithium level 3 key size error");
}
break;
case DILITHIUM_LEVEL5k:
if (cm->minDilithiumKeySz < 0 ||
DILITHIUM_LEVEL5_KEY_SIZE < (word16)cm->minDilithiumKeySz) {
ret = DILITHIUM_KEY_SIZE_E;
WOLFSSL_MSG("\tCA Dilithium level 5 key size error");
}
break;
#endif /* HAVE_DILITHIUM */
#endif /* HAVE_PQC */
default:
WOLFSSL_MSG("\tNo key size check done on CA");
break; /* no size check if key type is not in switch */
}
}
if (ret == 0 && cert->isCA == 0 && type != WOLFSSL_USER_CA) {
WOLFSSL_MSG("\tCan't add as CA if not actually one");
ret = NOT_CA_ERROR;
}
#ifndef ALLOW_INVALID_CERTSIGN
else if (ret == 0 && cert->isCA == 1 && type != WOLFSSL_USER_CA &&
!cert->selfSigned && (cert->extKeyUsage & KEYUSE_KEY_CERT_SIGN) == 0) {
/* Intermediate CA certs are required to have the keyCertSign
* extension set. User loaded root certs are not. */
WOLFSSL_MSG("\tDoesn't have key usage certificate signing");
ret = NOT_CA_ERROR;
}
#endif
else if (ret == 0 && AlreadySigner(cm, subjectHash)) {
WOLFSSL_MSG("\tAlready have this CA, not adding again");
(void)ret;
}
else if (ret == 0) {
/* take over signer parts */
signer = MakeSigner(cm->heap);
if (!signer)
ret = MEMORY_ERROR;
}
#if defined(WOLFSSL_AKID_NAME) || defined(HAVE_CRL)
if (ret == 0 && signer != NULL)
ret = CalcHashId(cert->serial, cert->serialSz, signer->serialHash);
#endif
if (ret == 0 && signer != NULL) {
#ifdef WOLFSSL_SIGNER_DER_CERT
ret = AllocDer(&signer->derCert, der->length, der->type, NULL);
}
if (ret == 0 && signer != NULL) {
XMEMCPY(signer->derCert->buffer, der->buffer, der->length);
#endif
signer->keyOID = cert->keyOID;
if (cert->pubKeyStored) {
signer->publicKey = cert->publicKey;
signer->pubKeySize = cert->pubKeySize;
}
#ifdef WOLFSSL_DUAL_ALG_CERTS
if (cert->extSapkiSet && cert->sapkiLen > 0) {
/* Allocated space for alternative public key. */
signer->sapkiDer = (byte*)XMALLOC(cert->sapkiLen, cm->heap,
DYNAMIC_TYPE_PUBLIC_KEY);
if (signer->sapkiDer == NULL) {
ret = MEMORY_E;
}
else {
XMEMCPY(signer->sapkiDer, cert->sapkiDer, cert->sapkiLen);
signer->sapkiLen = cert->sapkiLen;
signer->sapkiOID = cert->sapkiOID;
}
}
#endif /* WOLFSSL_DUAL_ALG_CERTS */
if (cert->subjectCNStored) {
signer->nameLen = cert->subjectCNLen;
signer->name = cert->subjectCN;
}
signer->maxPathLen = cert->maxPathLen;
signer->selfSigned = cert->selfSigned;
#ifndef IGNORE_NAME_CONSTRAINTS
signer->permittedNames = cert->permittedNames;
signer->excludedNames = cert->excludedNames;
#endif
#ifndef NO_SKID
XMEMCPY(signer->subjectKeyIdHash, cert->extSubjKeyId,
SIGNER_DIGEST_SIZE);
#endif
XMEMCPY(signer->subjectNameHash, cert->subjectHash,
SIGNER_DIGEST_SIZE);
#if defined(HAVE_OCSP) || defined(HAVE_CRL)
XMEMCPY(signer->issuerNameHash, cert->issuerHash,
SIGNER_DIGEST_SIZE);
#endif
#ifdef HAVE_OCSP
XMEMCPY(signer->subjectKeyHash, cert->subjectKeyHash,
KEYID_SIZE);
#endif
signer->keyUsage = cert->extKeyUsageSet ? cert->extKeyUsage
: 0xFFFF;
signer->next = NULL; /* If Key Usage not set, all uses valid. */
cert->publicKey = 0; /* in case lock fails don't free here. */
cert->subjectCN = 0;
#ifndef IGNORE_NAME_CONSTRAINTS
cert->permittedNames = NULL;
cert->excludedNames = NULL;
#endif
signer->type = (byte)type;
#ifndef NO_SKID
row = HashSigner(signer->subjectKeyIdHash);
#else
row = HashSigner(signer->subjectNameHash);
#endif
if (wc_LockMutex(&cm->caLock) == 0) {
signer->next = cm->caTable[row];
cm->caTable[row] = signer; /* takes ownership */
wc_UnLockMutex(&cm->caLock);
if (cm->caCacheCallback)
cm->caCacheCallback(der->buffer, (int)der->length, type);
}
else {
WOLFSSL_MSG("\tCA Mutex Lock failed");
ret = BAD_MUTEX_E;
}
}
#if defined(WOLFSSL_RENESAS_TSIP_TLS) || defined(WOLFSSL_RENESAS_FSPSM_TLS)
/* Verify CA by TSIP so that generated tsip key is going to be able to */
/* be used for peer's cert verification */
/* TSIP is only able to handle USER CA, and only one CA. */
/* Therefore, it doesn't need to call TSIP again if there is already */
/* verified CA. */
if ( ret == 0 && signer != NULL ) {
signer->cm_idx = row;
if (type == WOLFSSL_USER_CA) {
if ((ret = wc_Renesas_cmn_RootCertVerify(cert->source, cert->maxIdx,
cert->sigCtx.CertAtt.pubkey_n_start,
cert->sigCtx.CertAtt.pubkey_n_len - 1,
cert->sigCtx.CertAtt.pubkey_e_start,
cert->sigCtx.CertAtt.pubkey_e_len - 1,
row/* cm index */))
< 0)
WOLFSSL_MSG("Renesas_RootCertVerify() failed");
else
WOLFSSL_MSG("Renesas_RootCertVerify() succeed or skipped");
}
}
#endif /* TSIP or SCE */
WOLFSSL_MSG("\tFreeing Parsed CA");
FreeDecodedCert(cert);
if (ret != 0 && signer != NULL)
FreeSigner(signer, cm->heap);
#ifdef WOLFSSL_SMALL_STACK
XFREE(cert, NULL, DYNAMIC_TYPE_DCERT);
#endif
WOLFSSL_MSG("\tFreeing der CA");
FreeDer(pDer);
WOLFSSL_MSG("\t\tOK Freeing der CA");
WOLFSSL_LEAVE("AddCA", ret);
return ret == 0 ? WOLFSSL_SUCCESS : ret;
}
#endif /* !NO_CERTS */
#if defined(OPENSSL_EXTRA) && !defined(WOLFSSL_NO_OPENSSL_RAND_CB)
static int wolfSSL_RAND_InitMutex(void);
#endif
#if defined(OPENSSL_EXTRA) && defined(HAVE_ATEXIT)
static void AtExitCleanup(void)
{
if (initRefCount > 0) {
initRefCount = 1;
(void)wolfSSL_Cleanup();
}
}
#endif
WOLFSSL_ABI
int wolfSSL_Init(void)
{
int ret = WOLFSSL_SUCCESS;
#if !defined(NO_SESSION_CACHE) && defined(ENABLE_SESSION_CACHE_ROW_LOCK)
int i;
#endif
WOLFSSL_ENTER("wolfSSL_Init");
#ifndef WOLFSSL_MUTEX_INITIALIZER
if (inits_count_mutex_valid == 0) {
if (wc_InitMutex(&inits_count_mutex) != 0) {
WOLFSSL_MSG("Bad Init Mutex count");
return BAD_MUTEX_E;
}
else {
inits_count_mutex_valid = 1;
}
}
#endif /* !WOLFSSL_MUTEX_INITIALIZER */
if (wc_LockMutex(&inits_count_mutex) != 0) {
WOLFSSL_MSG("Bad Lock Mutex count");
return BAD_MUTEX_E;
}
#if FIPS_VERSION_GE(5,1)
if ((ret == WOLFSSL_SUCCESS) && (initRefCount == 0)) {
ret = wolfCrypt_SetPrivateKeyReadEnable_fips(1, WC_KEYTYPE_ALL);
if (ret == 0)
ret = WOLFSSL_SUCCESS;
}
#endif
if ((ret == WOLFSSL_SUCCESS) && (initRefCount == 0)) {
/* Initialize crypto for use with TLS connection */
if (wolfCrypt_Init() != 0) {
WOLFSSL_MSG("Bad wolfCrypt Init");
ret = WC_INIT_E;
}
#if defined(HAVE_GLOBAL_RNG) && !defined(WOLFSSL_MUTEX_INITIALIZER)
if (ret == WOLFSSL_SUCCESS) {
if (wc_InitMutex(&globalRNGMutex) != 0) {
WOLFSSL_MSG("Bad Init Mutex rng");
ret = BAD_MUTEX_E;
}
else {
globalRNGMutex_valid = 1;
}
}
#endif
#ifdef WC_RNG_SEED_CB
wc_SetSeed_Cb(wc_GenerateSeed);
#endif
#ifdef OPENSSL_EXTRA
#ifndef WOLFSSL_NO_OPENSSL_RAND_CB
if ((ret == WOLFSSL_SUCCESS) && (wolfSSL_RAND_InitMutex() != 0)) {
ret = BAD_MUTEX_E;
}
#endif
if ((ret == WOLFSSL_SUCCESS) &&
(wolfSSL_RAND_seed(NULL, 0) != WOLFSSL_SUCCESS)) {
WOLFSSL_MSG("wolfSSL_RAND_seed failed");
ret = WC_INIT_E;
}
#endif
#ifndef NO_SESSION_CACHE
#ifdef ENABLE_SESSION_CACHE_ROW_LOCK
for (i = 0; i < SESSION_ROWS; ++i) {
SessionCache[i].lock_valid = 0;
}
for (i = 0; (ret == WOLFSSL_SUCCESS) && (i < SESSION_ROWS); ++i) {
if (wc_InitRwLock(&SessionCache[i].row_lock) != 0) {
WOLFSSL_MSG("Bad Init Mutex session");
ret = BAD_MUTEX_E;
}
else {
SessionCache[i].lock_valid = 1;
}
}
#else
if (ret == WOLFSSL_SUCCESS) {
if (wc_InitRwLock(&session_lock) != 0) {
WOLFSSL_MSG("Bad Init Mutex session");
ret = BAD_MUTEX_E;
}
else {
session_lock_valid = 1;
}
}
#endif
#ifndef NO_CLIENT_CACHE
#ifndef WOLFSSL_MUTEX_INITIALIZER
if (ret == WOLFSSL_SUCCESS) {
if (wc_InitMutex(&clisession_mutex) != 0) {
WOLFSSL_MSG("Bad Init Mutex session");
ret = BAD_MUTEX_E;
}
else {
clisession_mutex_valid = 1;
}
}
#endif
#endif
#endif
#if defined(OPENSSL_EXTRA) && defined(HAVE_ATEXIT)
/* OpenSSL registers cleanup using atexit */
if ((ret == WOLFSSL_SUCCESS) && (atexit(AtExitCleanup) != 0)) {
WOLFSSL_MSG("Bad atexit registration");
ret = WC_INIT_E;
}
#endif
}
if (ret == WOLFSSL_SUCCESS) {
initRefCount++;
}
else {
initRefCount = 1; /* Force cleanup */
}
wc_UnLockMutex(&inits_count_mutex);
if (ret != WOLFSSL_SUCCESS) {
(void)wolfSSL_Cleanup(); /* Ignore any error from cleanup */
}
return ret;
}
#define WOLFSSL_SSL_LOAD_INCLUDED
#include <src/ssl_load.c>
#ifndef NO_CERTS
#ifdef HAVE_CRL
int wolfSSL_CTX_LoadCRLBuffer(WOLFSSL_CTX* ctx, const unsigned char* buff,
long sz, int type)
{
WOLFSSL_ENTER("wolfSSL_CTX_LoadCRLBuffer");
if (ctx == NULL)
return BAD_FUNC_ARG;
return wolfSSL_CertManagerLoadCRLBuffer(ctx->cm, buff, sz, type);
}
int wolfSSL_LoadCRLBuffer(WOLFSSL* ssl, const unsigned char* buff,
long sz, int type)
{
WOLFSSL_ENTER("wolfSSL_LoadCRLBuffer");
if (ssl == NULL || ssl->ctx == NULL)
return BAD_FUNC_ARG;
SSL_CM_WARNING(ssl);
return wolfSSL_CertManagerLoadCRLBuffer(SSL_CM(ssl), buff, sz, type);
}
#endif /* HAVE_CRL */
#ifdef HAVE_OCSP
int wolfSSL_EnableOCSP(WOLFSSL* ssl, int options)
{
WOLFSSL_ENTER("wolfSSL_EnableOCSP");
if (ssl) {
SSL_CM_WARNING(ssl);
return wolfSSL_CertManagerEnableOCSP(SSL_CM(ssl), options);
}
else
return BAD_FUNC_ARG;
}
int wolfSSL_DisableOCSP(WOLFSSL* ssl)
{
WOLFSSL_ENTER("wolfSSL_DisableOCSP");
if (ssl) {
SSL_CM_WARNING(ssl);
return wolfSSL_CertManagerDisableOCSP(SSL_CM(ssl));
}
else
return BAD_FUNC_ARG;
}
int wolfSSL_EnableOCSPStapling(WOLFSSL* ssl)
{
WOLFSSL_ENTER("wolfSSL_EnableOCSPStapling");
if (ssl) {
SSL_CM_WARNING(ssl);
return wolfSSL_CertManagerEnableOCSPStapling(SSL_CM(ssl));
}
else
return BAD_FUNC_ARG;
}
int wolfSSL_DisableOCSPStapling(WOLFSSL* ssl)
{
WOLFSSL_ENTER("wolfSSL_DisableOCSPStapling");
if (ssl) {
SSL_CM_WARNING(ssl);
return wolfSSL_CertManagerDisableOCSPStapling(SSL_CM(ssl));
}
else
return BAD_FUNC_ARG;
}
int wolfSSL_SetOCSP_OverrideURL(WOLFSSL* ssl, const char* url)
{
WOLFSSL_ENTER("wolfSSL_SetOCSP_OverrideURL");
if (ssl) {
SSL_CM_WARNING(ssl);
return wolfSSL_CertManagerSetOCSPOverrideURL(SSL_CM(ssl), url);
}
else
return BAD_FUNC_ARG;
}
int wolfSSL_SetOCSP_Cb(WOLFSSL* ssl,
CbOCSPIO ioCb, CbOCSPRespFree respFreeCb, void* ioCbCtx)
{
WOLFSSL_ENTER("wolfSSL_SetOCSP_Cb");
if (ssl) {
SSL_CM_WARNING(ssl);
ssl->ocspIOCtx = ioCbCtx; /* use SSL specific ioCbCtx */
return wolfSSL_CertManagerSetOCSP_Cb(SSL_CM(ssl),
ioCb, respFreeCb, NULL);
}
else
return BAD_FUNC_ARG;
}
int wolfSSL_CTX_EnableOCSP(WOLFSSL_CTX* ctx, int options)
{
WOLFSSL_ENTER("wolfSSL_CTX_EnableOCSP");
if (ctx)
return wolfSSL_CertManagerEnableOCSP(ctx->cm, options);
else
return BAD_FUNC_ARG;
}
int wolfSSL_CTX_DisableOCSP(WOLFSSL_CTX* ctx)
{
WOLFSSL_ENTER("wolfSSL_CTX_DisableOCSP");
if (ctx)
return wolfSSL_CertManagerDisableOCSP(ctx->cm);
else
return BAD_FUNC_ARG;
}
int wolfSSL_CTX_SetOCSP_OverrideURL(WOLFSSL_CTX* ctx, const char* url)
{
WOLFSSL_ENTER("wolfSSL_SetOCSP_OverrideURL");
if (ctx)
return wolfSSL_CertManagerSetOCSPOverrideURL(ctx->cm, url);
else
return BAD_FUNC_ARG;
}
int wolfSSL_CTX_SetOCSP_Cb(WOLFSSL_CTX* ctx, CbOCSPIO ioCb,
CbOCSPRespFree respFreeCb, void* ioCbCtx)
{
WOLFSSL_ENTER("wolfSSL_CTX_SetOCSP_Cb");
if (ctx)
return wolfSSL_CertManagerSetOCSP_Cb(ctx->cm, ioCb,
respFreeCb, ioCbCtx);
else
return BAD_FUNC_ARG;
}
#if defined(HAVE_CERTIFICATE_STATUS_REQUEST) \
|| defined(HAVE_CERTIFICATE_STATUS_REQUEST_V2)
int wolfSSL_CTX_EnableOCSPStapling(WOLFSSL_CTX* ctx)
{
WOLFSSL_ENTER("wolfSSL_CTX_EnableOCSPStapling");
if (ctx)
return wolfSSL_CertManagerEnableOCSPStapling(ctx->cm);
else
return BAD_FUNC_ARG;
}
int wolfSSL_CTX_DisableOCSPStapling(WOLFSSL_CTX* ctx)
{
WOLFSSL_ENTER("wolfSSL_CTX_DisableOCSPStapling");
if (ctx)
return wolfSSL_CertManagerDisableOCSPStapling(ctx->cm);
else
return BAD_FUNC_ARG;
}
int wolfSSL_CTX_EnableOCSPMustStaple(WOLFSSL_CTX* ctx)
{
WOLFSSL_ENTER("wolfSSL_CTX_EnableOCSPMustStaple");
if (ctx)
return wolfSSL_CertManagerEnableOCSPMustStaple(ctx->cm);
else
return BAD_FUNC_ARG;
}
int wolfSSL_CTX_DisableOCSPMustStaple(WOLFSSL_CTX* ctx)
{
WOLFSSL_ENTER("wolfSSL_CTX_DisableOCSPMustStaple");
if (ctx)
return wolfSSL_CertManagerDisableOCSPMustStaple(ctx->cm);
else
return BAD_FUNC_ARG;
}
#endif /* HAVE_CERTIFICATE_STATUS_REQUEST || \
* HAVE_CERTIFICATE_STATUS_REQUEST_V2 */
#endif /* HAVE_OCSP */
#ifdef HAVE_CRL
int wolfSSL_EnableCRL(WOLFSSL* ssl, int options)
{
WOLFSSL_ENTER("wolfSSL_EnableCRL");
if (ssl) {
SSL_CM_WARNING(ssl);
return wolfSSL_CertManagerEnableCRL(SSL_CM(ssl), options);
}
else
return BAD_FUNC_ARG;
}
int wolfSSL_DisableCRL(WOLFSSL* ssl)
{
WOLFSSL_ENTER("wolfSSL_DisableCRL");
if (ssl) {
SSL_CM_WARNING(ssl);
return wolfSSL_CertManagerDisableCRL(SSL_CM(ssl));
}
else
return BAD_FUNC_ARG;
}
#ifndef NO_FILESYSTEM
int wolfSSL_LoadCRL(WOLFSSL* ssl, const char* path, int type, int monitor)
{
WOLFSSL_ENTER("wolfSSL_LoadCRL");
if (ssl) {
SSL_CM_WARNING(ssl);
return wolfSSL_CertManagerLoadCRL(SSL_CM(ssl), path, type, monitor);
}
else
return BAD_FUNC_ARG;
}
int wolfSSL_LoadCRLFile(WOLFSSL* ssl, const char* file, int type)
{
WOLFSSL_ENTER("wolfSSL_LoadCRLFile");
if (ssl) {
SSL_CM_WARNING(ssl);
return wolfSSL_CertManagerLoadCRLFile(SSL_CM(ssl), file, type);
}
else
return BAD_FUNC_ARG;
}
#endif
int wolfSSL_SetCRL_Cb(WOLFSSL* ssl, CbMissingCRL cb)
{
WOLFSSL_ENTER("wolfSSL_SetCRL_Cb");
if (ssl) {
SSL_CM_WARNING(ssl);
return wolfSSL_CertManagerSetCRL_Cb(SSL_CM(ssl), cb);
}
else
return BAD_FUNC_ARG;
}
#ifdef HAVE_CRL_IO
int wolfSSL_SetCRL_IOCb(WOLFSSL* ssl, CbCrlIO cb)
{
WOLFSSL_ENTER("wolfSSL_SetCRL_Cb");
if (ssl) {
SSL_CM_WARNING(ssl);
return wolfSSL_CertManagerSetCRL_IOCb(SSL_CM(ssl), cb);
}
else
return BAD_FUNC_ARG;
}
#endif
int wolfSSL_CTX_EnableCRL(WOLFSSL_CTX* ctx, int options)
{
WOLFSSL_ENTER("wolfSSL_CTX_EnableCRL");
if (ctx)
return wolfSSL_CertManagerEnableCRL(ctx->cm, options);
else
return BAD_FUNC_ARG;
}
int wolfSSL_CTX_DisableCRL(WOLFSSL_CTX* ctx)
{
WOLFSSL_ENTER("wolfSSL_CTX_DisableCRL");
if (ctx)
return wolfSSL_CertManagerDisableCRL(ctx->cm);
else
return BAD_FUNC_ARG;
}
#ifndef NO_FILESYSTEM
int wolfSSL_CTX_LoadCRL(WOLFSSL_CTX* ctx, const char* path,
int type, int monitor)
{
WOLFSSL_ENTER("wolfSSL_CTX_LoadCRL");
if (ctx)
return wolfSSL_CertManagerLoadCRL(ctx->cm, path, type, monitor);
else
return BAD_FUNC_ARG;
}
int wolfSSL_CTX_LoadCRLFile(WOLFSSL_CTX* ctx, const char* file,
int type)
{
WOLFSSL_ENTER("wolfSSL_CTX_LoadCRL");
if (ctx)
return wolfSSL_CertManagerLoadCRLFile(ctx->cm, file, type);
else
return BAD_FUNC_ARG;
}
#endif
int wolfSSL_CTX_SetCRL_Cb(WOLFSSL_CTX* ctx, CbMissingCRL cb)
{
WOLFSSL_ENTER("wolfSSL_CTX_SetCRL_Cb");
if (ctx)
return wolfSSL_CertManagerSetCRL_Cb(ctx->cm, cb);
else
return BAD_FUNC_ARG;
}
#ifdef HAVE_CRL_IO
int wolfSSL_CTX_SetCRL_IOCb(WOLFSSL_CTX* ctx, CbCrlIO cb)
{
WOLFSSL_ENTER("wolfSSL_CTX_SetCRL_IOCb");
if (ctx)
return wolfSSL_CertManagerSetCRL_IOCb(ctx->cm, cb);
else
return BAD_FUNC_ARG;
}
#endif
#endif /* HAVE_CRL */
/* Sets the max chain depth when verifying a certificate chain. Default depth
* is set to MAX_CHAIN_DEPTH.
*
* ctx WOLFSSL_CTX structure to set depth in
* depth max depth
*/
void wolfSSL_CTX_set_verify_depth(WOLFSSL_CTX *ctx, int depth) {
WOLFSSL_ENTER("wolfSSL_CTX_set_verify_depth");
if (ctx == NULL || depth < 0 || depth > MAX_CHAIN_DEPTH) {
WOLFSSL_MSG("Bad depth argument, too large or less than 0");
return;
}
ctx->verifyDepth = (byte)depth;
}
/* get cert chaining depth using ssl struct */
long wolfSSL_get_verify_depth(WOLFSSL* ssl)
{
if(ssl == NULL) {
return BAD_FUNC_ARG;
}
#ifndef OPENSSL_EXTRA
return MAX_CHAIN_DEPTH;
#else
return ssl->options.verifyDepth;
#endif
}
/* get cert chaining depth using ctx struct */
long wolfSSL_CTX_get_verify_depth(WOLFSSL_CTX* ctx)
{
if (ctx == NULL) {
return BAD_FUNC_ARG;
}
#ifndef OPENSSL_EXTRA
return MAX_CHAIN_DEPTH;
#else
return ctx->verifyDepth;
#endif
}
#ifndef NO_CHECK_PRIVATE_KEY
#ifdef WOLF_PRIVATE_KEY_ID
/* Check private against public in certificate for match using external
* device with given devId */
static int check_cert_key_dev(word32 keyOID, byte* privKey, word32 privSz,
const byte* pubKey, word32 pubSz, int label, int id, void* heap, int devId)
{
int ret = 0;
int type = 0;
void *pkey = NULL;
if (privKey == NULL) {
return MISSING_KEY;
}
#ifndef NO_RSA
if (keyOID == RSAk) {
type = DYNAMIC_TYPE_RSA;
}
#ifdef WC_RSA_PSS
if (keyOID == RSAPSSk) {
type = DYNAMIC_TYPE_RSA;
}
#endif
#endif
#ifdef HAVE_ECC
if (keyOID == ECDSAk) {
type = DYNAMIC_TYPE_ECC;
}
#endif
#if defined(HAVE_PQC) && defined(HAVE_DILITHIUM)
if ((keyOID == DILITHIUM_LEVEL2k) ||
(keyOID == DILITHIUM_LEVEL3k) ||
(keyOID == DILITHIUM_LEVEL5k)) {
type = DYNAMIC_TYPE_DILITHIUM;
}
#endif
#if defined(HAVE_PQC) && defined(HAVE_FALCON)
if ((keyOID == FALCON_LEVEL1k) ||
(keyOID == FALCON_LEVEL5k)) {
type = DYNAMIC_TYPE_FALCON;
}
#endif
ret = CreateDevPrivateKey(&pkey, privKey, privSz, type, label, id,
heap, devId);
#ifdef WOLF_CRYPTO_CB
if (ret == 0) {
#ifndef NO_RSA
if (keyOID == RSAk
#ifdef WC_RSA_PSS
|| keyOID == RSAPSSk
#endif
) {
ret = wc_CryptoCb_RsaCheckPrivKey((RsaKey*)pkey, pubKey, pubSz);
}
#endif
#ifdef HAVE_ECC
if (keyOID == ECDSAk) {
ret = wc_CryptoCb_EccCheckPrivKey((ecc_key*)pkey, pubKey, pubSz);
}
#endif
#if defined(HAVE_PQC) && defined(HAVE_DILITHIUM)
if ((keyOID == DILITHIUM_LEVEL2k) ||
(keyOID == DILITHIUM_LEVEL3k) ||
(keyOID == DILITHIUM_LEVEL5k)) {
ret = wc_CryptoCb_PqcSignatureCheckPrivKey(pkey,
WC_PQC_SIG_TYPE_DILITHIUM,
pubKey, pubSz);
}
#endif
#if defined(HAVE_PQC) && defined(HAVE_FALCON)
if ((keyOID == FALCON_LEVEL1k) ||
(keyOID == FALCON_LEVEL5k)) {
ret = wc_CryptoCb_PqcSignatureCheckPrivKey(pkey,
WC_PQC_SIG_TYPE_FALCON,
pubKey, pubSz);
}
#endif
}
#else
/* devId was set, don't check, for now */
/* TODO: Add callback for private key check? */
(void) pubKey;
(void) pubSz;
#endif
if (pkey != NULL) {
#ifndef NO_RSA
if (keyOID == RSAk
#ifdef WC_RSA_PSS
|| keyOID == RSAPSSk
#endif
) {
wc_FreeRsaKey((RsaKey*)pkey);
}
#endif
#ifdef HAVE_ECC
if (keyOID == ECDSAk) {
wc_ecc_free((ecc_key*)pkey);
}
#endif
#if defined(HAVE_PQC) && defined(HAVE_DILITHIUM)
if ((keyOID == DILITHIUM_LEVEL2k) ||
(keyOID == DILITHIUM_LEVEL3k) ||
(keyOID == DILITHIUM_LEVEL5k)) {
wc_dilithium_free((dilithium_key*)pkey);
}
#endif
#if defined(HAVE_PQC) && defined(HAVE_FALCON)
if ((keyOID == FALCON_LEVEL1k) ||
(keyOID == FALCON_LEVEL5k)) {
wc_falcon_free((falcon_key*)pkey);
}
#endif
XFREE(pkey, heap, type);
}
return ret;
}
#endif /* WOLF_PRIVATE_KEY_ID */
/* Check private against public in certificate for match
*
* Returns WOLFSSL_SUCCESS on good private key
* WOLFSSL_FAILURE if mismatched */
static int check_cert_key(DerBuffer* cert, DerBuffer* key, DerBuffer* altKey,
void* heap, int devId, int isKeyLabel, int isKeyId, int altDevId,
int isAltKeyLabel, int isAltKeyId)
{
#ifdef WOLFSSL_SMALL_STACK
DecodedCert* der = NULL;
#else
DecodedCert der[1];
#endif
word32 size;
byte* buff;
int ret = WOLFSSL_FAILURE;
WOLFSSL_ENTER("check_cert_key");
if (cert == NULL || key == NULL) {
return WOLFSSL_FAILURE;
}
#ifdef WOLFSSL_SMALL_STACK
der = (DecodedCert*)XMALLOC(sizeof(DecodedCert), heap, DYNAMIC_TYPE_DCERT);
if (der == NULL)
return MEMORY_E;
#endif
size = cert->length;
buff = cert->buffer;
InitDecodedCert_ex(der, buff, size, heap, devId);
if (ParseCertRelative(der, CERT_TYPE, NO_VERIFY, NULL) != 0) {
FreeDecodedCert(der);
#ifdef WOLFSSL_SMALL_STACK
XFREE(der, heap, DYNAMIC_TYPE_DCERT);
#endif
return WOLFSSL_FAILURE;
}
size = key->length;
buff = key->buffer;
#ifdef WOLF_PRIVATE_KEY_ID
if (devId != INVALID_DEVID) {
ret = check_cert_key_dev(der->keyOID, buff, size, der->publicKey,
der->pubKeySize, isKeyLabel, isKeyId, heap,
devId);
if (ret != WC_NO_ERR_TRACE(CRYPTOCB_UNAVAILABLE)) {
ret = (ret == 0) ? WOLFSSL_SUCCESS: WOLFSSL_FAILURE;
}
}
else {
/* fall through if unavailable */
ret = CRYPTOCB_UNAVAILABLE;
}
if (ret == WC_NO_ERR_TRACE(CRYPTOCB_UNAVAILABLE))
#endif /* WOLF_PRIVATE_KEY_ID */
{
ret = wc_CheckPrivateKeyCert(buff, size, der, 0);
ret = (ret == 1) ? WOLFSSL_SUCCESS: WOLFSSL_FAILURE;
}
#ifdef WOLFSSL_DUAL_ALG_CERTS
if (ret == WOLFSSL_SUCCESS && der->extSapkiSet && der->sapkiDer != NULL) {
/* Certificate contains an alternative public key. Hence, we also
* need an alternative private key. */
if (altKey == NULL) {
ret = MISSING_KEY;
buff = NULL;
size = 0;
}
else {
size = altKey->length;
buff = altKey->buffer;
}
#ifdef WOLF_PRIVATE_KEY_ID
if (ret == WOLFSSL_SUCCESS && altDevId != INVALID_DEVID) {
/* We have to decode the public key first */
word32 idx = 0;
/* Dilithium has the largest public key at the moment */
word32 pubKeyLen = DILITHIUM_MAX_PUB_KEY_SIZE;
byte* decodedPubKey = (byte*)XMALLOC(pubKeyLen, heap,
DYNAMIC_TYPE_PUBLIC_KEY);
if (decodedPubKey == NULL) {
ret = MEMORY_E;
}
if (ret == WOLFSSL_SUCCESS) {
if (der->sapkiOID == RSAk || der->sapkiOID == ECDSAk) {
/* Simply copy the data */
XMEMCPY(decodedPubKey, der->sapkiDer, der->sapkiLen);
pubKeyLen = der->sapkiLen;
ret = 0;
}
else {
ret = DecodeAsymKeyPublic(der->sapkiDer, &idx,
der->sapkiLen, decodedPubKey,
&pubKeyLen, der->sapkiOID);
}
}
if (ret == 0) {
ret = check_cert_key_dev(der->sapkiOID, buff, size,
decodedPubKey, pubKeyLen,
isAltKeyLabel, isAltKeyId,
heap, altDevId);
}
XFREE(decodedPubKey, heap, DYNAMIC_TYPE_PUBLIC_KEY);
if (ret != WC_NO_ERR_TRACE(CRYPTOCB_UNAVAILABLE)) {
ret = (ret == 0) ? WOLFSSL_SUCCESS: WOLFSSL_FAILURE;
}
}
else {
/* fall through if unavailable */
ret = CRYPTOCB_UNAVAILABLE;
}
if (ret == WC_NO_ERR_TRACE(CRYPTOCB_UNAVAILABLE))
#endif /* WOLF_PRIVATE_KEY_ID */
{
ret = wc_CheckPrivateKeyCert(buff, size, der, 1);
ret = (ret == 1) ? WOLFSSL_SUCCESS: WOLFSSL_FAILURE;
}
}
#endif /* WOLFSSL_DUAL_ALG_CERTS */
FreeDecodedCert(der);
#ifdef WOLFSSL_SMALL_STACK
XFREE(der, heap, DYNAMIC_TYPE_DCERT);
#endif
(void)devId;
(void)isKeyLabel;
(void)isKeyId;
(void)altKey;
(void)altDevId;
(void)isAltKeyLabel;
(void)isAltKeyId;
return ret;
}
/* Check private against public in certificate for match
*
* ctx WOLFSSL_CTX structure to check private key in
*
* Returns WOLFSSL_SUCCESS on good private key
* WOLFSSL_FAILURE if mismatched. */
int wolfSSL_CTX_check_private_key(const WOLFSSL_CTX* ctx)
{
int res;
if (ctx == NULL) {
return WOLFSSL_FAILURE;
}
#ifdef WOLFSSL_DUAL_ALG_CERTS
#ifdef WOLFSSL_BLIND_PRIVATE_KEY
wolfssl_priv_der_unblind(ctx->privateKey, ctx->privateKeyMask);
wolfssl_priv_der_unblind(ctx->altPrivateKey, ctx->altPrivateKeyMask);
#endif
res = check_cert_key(ctx->certificate, ctx->privateKey, ctx->altPrivateKey,
ctx->heap, ctx->privateKeyDevId, ctx->privateKeyLabel,
ctx->privateKeyId, ctx->altPrivateKeyDevId, ctx->altPrivateKeyLabel,
ctx->altPrivateKeyId) != 0;
#ifdef WOLFSSL_BLIND_PRIVATE_KEY
{
int ret;
ret = wolfssl_priv_der_blind(NULL, ctx->privateKey,
(DerBuffer**)&ctx->privateKeyMask);
if (ret == 0) {
ret = wolfssl_priv_der_blind(NULL, ctx->altPrivateKey,
(DerBuffer**)&ctx->altPrivateKeyMask);
}
if (ret != 0) {
res = WOLFSSL_FAILURE;
}
}
#endif
#else
#ifdef WOLFSSL_BLIND_PRIVATE_KEY
wolfssl_priv_der_unblind(ctx->privateKey, ctx->privateKeyMask);
#endif
res = check_cert_key(ctx->certificate, ctx->privateKey, NULL, ctx->heap,
ctx->privateKeyDevId, ctx->privateKeyLabel, ctx->privateKeyId,
INVALID_DEVID, 0, 0);
#ifdef WOLFSSL_BLIND_PRIVATE_KEY
{
int ret = wolfssl_priv_der_blind(NULL, ctx->privateKey,
(DerBuffer**)&ctx->privateKeyMask);
if (ret != 0) {
res = WOLFSSL_FAILURE;
}
}
#endif
#endif
return res;
}
#endif /* !NO_CHECK_PRIVATE_KEY */
#ifdef OPENSSL_ALL
/**
* Return the private key of the WOLFSSL_CTX struct
* @return WOLFSSL_EVP_PKEY* The caller doesn *NOT*` free the returned object.
*/
WOLFSSL_EVP_PKEY* wolfSSL_CTX_get0_privatekey(const WOLFSSL_CTX* ctx)
{
WOLFSSL_EVP_PKEY* res;
const unsigned char *key;
int type;
WOLFSSL_ENTER("wolfSSL_CTX_get0_privatekey");
if (ctx == NULL || ctx->privateKey == NULL ||
ctx->privateKey->buffer == NULL) {
WOLFSSL_MSG("Bad parameter or key not set");
return NULL;
}
switch (ctx->privateKeyType) {
#ifndef NO_RSA
case rsa_sa_algo:
type = EVP_PKEY_RSA;
break;
#endif
#ifdef HAVE_ECC
case ecc_dsa_sa_algo:
type = EVP_PKEY_EC;
break;
#endif
#ifdef WOLFSSL_SM2
case sm2_sa_algo:
type = EVP_PKEY_EC;
break;
#endif
default:
/* Other key types not supported either as ssl private keys
* or in the EVP layer */
WOLFSSL_MSG("Unsupported key type");
return NULL;
}
key = ctx->privateKey->buffer;
if (ctx->privateKeyPKey != NULL) {
res = ctx->privateKeyPKey;
}
else {
#ifdef WOLFSSL_BLIND_PRIVATE_KEY
wolfssl_priv_der_unblind(ctx->privateKey, ctx->privateKeyMask);
#endif
res = wolfSSL_d2i_PrivateKey(type,
(WOLFSSL_EVP_PKEY**)&ctx->privateKeyPKey, &key,
(long)ctx->privateKey->length);
#ifdef WOLFSSL_BLIND_PRIVATE_KEY
wolfssl_priv_der_unblind(ctx->privateKey, ctx->privateKeyMask);
#endif
}
return res;
}
#endif
#if defined(OPENSSL_EXTRA) || defined(WOLFSSL_WPAS_SMALL)
#if !defined(NO_RSA)
static int d2iTryRsaKey(WOLFSSL_EVP_PKEY** out, const unsigned char* mem,
long memSz, int priv)
{
WOLFSSL_EVP_PKEY* pkey;
word32 keyIdx = 0;
int isRsaKey;
int ret = 1;
#ifndef WOLFSSL_SMALL_STACK
RsaKey rsa[1];
#else
RsaKey *rsa = (RsaKey*)XMALLOC(sizeof(RsaKey), NULL, DYNAMIC_TYPE_RSA);
if (rsa == NULL)
return 0;
#endif
XMEMSET(rsa, 0, sizeof(RsaKey));
if (wc_InitRsaKey(rsa, NULL) != 0) {
#ifdef WOLFSSL_SMALL_STACK
XFREE(rsa, NULL, DYNAMIC_TYPE_RSA);
#endif
return 0;
}
/* test if RSA key */
if (priv) {
isRsaKey =
(wc_RsaPrivateKeyDecode(mem, &keyIdx, rsa, (word32)memSz) == 0);
}
else {
isRsaKey =
(wc_RsaPublicKeyDecode(mem, &keyIdx, rsa, (word32)memSz) == 0);
}
wc_FreeRsaKey(rsa);
#ifdef WOLFSSL_SMALL_STACK
XFREE(rsa, NULL, DYNAMIC_TYPE_RSA);
#endif
if (!isRsaKey) {
return -1;
}
if (*out != NULL) {
pkey = *out;
}
else {
pkey = wolfSSL_EVP_PKEY_new();
if (pkey == NULL) {
WOLFSSL_MSG("RSA wolfSSL_EVP_PKEY_new error");
return 0;
}
}
pkey->pkey_sz = (int)keyIdx;
pkey->pkey.ptr = (char*)XMALLOC(memSz, NULL,
priv ? DYNAMIC_TYPE_PRIVATE_KEY :
DYNAMIC_TYPE_PUBLIC_KEY);
if (pkey->pkey.ptr == NULL) {
ret = 0;
}
if (ret == 1) {
XMEMCPY(pkey->pkey.ptr, mem, keyIdx);
pkey->type = EVP_PKEY_RSA;
pkey->ownRsa = 1;
pkey->rsa = wolfssl_rsa_d2i(NULL, mem, memSz,
priv ? WOLFSSL_RSA_LOAD_PRIVATE : WOLFSSL_RSA_LOAD_PUBLIC);
if (pkey->rsa == NULL) {
ret = 0;
}
}
if (ret == 1) {
*out = pkey;
}
if ((ret == 0) && (*out == NULL)) {
wolfSSL_EVP_PKEY_free(pkey);
}
return ret;
}
#endif /* !NO_RSA */
#if defined(HAVE_ECC) && defined(OPENSSL_EXTRA)
static int d2iTryEccKey(WOLFSSL_EVP_PKEY** out, const unsigned char* mem,
long memSz, int priv)
{
WOLFSSL_EVP_PKEY* pkey;
word32 keyIdx = 0;
int isEccKey;
int ret = 1;
#ifndef WOLFSSL_SMALL_STACK
ecc_key ecc[1];
#else
ecc_key *ecc = (ecc_key*)XMALLOC(sizeof(ecc_key), NULL,
DYNAMIC_TYPE_ECC);
if (ecc == NULL)
return 0;
#endif
XMEMSET(ecc, 0, sizeof(ecc_key));
if (wc_ecc_init(ecc) != 0) {
#ifdef WOLFSSL_SMALL_STACK
XFREE(ecc, NULL, DYNAMIC_TYPE_ECC);
#endif
return 0;
}
if (priv) {
isEccKey =
(wc_EccPrivateKeyDecode(mem, &keyIdx, ecc, (word32)memSz) == 0);
}
else {
isEccKey =
(wc_EccPublicKeyDecode(mem, &keyIdx, ecc, (word32)memSz) == 0);
}
wc_ecc_free(ecc);
#ifdef WOLFSSL_SMALL_STACK
XFREE(ecc, NULL, DYNAMIC_TYPE_ECC);
#endif
if (!isEccKey) {
return -1;
}
if (*out != NULL) {
pkey = *out;
}
else {
pkey = wolfSSL_EVP_PKEY_new();
if (pkey == NULL) {
WOLFSSL_MSG("ECC wolfSSL_EVP_PKEY_new error");
return 0;
}
}
pkey->pkey_sz = (int)keyIdx;
pkey->pkey.ptr = (char*)XMALLOC(keyIdx, NULL,
priv ? DYNAMIC_TYPE_PRIVATE_KEY :
DYNAMIC_TYPE_PUBLIC_KEY);
if (pkey->pkey.ptr == NULL) {
ret = 0;
}
if (ret == 1) {
XMEMCPY(pkey->pkey.ptr, mem, keyIdx);
pkey->type = EVP_PKEY_EC;
pkey->ownEcc = 1;
pkey->ecc = wolfSSL_EC_KEY_new();
if (pkey->ecc == NULL) {
ret = 0;
}
}
if ((ret == 1) && (wolfSSL_EC_KEY_LoadDer_ex(pkey->ecc,
(const unsigned char*)pkey->pkey.ptr,
pkey->pkey_sz, priv ? WOLFSSL_RSA_LOAD_PRIVATE
: WOLFSSL_RSA_LOAD_PUBLIC) != 1)) {
ret = 0;
}
if (ret == 1) {
*out = pkey;
}
if ((ret == 0) && (*out == NULL)) {
wolfSSL_EVP_PKEY_free(pkey);
}
return ret;
}
#endif /* HAVE_ECC && OPENSSL_EXTRA */
#if !defined(NO_DSA)
static int d2iTryDsaKey(WOLFSSL_EVP_PKEY** out, const unsigned char* mem,
long memSz, int priv)
{
WOLFSSL_EVP_PKEY* pkey;
word32 keyIdx = 0;
int isDsaKey;
int ret = 1;
#ifndef WOLFSSL_SMALL_STACK
DsaKey dsa[1];
#else
DsaKey *dsa = (DsaKey*)XMALLOC(sizeof(DsaKey), NULL, DYNAMIC_TYPE_DSA);
if (dsa == NULL)
return 0;
#endif
XMEMSET(dsa, 0, sizeof(DsaKey));
if (wc_InitDsaKey(dsa) != 0) {
#ifdef WOLFSSL_SMALL_STACK
XFREE(dsa, NULL, DYNAMIC_TYPE_DSA);
#endif
return 0;
}
if (priv) {
isDsaKey =
(wc_DsaPrivateKeyDecode(mem, &keyIdx, dsa, (word32)memSz) == 0);
}
else {
isDsaKey =
(wc_DsaPublicKeyDecode(mem, &keyIdx, dsa, (word32)memSz) == 0);
}
wc_FreeDsaKey(dsa);
#ifdef WOLFSSL_SMALL_STACK
XFREE(dsa, NULL, DYNAMIC_TYPE_DSA);
#endif
/* test if DSA key */
if (!isDsaKey) {
return -1;
}
if (*out != NULL) {
pkey = *out;
}
else {
pkey = wolfSSL_EVP_PKEY_new();
if (pkey == NULL) {
WOLFSSL_MSG("DSA wolfSSL_EVP_PKEY_new error");
return 0;
}
}
pkey->pkey_sz = (int)keyIdx;
pkey->pkey.ptr = (char*)XMALLOC(memSz, NULL,
priv ? DYNAMIC_TYPE_PRIVATE_KEY :
DYNAMIC_TYPE_PUBLIC_KEY);
if (pkey->pkey.ptr == NULL) {
ret = 0;
}
if (ret == 1) {
XMEMCPY(pkey->pkey.ptr, mem, keyIdx);
pkey->type = EVP_PKEY_DSA;
pkey->ownDsa = 1;
pkey->dsa = wolfSSL_DSA_new();
if (pkey->dsa == NULL) {
ret = 0;
}
}
if ((ret == 1) && (wolfSSL_DSA_LoadDer_ex(pkey->dsa,
(const unsigned char*)pkey->pkey.ptr,
pkey->pkey_sz, priv ? WOLFSSL_RSA_LOAD_PRIVATE
: WOLFSSL_RSA_LOAD_PUBLIC) != 1)) {
ret = 0;
}
if (ret == 1) {
*out = pkey;
}
if ((ret == 0) && (*out == NULL)) {
wolfSSL_EVP_PKEY_free(pkey);
}
return ret;
}
#endif /* NO_DSA */
#if !defined(NO_DH) && (defined(WOLFSSL_QT) || defined(OPENSSL_ALL))
#if !defined(HAVE_FIPS) || (defined(HAVE_FIPS_VERSION) && \
(HAVE_FIPS_VERSION > 2))
static int d2iTryDhKey(WOLFSSL_EVP_PKEY** out, const unsigned char* mem,
long memSz, int priv)
{
WOLFSSL_EVP_PKEY* pkey;
int isDhKey;
word32 keyIdx = 0;
int ret = 1;
#ifndef WOLFSSL_SMALL_STACK
DhKey dh[1];
#else
DhKey *dh = (DhKey*)XMALLOC(sizeof(DhKey), NULL, DYNAMIC_TYPE_DH);
if (dh == NULL)
return 0;
#endif
XMEMSET(dh, 0, sizeof(DhKey));
if (wc_InitDhKey(dh) != 0) {
#ifdef WOLFSSL_SMALL_STACK
XFREE(dh, NULL, DYNAMIC_TYPE_DH);
#endif
return 0;
}
isDhKey = (wc_DhKeyDecode(mem, &keyIdx, dh, (word32)memSz) == 0);
wc_FreeDhKey(dh);
#ifdef WOLFSSL_SMALL_STACK
XFREE(dh, NULL, DYNAMIC_TYPE_DH);
#endif
/* test if DH key */
if (!isDhKey) {
return -1;
}
if (*out != NULL) {
pkey = *out;
}
else {
pkey = wolfSSL_EVP_PKEY_new();
if (pkey == NULL) {
WOLFSSL_MSG("DH wolfSSL_EVP_PKEY_new error");
return 0;
}
}
pkey->pkey_sz = (int)memSz;
pkey->pkey.ptr = (char*)XMALLOC(memSz, NULL,
priv ? DYNAMIC_TYPE_PRIVATE_KEY :
DYNAMIC_TYPE_PUBLIC_KEY);
if (pkey->pkey.ptr == NULL) {
ret = 0;
}
if (ret == 1) {
XMEMCPY(pkey->pkey.ptr, mem, memSz);
pkey->type = EVP_PKEY_DH;
pkey->ownDh = 1;
pkey->dh = wolfSSL_DH_new();
if (pkey->dh == NULL) {
ret = 0;
}
}
if ((ret == 1) && (wolfSSL_DH_LoadDer(pkey->dh,
(const unsigned char*)pkey->pkey.ptr,
pkey->pkey_sz) != WOLFSSL_SUCCESS)) {
ret = 0;
}
if (ret == 1) {
*out = pkey;
}
if ((ret == 0) && (*out == NULL)) {
wolfSSL_EVP_PKEY_free(pkey);
}
return ret;
}
#endif /* !HAVE_FIPS || HAVE_FIPS_VERSION > 2 */
#endif /* !NO_DH && (WOLFSSL_QT || OPENSSL_ALL) */
#if !defined(NO_DH) && defined(OPENSSL_EXTRA) && defined(WOLFSSL_DH_EXTRA)
#if !defined(HAVE_FIPS) || (defined(HAVE_FIPS_VERSION) && \
(HAVE_FIPS_VERSION > 2))
static int d2iTryAltDhKey(WOLFSSL_EVP_PKEY** out, const unsigned char* mem,
long memSz, int priv)
{
WOLFSSL_EVP_PKEY* pkey;
word32 keyIdx = 0;
DhKey* key = NULL;
int elements;
int ret;
#ifndef WOLFSSL_SMALL_STACK
DhKey dh[1];
#else
DhKey* dh = (DhKey*)XMALLOC(sizeof(DhKey), NULL, DYNAMIC_TYPE_DH);
if (dh == NULL)
return 0;
#endif
XMEMSET(dh, 0, sizeof(DhKey));
/* test if DH-public key */
if (wc_InitDhKey(dh) != 0) {
#ifdef WOLFSSL_SMALL_STACK
XFREE(dh, NULL, DYNAMIC_TYPE_DH);
#endif
return 0;
}
ret = wc_DhKeyDecode(mem, &keyIdx, dh, (word32)memSz);
wc_FreeDhKey(dh);
#ifdef WOLFSSL_SMALL_STACK
XFREE(dh, NULL, DYNAMIC_TYPE_DH);
#endif
if (ret != 0) {
return -1;
}
if (*out != NULL) {
pkey = *out;
}
else {
pkey = wolfSSL_EVP_PKEY_new();
if (pkey == NULL) {
return 0;
}
}
ret = 1;
pkey->type = EVP_PKEY_DH;
pkey->pkey_sz = (int)memSz;
pkey->pkey.ptr = (char*)XMALLOC(memSz, NULL,
priv ? DYNAMIC_TYPE_PRIVATE_KEY :
DYNAMIC_TYPE_PUBLIC_KEY);
if (pkey->pkey.ptr == NULL) {
ret = 0;
}
if (ret == 1) {
XMEMCPY(pkey->pkey.ptr, mem, memSz);
pkey->ownDh = 1;
pkey->dh = wolfSSL_DH_new();
if (pkey->dh == NULL) {
ret = 0;
}
}
if (ret == 1) {
key = (DhKey*)pkey->dh->internal;
keyIdx = 0;
if (wc_DhKeyDecode(mem, &keyIdx, key, (word32)memSz) != 0) {
ret = 0;
}
}
if (ret == 1) {
elements = ELEMENT_P | ELEMENT_G | ELEMENT_Q | ELEMENT_PUB;
if (priv) {
elements |= ELEMENT_PRV;
}
if (SetDhExternal_ex(pkey->dh, elements) != WOLFSSL_SUCCESS ) {
ret = 0;
}
}
if (ret == 1) {
*out = pkey;
}
if ((ret == 0) && (*out == NULL)) {
wolfSSL_EVP_PKEY_free(pkey);
}
return ret;
}
#endif /* !HAVE_FIPS || HAVE_FIPS_VERSION > 2 */
#endif /* !NO_DH && OPENSSL_EXTRA && WOLFSSL_DH_EXTRA */
#ifdef HAVE_PQC
#ifdef HAVE_FALCON
static int d2iTryFalconKey(WOLFSSL_EVP_PKEY** out, const unsigned char* mem,
long memSz, int priv)
{
WOLFSSL_EVP_PKEY* pkey;
int isFalcon = 0;
#ifndef WOLFSSL_SMALL_STACK
falcon_key falcon[1];
#else
falcon_key *falcon = (falcon_key *)XMALLOC(sizeof(falcon_key), NULL,
DYNAMIC_TYPE_FALCON);
if (falcon == NULL) {
return 0;
}
#endif
if (wc_falcon_init(falcon) != 0) {
#ifdef WOLFSSL_SMALL_STACK
XFREE(falcon, NULL, DYNAMIC_TYPE_FALCON);
#endif
return 0;
}
/* test if Falcon key */
if (priv) {
/* Try level 1 */
isFalcon = ((wc_falcon_set_level(falcon, 1) == 0) &&
(wc_falcon_import_private_only(mem, (word32)memSz,
falcon) == 0));
if (!isFalcon) {
/* Try level 5 */
isFalcon = ((wc_falcon_set_level(falcon, 5) == 0) &&
(wc_falcon_import_private_only(mem, (word32)memSz,
falcon) == 0));
}
}
else {
/* Try level 1 */
isFalcon = ((wc_falcon_set_level(falcon, 1) == 0) &&
(wc_falcon_import_public(mem, (word32)memSz, falcon) == 0));
if (!isFalcon) {
/* Try level 5 */
isFalcon = ((wc_falcon_set_level(falcon, 5) == 0) &&
(wc_falcon_import_public(mem, (word32)memSz,
falcon) == 0));
}
}
wc_falcon_free(falcon);
#ifdef WOLFSSL_SMALL_STACK
XFREE(falcon, NULL, DYNAMIC_TYPE_FALCON);
#endif
if (!isFalcon) {
return -1;
}
if (*out != NULL) {
pkey = *out;
}
else {
/* Create a fake Falcon EVP_PKEY. In the future, we might integrate
* Falcon into the compatibility layer. */
pkey = wolfSSL_EVP_PKEY_new();
if (pkey == NULL) {
WOLFSSL_MSG("Falcon wolfSSL_EVP_PKEY_new error");
return 0;
}
}
pkey->type = EVP_PKEY_FALCON;
pkey->pkey.ptr = NULL;
pkey->pkey_sz = 0;
*out = pkey;
return 1;
}
#endif /* HAVE_FALCON */
#ifdef HAVE_DILITHIUM
static int d2iTryDilithiumKey(WOLFSSL_EVP_PKEY** out, const unsigned char* mem,
long memSz, int priv)
{
WOLFSSL_EVP_PKEY* pkey;
int isDilithium = 0;
#ifndef WOLFSSL_SMALL_STACK
dilithium_key dilithium[1];
#else
dilithium_key *dilithium = (dilithium_key *)
XMALLOC(sizeof(dilithium_key), NULL, DYNAMIC_TYPE_DILITHIUM);
if (dilithium == NULL) {
return 0;
}
#endif
if (wc_dilithium_init(dilithium) != 0) {
#ifdef WOLFSSL_SMALL_STACK
XFREE(dilithium, NULL, DYNAMIC_TYPE_DILITHIUM);
#endif
return 0;
}
/* Test if Dilithium key. Try all levels. */
if (priv) {
isDilithium = ((wc_dilithium_set_level(dilithium, 2) == 0) &&
(wc_dilithium_import_private_only(mem,
(word32)memSz, dilithium) == 0));
if (!isDilithium) {
isDilithium = ((wc_dilithium_set_level(dilithium, 3) == 0) &&
(wc_dilithium_import_private_only(mem,
(word32)memSz, dilithium) == 0));
}
if (!isDilithium) {
isDilithium = ((wc_dilithium_set_level(dilithium, 5) == 0) &&
(wc_dilithium_import_private_only(mem,
(word32)memSz, dilithium) == 0));
}
}
else {
isDilithium = ((wc_dilithium_set_level(dilithium, 2) == 0) &&
(wc_dilithium_import_public(mem, (word32)memSz,
dilithium) == 0));
if (!isDilithium) {
isDilithium = ((wc_dilithium_set_level(dilithium, 3) == 0) &&
(wc_dilithium_import_public(mem, (word32)memSz,
dilithium) == 0));
}
if (!isDilithium) {
isDilithium = ((wc_dilithium_set_level(dilithium, 5) == 0) &&
(wc_dilithium_import_public(mem, (word32)memSz,
dilithium) == 0));
}
}
wc_dilithium_free(dilithium);
#ifdef WOLFSSL_SMALL_STACK
XFREE(dilithium, NULL, DYNAMIC_TYPE_DILITHIUM);
#endif
if (!isDilithium) {
return -1;
}
if (*out != NULL) {
pkey = *out;
}
else {
/* Create a fake Dilithium EVP_PKEY. In the future, we might
* integrate Dilithium into the compatibility layer. */
pkey = wolfSSL_EVP_PKEY_new();
if (pkey == NULL) {
WOLFSSL_MSG("Dilithium wolfSSL_EVP_PKEY_new error");
return 0;
}
}
pkey->type = EVP_PKEY_DILITHIUM;
pkey->pkey.ptr = NULL;
pkey->pkey_sz = 0;
*out = pkey;
return 1;
}
#endif /* HAVE_DILITHIUM */
#endif /* HAVE_PQC */
static WOLFSSL_EVP_PKEY* d2iGenericKey(WOLFSSL_EVP_PKEY** out,
const unsigned char** in, long inSz, int priv)
{
WOLFSSL_EVP_PKEY* pkey = NULL;
WOLFSSL_ENTER("d2iGenericKey");
if (in == NULL || *in == NULL || inSz < 0) {
WOLFSSL_MSG("Bad argument");
return NULL;
}
if ((out != NULL) && (*out != NULL)) {
pkey = *out;
}
#if !defined(NO_RSA)
if (d2iTryRsaKey(&pkey, *in, inSz, priv) >= 0) {
;
}
else
#endif /* NO_RSA */
#if defined(HAVE_ECC) && defined(OPENSSL_EXTRA)
if (d2iTryEccKey(&pkey, *in, inSz, priv) >= 0) {
;
}
else
#endif /* HAVE_ECC && OPENSSL_EXTRA */
#if !defined(NO_DSA)
if (d2iTryDsaKey(&pkey, *in, inSz, priv) >= 0) {
;
}
else
#endif /* NO_DSA */
#if !defined(NO_DH) && (defined(WOLFSSL_QT) || defined(OPENSSL_ALL))
#if !defined(HAVE_FIPS) || (defined(HAVE_FIPS_VERSION) && \
(HAVE_FIPS_VERSION > 2))
if (d2iTryDhKey(&pkey, *in, inSz, priv) >= 0) {
;
}
else
#endif /* !HAVE_FIPS || HAVE_FIPS_VERSION > 2 */
#endif /* !NO_DH && (WOLFSSL_QT || OPENSSL_ALL) */
#if !defined(NO_DH) && defined(OPENSSL_EXTRA) && defined(WOLFSSL_DH_EXTRA)
#if !defined(HAVE_FIPS) || (defined(HAVE_FIPS_VERSION) && \
(HAVE_FIPS_VERSION > 2))
if (d2iTryAltDhKey(&pkey, *in, inSz, priv) >= 0) {
;
}
else
#endif /* !HAVE_FIPS || HAVE_FIPS_VERSION > 2 */
#endif /* !NO_DH && OPENSSL_EXTRA && WOLFSSL_DH_EXTRA */
#ifdef HAVE_PQC
#ifdef HAVE_FALCON
if (d2iTryFalconKey(&pkey, *in, inSz, priv) >= 0) {
;
}
else
#endif /* HAVE_FALCON */
#ifdef HAVE_DILITHIUM
if (d2iTryDilithiumKey(&pkey, *in, inSz, priv) >= 0) {
;
}
else
#endif /* HAVE_DILITHIUM */
#endif /* HAVE_PQC */
{
WOLFSSL_MSG("wolfSSL_d2i_PUBKEY couldn't determine key type");
}
if ((pkey != NULL) && (out != NULL)) {
*out = pkey;
}
return pkey;
}
#endif /* OPENSSL_EXTRA || WPA_SMALL */
#ifdef OPENSSL_EXTRA
WOLFSSL_PKCS8_PRIV_KEY_INFO* wolfSSL_d2i_PKCS8_PKEY(
WOLFSSL_PKCS8_PRIV_KEY_INFO** pkey, const unsigned char** keyBuf,
long keyLen)
{
WOLFSSL_PKCS8_PRIV_KEY_INFO* pkcs8 = NULL;
#ifdef WOLFSSL_PEM_TO_DER
int ret;
DerBuffer* der = NULL;
if (keyBuf == NULL || *keyBuf == NULL || keyLen <= 0) {
WOLFSSL_MSG("Bad key PEM/DER args");
return NULL;
}
ret = PemToDer(*keyBuf, keyLen, PRIVATEKEY_TYPE, &der, NULL, NULL, NULL);
if (ret < 0) {
WOLFSSL_MSG("Not PEM format");
ret = AllocDer(&der, (word32)keyLen, PRIVATEKEY_TYPE, NULL);
if (ret == 0) {
XMEMCPY(der->buffer, *keyBuf, keyLen);
}
}
if (ret == 0) {
/* Verify this is PKCS8 Key */
word32 inOutIdx = 0;
word32 algId;
ret = ToTraditionalInline_ex(der->buffer, &inOutIdx, der->length,
&algId);
if (ret >= 0) {
ret = 0; /* good DER */
}
}
if (ret == 0) {
pkcs8 = wolfSSL_EVP_PKEY_new();
if (pkcs8 == NULL)
ret = MEMORY_E;
}
if (ret == 0) {
pkcs8->pkey.ptr = (char*)XMALLOC(der->length, NULL,
DYNAMIC_TYPE_PUBLIC_KEY);
if (pkcs8->pkey.ptr == NULL)
ret = MEMORY_E;
}
if (ret == 0) {
XMEMCPY(pkcs8->pkey.ptr, der->buffer, der->length);
pkcs8->pkey_sz = (int)der->length;
}
FreeDer(&der);
if (ret != 0) {
wolfSSL_EVP_PKEY_free(pkcs8);
pkcs8 = NULL;
}
if (pkey != NULL) {
*pkey = pkcs8;
}
#else
(void)bio;
(void)pkey;
#endif /* WOLFSSL_PEM_TO_DER */
return pkcs8;
}
#ifndef NO_BIO
/* put SSL type in extra for now, not very common */
/* Converts a DER format key read from "bio" to a PKCS8 structure.
*
* bio input bio to read DER from
* pkey If not NULL then this pointer will be overwritten with a new PKCS8
* structure.
*
* returns a WOLFSSL_PKCS8_PRIV_KEY_INFO pointer on success and NULL in fail
* case.
*/
WOLFSSL_PKCS8_PRIV_KEY_INFO* wolfSSL_d2i_PKCS8_PKEY_bio(WOLFSSL_BIO* bio,
WOLFSSL_PKCS8_PRIV_KEY_INFO** pkey)
{
WOLFSSL_PKCS8_PRIV_KEY_INFO* pkcs8 = NULL;
#ifdef WOLFSSL_PEM_TO_DER
unsigned char* mem = NULL;
int memSz;
WOLFSSL_ENTER("wolfSSL_d2i_PKCS8_PKEY_bio");
if (bio == NULL) {
return NULL;
}
if ((memSz = wolfSSL_BIO_get_mem_data(bio, &mem)) < 0) {
return NULL;
}
pkcs8 = wolfSSL_d2i_PKCS8_PKEY(pkey, (const unsigned char**)&mem, memSz);
#else
(void)bio;
(void)pkey;
#endif /* WOLFSSL_PEM_TO_DER */
return pkcs8;
}
/* expecting DER format public key
*
* bio input bio to read DER from
* out If not NULL then this pointer will be overwritten with a new
* WOLFSSL_EVP_PKEY pointer
*
* returns a WOLFSSL_EVP_PKEY pointer on success and NULL in fail case.
*/
WOLFSSL_EVP_PKEY* wolfSSL_d2i_PUBKEY_bio(WOLFSSL_BIO* bio,
WOLFSSL_EVP_PKEY** out)
{
unsigned char* mem;
long memSz;
WOLFSSL_EVP_PKEY* pkey = NULL;
WOLFSSL_ENTER("wolfSSL_d2i_PUBKEY_bio");
if (bio == NULL) {
return NULL;
}
(void)out;
memSz = wolfSSL_BIO_get_len(bio);
if (memSz <= 0) {
return NULL;
}
mem = (unsigned char*)XMALLOC(memSz, bio->heap, DYNAMIC_TYPE_TMP_BUFFER);
if (mem == NULL) {
return NULL;
}
if (wolfSSL_BIO_read(bio, mem, (int)memSz) == memSz) {
pkey = wolfSSL_d2i_PUBKEY(NULL, (const unsigned char**)&mem, memSz);
if (out != NULL && pkey != NULL) {
*out = pkey;
}
}
XFREE(mem, bio->heap, DYNAMIC_TYPE_TMP_BUFFER);
return pkey;
}
#endif /* !NO_BIO */
/* Converts a DER encoded public key to a WOLFSSL_EVP_PKEY structure.
*
* out pointer to new WOLFSSL_EVP_PKEY structure. Can be NULL
* in DER buffer to convert
* inSz size of in buffer
*
* returns a pointer to a new WOLFSSL_EVP_PKEY structure on success and NULL
* on fail
*/
WOLFSSL_EVP_PKEY* wolfSSL_d2i_PUBKEY(WOLFSSL_EVP_PKEY** out,
const unsigned char** in, long inSz)
{
WOLFSSL_ENTER("wolfSSL_d2i_PUBKEY");
return d2iGenericKey(out, in, inSz, 0);
}
#if defined(OPENSSL_EXTRA) && !defined(NO_CERTS) && !defined(NO_ASN) && \
!defined(NO_PWDBASED)
/* helper function to get raw pointer to DER buffer from WOLFSSL_EVP_PKEY */
static int wolfSSL_EVP_PKEY_get_der(const WOLFSSL_EVP_PKEY* key,
unsigned char** der)
{
int sz;
word16 pkcs8HeaderSz;
if (!key || !key->pkey_sz)
return WOLFSSL_FATAL_ERROR;
/* return the key without PKCS8 for compatibility */
/* if pkcs8HeaderSz is invalid, use 0 and return all of pkey */
pkcs8HeaderSz = 0;
if (key->pkey_sz > key->pkcs8HeaderSz)
pkcs8HeaderSz = key->pkcs8HeaderSz;
sz = key->pkey_sz - pkcs8HeaderSz;
if (der) {
unsigned char* pt = (unsigned char*)key->pkey.ptr;
if (*der) {
/* since this function signature has no size value passed in it is
* assumed that the user has allocated a large enough buffer */
XMEMCPY(*der, pt + pkcs8HeaderSz, sz);
*der += sz;
}
else {
*der = (unsigned char*)XMALLOC(sz, NULL, DYNAMIC_TYPE_OPENSSL);
if (*der == NULL) {
return WOLFSSL_FATAL_ERROR;
}
XMEMCPY(*der, pt + pkcs8HeaderSz, sz);
}
}
return sz;
}
int wolfSSL_i2d_PUBKEY(const WOLFSSL_EVP_PKEY *key, unsigned char **der)
{
return wolfSSL_i2d_PublicKey(key, der);
}
#endif /* OPENSSL_EXTRA && !NO_CERTS && !NO_ASN && !NO_PWDBASED */
static WOLFSSL_EVP_PKEY* _d2i_PublicKey(int type, WOLFSSL_EVP_PKEY** out,
const unsigned char **in, long inSz, int priv)
{
int ret = 0;
word32 idx = 0, algId;
word16 pkcs8HeaderSz = 0;
WOLFSSL_EVP_PKEY* local;
int opt = 0;
(void)opt;
if (in == NULL || inSz < 0) {
WOLFSSL_MSG("Bad argument");
return NULL;
}
if (priv == 1) {
/* Check if input buffer has PKCS8 header. In the case that it does not
* have a PKCS8 header then do not error out. */
if ((ret = ToTraditionalInline_ex((const byte*)(*in), &idx,
(word32)inSz, &algId)) > 0) {
WOLFSSL_MSG("Found PKCS8 header");
pkcs8HeaderSz = (word16)idx;
if ((type == EVP_PKEY_RSA && algId != RSAk
#ifdef WC_RSA_PSS
&& algId != RSAPSSk
#endif
) ||
(type == EVP_PKEY_EC && algId != ECDSAk) ||
(type == EVP_PKEY_DSA && algId != DSAk) ||
(type == EVP_PKEY_DH && algId != DHk)) {
WOLFSSL_MSG("PKCS8 does not match EVP key type");
return NULL;
}
(void)idx; /* not used */
}
else {
if (ret != WC_NO_ERR_TRACE(ASN_PARSE_E)) {
WOLFSSL_MSG("Unexpected error with trying to remove PKCS8 "
"header");
return NULL;
}
}
}
if (out != NULL && *out != NULL) {
wolfSSL_EVP_PKEY_free(*out);
*out = NULL;
}
local = wolfSSL_EVP_PKEY_new();
if (local == NULL) {
return NULL;
}
local->type = type;
local->pkey_sz = (int)inSz;
local->pkcs8HeaderSz = pkcs8HeaderSz;
local->pkey.ptr = (char*)XMALLOC(inSz, NULL, DYNAMIC_TYPE_PUBLIC_KEY);
if (local->pkey.ptr == NULL) {
wolfSSL_EVP_PKEY_free(local);
local = NULL;
return NULL;
}
else {
XMEMCPY(local->pkey.ptr, *in, inSz);
}
switch (type) {
#ifndef NO_RSA
case EVP_PKEY_RSA:
opt = priv ? WOLFSSL_RSA_LOAD_PRIVATE : WOLFSSL_RSA_LOAD_PUBLIC;
local->ownRsa = 1;
local->rsa = wolfssl_rsa_d2i(NULL,
(const unsigned char*)local->pkey.ptr, local->pkey_sz, opt);
if (local->rsa == NULL) {
wolfSSL_EVP_PKEY_free(local);
return NULL;
}
break;
#endif /* NO_RSA */
#ifdef HAVE_ECC
case EVP_PKEY_EC:
local->ownEcc = 1;
local->ecc = wolfSSL_EC_KEY_new();
if (local->ecc == NULL) {
wolfSSL_EVP_PKEY_free(local);
return NULL;
}
opt = priv ? WOLFSSL_EC_KEY_LOAD_PRIVATE :
WOLFSSL_EC_KEY_LOAD_PUBLIC;
if (wolfSSL_EC_KEY_LoadDer_ex(local->ecc,
(const unsigned char*)local->pkey.ptr, local->pkey_sz,
opt)
!= WOLFSSL_SUCCESS) {
wolfSSL_EVP_PKEY_free(local);
return NULL;
}
break;
#endif /* HAVE_ECC */
#if defined(WOLFSSL_QT) || defined(OPENSSL_ALL) || defined(WOLFSSL_OPENSSH)
#ifndef NO_DSA
case EVP_PKEY_DSA:
local->ownDsa = 1;
local->dsa = wolfSSL_DSA_new();
if (local->dsa == NULL) {
wolfSSL_EVP_PKEY_free(local);
return NULL;
}
opt = priv ? WOLFSSL_DSA_LOAD_PRIVATE : WOLFSSL_DSA_LOAD_PUBLIC;
if (wolfSSL_DSA_LoadDer_ex(local->dsa,
(const unsigned char*)local->pkey.ptr, local->pkey_sz,
opt)
!= WOLFSSL_SUCCESS) {
wolfSSL_EVP_PKEY_free(local);
return NULL;
}
break;
#endif /* NO_DSA */
#ifndef NO_DH
#if !defined(HAVE_FIPS) || (defined(HAVE_FIPS_VERSION) && (HAVE_FIPS_VERSION>2))
case EVP_PKEY_DH:
local->ownDh = 1;
local->dh = wolfSSL_DH_new();
if (local->dh == NULL) {
wolfSSL_EVP_PKEY_free(local);
return NULL;
}
if (wolfSSL_DH_LoadDer(local->dh,
(const unsigned char*)local->pkey.ptr, local->pkey_sz)
!= WOLFSSL_SUCCESS) {
wolfSSL_EVP_PKEY_free(local);
return NULL;
}
break;
#endif /* !HAVE_FIPS || HAVE_FIPS_VERSION > 2 */
#endif /* HAVE_DH */
#endif /* WOLFSSL_QT || OPENSSL_ALL || WOLFSSL_OPENSSH */
default:
WOLFSSL_MSG("Unsupported key type");
wolfSSL_EVP_PKEY_free(local);
return NULL;
}
/* advance pointer with success */
if (local != NULL) {
if (local->pkey_sz <= (int)inSz) {
*in += local->pkey_sz;
}
if (out != NULL) {
*out = local;
}
}
return local;
}
WOLFSSL_EVP_PKEY* wolfSSL_d2i_PublicKey(int type, WOLFSSL_EVP_PKEY** out,
const unsigned char **in, long inSz)
{
WOLFSSL_ENTER("wolfSSL_d2i_PublicKey");
return _d2i_PublicKey(type, out, in, inSz, 0);
}
/* Reads in a DER format key. If PKCS8 headers are found they are stripped off.
*
* type type of key
* out newly created WOLFSSL_EVP_PKEY structure
* in pointer to input key DER
* inSz size of in buffer
*
* On success a non null pointer is returned and the pointer in is advanced the
* same number of bytes read.
*/
WOLFSSL_EVP_PKEY* wolfSSL_d2i_PrivateKey(int type, WOLFSSL_EVP_PKEY** out,
const unsigned char **in, long inSz)
{
WOLFSSL_ENTER("wolfSSL_d2i_PrivateKey");
return _d2i_PublicKey(type, out, in, inSz, 1);
}
#ifdef WOLF_PRIVATE_KEY_ID
/* Create an EVP structure for use with crypto callbacks */
WOLFSSL_EVP_PKEY* wolfSSL_d2i_PrivateKey_id(int type, WOLFSSL_EVP_PKEY** out,
void* heap, int devId)
{
WOLFSSL_EVP_PKEY* local;
if (out != NULL && *out != NULL) {
wolfSSL_EVP_PKEY_free(*out);
*out = NULL;
}
local = wolfSSL_EVP_PKEY_new_ex(heap);
if (local == NULL) {
return NULL;
}
local->type = type;
local->pkey_sz = 0;
local->pkcs8HeaderSz = 0;
switch (type) {
#ifndef NO_RSA
case EVP_PKEY_RSA:
{
RsaKey* key;
local->ownRsa = 1;
local->rsa = wolfSSL_RSA_new_ex(heap, devId);
if (local->rsa == NULL) {
wolfSSL_EVP_PKEY_free(local);
return NULL;
}
key = (RsaKey*)local->rsa->internal;
#ifdef WOLF_CRYPTO_CB
key->devId = devId;
#endif
(void)key;
local->rsa->inSet = 1;
break;
}
#endif /* !NO_RSA */
#ifdef HAVE_ECC
case EVP_PKEY_EC:
{
ecc_key* key;
local->ownEcc = 1;
local->ecc = wolfSSL_EC_KEY_new_ex(heap, devId);
if (local->ecc == NULL) {
wolfSSL_EVP_PKEY_free(local);
return NULL;
}
key = (ecc_key*)local->ecc->internal;
#ifdef WOLF_CRYPTO_CB
key->devId = devId;
#endif
key->type = ECC_PRIVATEKEY;
/* key is required to have a key size / curve set, although
* actual one used is determined by devId callback function */
wc_ecc_set_curve(key, ECDHE_SIZE, ECC_CURVE_DEF);
local->ecc->inSet = 1;
break;
}
#endif /* HAVE_ECC */
default:
WOLFSSL_MSG("Unsupported private key id type");
wolfSSL_EVP_PKEY_free(local);
return NULL;
}
if (local != NULL && out != NULL) {
*out = local;
}
return local;
}
#endif /* WOLF_PRIVATE_KEY_ID */
#ifndef NO_CERTS /* // NOLINT(readability-redundant-preprocessor) */
#ifndef NO_CHECK_PRIVATE_KEY
/* Check private against public in certificate for match
*
* ssl WOLFSSL structure to check private key in
*
* Returns WOLFSSL_SUCCESS on good private key
* WOLFSSL_FAILURE if mismatched. */
int wolfSSL_check_private_key(const WOLFSSL* ssl)
{
int res = WOLFSSL_SUCCESS;
if (ssl == NULL) {
return WOLFSSL_FAILURE;
}
#ifdef WOLFSSL_DUAL_ALG_CERTS
#ifdef WOLFSSL_BLIND_PRIVATE_KEY
wolfssl_priv_der_unblind(ssl->buffers.key, ssl->buffers.keyMask);
wolfssl_priv_der_unblind(ssl->buffers.altKey, ssl->buffers.altKeyMask);
#endif
res = check_cert_key(ssl->buffers.certificate, ssl->buffers.key,
ssl->buffers.altKey, ssl->heap, ssl->buffers.keyDevId,
ssl->buffers.keyLabel, ssl->buffers.keyId, ssl->buffers.altKeyDevId,
ssl->buffers.altKeyLabel, ssl->buffers.altKeyId);
#ifdef WOLFSSL_BLIND_PRIVATE_KEY
if (res == WOLFSSL_SUCCESS) {
int ret;
ret = wolfssl_priv_der_blind(ssl->rng, ssl->buffers.key,
(DerBuffer**)&ssl->buffers.keyMask);
if (ret == 0) {
ret = wolfssl_priv_der_blind(ssl->rng, ssl->buffers.altKey,
(DerBuffer**)&ssl->buffers.altKeyMask);
}
if (ret != 0) {
res = WOLFSSL_FAILURE;
}
}
#endif
#else
#ifdef WOLFSSL_BLIND_PRIVATE_KEY
wolfssl_priv_der_unblind(ssl->buffers.key, ssl->buffers.keyMask);
#endif
res = check_cert_key(ssl->buffers.certificate, ssl->buffers.key, NULL,
ssl->heap, ssl->buffers.keyDevId, ssl->buffers.keyLabel,
ssl->buffers.keyId, INVALID_DEVID, 0, 0);
#ifdef WOLFSSL_BLIND_PRIVATE_KEY
if (res == WOLFSSL_SUCCESS) {
int ret = wolfssl_priv_der_blind(ssl->rng, ssl->buffers.key,
(DerBuffer**)&ssl->buffers.keyMask);
if (ret != 0) {
res = WOLFSSL_FAILURE;
}
}
#endif
#endif
return res;
}
#endif /* !NO_CHECK_PRIVATE_KEY */
#endif /* !NO_CERTS */
#endif /* OPENSSL_EXTRA */
#if defined(HAVE_RPK)
/* Confirm that all the byte data in the buffer is unique.
* return 1 if all the byte data in the buffer is unique, otherwise 0.
*/
static int isArrayUnique(const char* buf, size_t len)
{
size_t i, j;
/* check the array is unique */
for (i = 0; i < len -1; ++i) {
for (j = i+ 1; j < len; ++j) {
if (buf[i] == buf[j]) {
return 0;
}
}
}
return 1;
}
/* Set user preference for the client_cert_type exetnsion.
* Takes byte array containing cert types the caller can provide to its peer.
* Cert types are in preferred order in the array.
*/
WOLFSSL_API int wolfSSL_CTX_set_client_cert_type(WOLFSSL_CTX* ctx,
const char* buf, int bufLen)
{
int i;
if (ctx == NULL || bufLen > MAX_CLIENT_CERT_TYPE_CNT) {
return BAD_FUNC_ARG;
}
/* if buf is set to NULL or bufLen is set to zero, it defaults the setting*/
if (buf == NULL || bufLen == 0) {
ctx->rpkConfig.preferred_ClientCertTypeCnt = 1;
ctx->rpkConfig.preferred_ClientCertTypes[0]= WOLFSSL_CERT_TYPE_X509;
ctx->rpkConfig.preferred_ClientCertTypes[1]= WOLFSSL_CERT_TYPE_X509;
return WOLFSSL_SUCCESS;
}
if (!isArrayUnique(buf, (size_t)bufLen))
return BAD_FUNC_ARG;
for (i = 0; i < bufLen; i++){
if (buf[i] != WOLFSSL_CERT_TYPE_RPK && buf[i] != WOLFSSL_CERT_TYPE_X509)
return BAD_FUNC_ARG;
ctx->rpkConfig.preferred_ClientCertTypes[i] = (byte)buf[i];
}
ctx->rpkConfig.preferred_ClientCertTypeCnt = bufLen;
return WOLFSSL_SUCCESS;
}
/* Set user preference for the server_cert_type exetnsion.
* Takes byte array containing cert types the caller can provide to its peer.
* Cert types are in preferred order in the array.
*/
WOLFSSL_API int wolfSSL_CTX_set_server_cert_type(WOLFSSL_CTX* ctx,
const char* buf, int bufLen)
{
int i;
if (ctx == NULL || bufLen > MAX_SERVER_CERT_TYPE_CNT) {
return BAD_FUNC_ARG;
}
/* if buf is set to NULL or bufLen is set to zero, it defaults the setting*/
if (buf == NULL || bufLen == 0) {
ctx->rpkConfig.preferred_ServerCertTypeCnt = 1;
ctx->rpkConfig.preferred_ServerCertTypes[0]= WOLFSSL_CERT_TYPE_X509;
ctx->rpkConfig.preferred_ServerCertTypes[1]= WOLFSSL_CERT_TYPE_X509;
return WOLFSSL_SUCCESS;
}
if (!isArrayUnique(buf, (size_t)bufLen))
return BAD_FUNC_ARG;
for (i = 0; i < bufLen; i++){
if (buf[i] != WOLFSSL_CERT_TYPE_RPK && buf[i] != WOLFSSL_CERT_TYPE_X509)
return BAD_FUNC_ARG;
ctx->rpkConfig.preferred_ServerCertTypes[i] = (byte)buf[i];
}
ctx->rpkConfig.preferred_ServerCertTypeCnt = bufLen;
return WOLFSSL_SUCCESS;
}
/* Set user preference for the client_cert_type exetnsion.
* Takes byte array containing cert types the caller can provide to its peer.
* Cert types are in preferred order in the array.
*/
WOLFSSL_API int wolfSSL_set_client_cert_type(WOLFSSL* ssl,
const char* buf, int bufLen)
{
int i;
if (ssl == NULL || bufLen > MAX_CLIENT_CERT_TYPE_CNT) {
return BAD_FUNC_ARG;
}
/* if buf is set to NULL or bufLen is set to zero, it defaults the setting*/
if (buf == NULL || bufLen == 0) {
ssl->options.rpkConfig.preferred_ClientCertTypeCnt = 1;
ssl->options.rpkConfig.preferred_ClientCertTypes[0]
= WOLFSSL_CERT_TYPE_X509;
ssl->options.rpkConfig.preferred_ClientCertTypes[1]
= WOLFSSL_CERT_TYPE_X509;
return WOLFSSL_SUCCESS;
}
if (!isArrayUnique(buf, (size_t)bufLen))
return BAD_FUNC_ARG;
for (i = 0; i < bufLen; i++){
if (buf[i] != WOLFSSL_CERT_TYPE_RPK && buf[i] != WOLFSSL_CERT_TYPE_X509)
return BAD_FUNC_ARG;
ssl->options.rpkConfig.preferred_ClientCertTypes[i] = (byte)buf[i];
}
ssl->options.rpkConfig.preferred_ClientCertTypeCnt = bufLen;
return WOLFSSL_SUCCESS;
}
/* Set user preference for the server_cert_type exetnsion.
* Takes byte array containing cert types the caller can provide to its peer.
* Cert types are in preferred order in the array.
*/
WOLFSSL_API int wolfSSL_set_server_cert_type(WOLFSSL* ssl,
const char* buf, int bufLen)
{
int i;
if (ssl == NULL || bufLen > MAX_SERVER_CERT_TYPE_CNT) {
return BAD_FUNC_ARG;
}
/* if buf is set to NULL or bufLen is set to zero, it defaults the setting*/
if (buf == NULL || bufLen == 0) {
ssl->options.rpkConfig.preferred_ServerCertTypeCnt = 1;
ssl->options.rpkConfig.preferred_ServerCertTypes[0]
= WOLFSSL_CERT_TYPE_X509;
ssl->options.rpkConfig.preferred_ServerCertTypes[1]
= WOLFSSL_CERT_TYPE_X509;
return WOLFSSL_SUCCESS;
}
if (!isArrayUnique(buf, (size_t)bufLen))
return BAD_FUNC_ARG;
for (i = 0; i < bufLen; i++){
if (buf[i] != WOLFSSL_CERT_TYPE_RPK && buf[i] != WOLFSSL_CERT_TYPE_X509)
return BAD_FUNC_ARG;
ssl->options.rpkConfig.preferred_ServerCertTypes[i] = (byte)buf[i];
}
ssl->options.rpkConfig.preferred_ServerCertTypeCnt = bufLen;
return WOLFSSL_SUCCESS;
}
/* get negotiated certificate type value and return it to the second parameter.
* cert type value:
* -1: WOLFSSL_CERT_TYPE_UNKNOWN
* 0: WOLFSSL_CERT_TYPE_X509
* 2: WOLFSSL_CERT_TYPE_RPK
* return WOLFSSL_SUCCESS on success, otherwise negative value.
* in case no negotiation performed, it returns WOLFSSL_SUCCESS and -1 is for
* cert type.
*/
WOLFSSL_API int wolfSSL_get_negotiated_client_cert_type(WOLFSSL* ssl, int* tp)
{
int ret = WOLFSSL_SUCCESS;
if (ssl == NULL || tp == NULL)
return BAD_FUNC_ARG;
if (ssl->options.side == WOLFSSL_CLIENT_END) {
if (ssl->options.rpkState.received_ClientCertTypeCnt == 1)
*tp = ssl->options.rpkState.received_ClientCertTypes[0];
else
*tp = WOLFSSL_CERT_TYPE_UNKNOWN;
}
else {
if (ssl->options.rpkState.sending_ClientCertTypeCnt == 1)
*tp = ssl->options.rpkState.sending_ClientCertTypes[0];
else
*tp = WOLFSSL_CERT_TYPE_UNKNOWN;
}
return ret;
}
/* get negotiated certificate type value and return it to the second parameter.
* cert type value:
* -1: WOLFSSL_CERT_TYPE_UNKNOWN
* 0: WOLFSSL_CERT_TYPE_X509
* 2: WOLFSSL_CERT_TYPE_RPK
* return WOLFSSL_SUCCESS on success, otherwise negative value.
* in case no negotiation performed, it returns WOLFSSL_SUCCESS and -1 is for
* cert type.
*/
WOLFSSL_API int wolfSSL_get_negotiated_server_cert_type(WOLFSSL* ssl, int* tp)
{
int ret = WOLFSSL_SUCCESS;
if (ssl == NULL || tp == NULL)
return BAD_FUNC_ARG;
if (ssl->options.side == WOLFSSL_CLIENT_END) {
if (ssl->options.rpkState.received_ServerCertTypeCnt == 1)
*tp = ssl->options.rpkState.received_ServerCertTypes[0];
else
*tp = WOLFSSL_CERT_TYPE_UNKNOWN;
}
else {
if (ssl->options.rpkState.sending_ServerCertTypeCnt == 1)
*tp = ssl->options.rpkState.sending_ServerCertTypes[0];
else
*tp = WOLFSSL_CERT_TYPE_UNKNOWN;
}
return ret;
}
#endif /* HAVE_RPK */
#ifdef HAVE_ECC
/* Set Temp CTX EC-DHE size in octets, can be 14 - 66 (112 - 521 bit) */
int wolfSSL_CTX_SetTmpEC_DHE_Sz(WOLFSSL_CTX* ctx, word16 sz)
{
WOLFSSL_ENTER("wolfSSL_CTX_SetTmpEC_DHE_Sz");
if (ctx == NULL)
return BAD_FUNC_ARG;
/* if 0 then get from loaded private key */
if (sz == 0) {
/* applies only to ECDSA */
if (ctx->privateKeyType != ecc_dsa_sa_algo)
return WOLFSSL_SUCCESS;
if (ctx->privateKeySz == 0) {
WOLFSSL_MSG("Must set private key/cert first");
return BAD_FUNC_ARG;
}
sz = (word16)ctx->privateKeySz;
}
/* check size */
#if ECC_MIN_KEY_SZ > 0
if (sz < ECC_MINSIZE)
return BAD_FUNC_ARG;
#endif
if (sz > ECC_MAXSIZE)
return BAD_FUNC_ARG;
ctx->eccTempKeySz = sz;
return WOLFSSL_SUCCESS;
}
/* Set Temp SSL EC-DHE size in octets, can be 14 - 66 (112 - 521 bit) */
int wolfSSL_SetTmpEC_DHE_Sz(WOLFSSL* ssl, word16 sz)
{
WOLFSSL_ENTER("wolfSSL_SetTmpEC_DHE_Sz");
if (ssl == NULL)
return BAD_FUNC_ARG;
/* check size */
#if ECC_MIN_KEY_SZ > 0
if (sz < ECC_MINSIZE)
return BAD_FUNC_ARG;
#endif
if (sz > ECC_MAXSIZE)
return BAD_FUNC_ARG;
ssl->eccTempKeySz = sz;
return WOLFSSL_SUCCESS;
}
#endif /* HAVE_ECC */
typedef struct {
byte verifyPeer:1;
byte verifyNone:1;
byte failNoCert:1;
byte failNoCertxPSK:1;
byte verifyPostHandshake:1;
} SetVerifyOptions;
static SetVerifyOptions ModeToVerifyOptions(int mode)
{
SetVerifyOptions opts;
XMEMSET(&opts, 0, sizeof(SetVerifyOptions));
if (mode != WOLFSSL_VERIFY_DEFAULT) {
opts.verifyNone = (mode == WOLFSSL_VERIFY_NONE);
if (!opts.verifyNone) {
opts.verifyPeer =
(mode & WOLFSSL_VERIFY_PEER) != 0;
opts.failNoCertxPSK =
(mode & WOLFSSL_VERIFY_FAIL_EXCEPT_PSK) != 0;
opts.failNoCert =
(mode & WOLFSSL_VERIFY_FAIL_IF_NO_PEER_CERT) != 0;
#if defined(WOLFSSL_TLS13) && defined(WOLFSSL_POST_HANDSHAKE_AUTH)
opts.verifyPostHandshake =
(mode & WOLFSSL_VERIFY_POST_HANDSHAKE) != 0;
#endif
}
}
return opts;
}
WOLFSSL_ABI
void wolfSSL_CTX_set_verify(WOLFSSL_CTX* ctx, int mode, VerifyCallback vc)
{
SetVerifyOptions opts;
WOLFSSL_ENTER("wolfSSL_CTX_set_verify");
if (ctx == NULL)
return;
opts = ModeToVerifyOptions(mode);
ctx->verifyNone = opts.verifyNone;
ctx->verifyPeer = opts.verifyPeer;
ctx->failNoCert = opts.failNoCert;
ctx->failNoCertxPSK = opts.failNoCertxPSK;
#if defined(WOLFSSL_TLS13) && defined(WOLFSSL_POST_HANDSHAKE_AUTH)
ctx->verifyPostHandshake = opts.verifyPostHandshake;
#endif
ctx->verifyCallback = vc;
}
#ifdef OPENSSL_ALL
void wolfSSL_CTX_set_cert_verify_callback(WOLFSSL_CTX* ctx,
CertVerifyCallback cb, void* arg)
{
WOLFSSL_ENTER("wolfSSL_CTX_set_cert_verify_callback");
if (ctx == NULL)
return;
ctx->verifyCertCb = cb;
ctx->verifyCertCbArg = arg;
}
#endif
void wolfSSL_set_verify(WOLFSSL* ssl, int mode, VerifyCallback vc)
{
SetVerifyOptions opts;
WOLFSSL_ENTER("wolfSSL_set_verify");
if (ssl == NULL)
return;
opts = ModeToVerifyOptions(mode);
ssl->options.verifyNone = opts.verifyNone;
ssl->options.verifyPeer = opts.verifyPeer;
ssl->options.failNoCert = opts.failNoCert;
ssl->options.failNoCertxPSK = opts.failNoCertxPSK;
#if defined(WOLFSSL_TLS13) && defined(WOLFSSL_POST_HANDSHAKE_AUTH)
ssl->options.verifyPostHandshake = opts.verifyPostHandshake;
#endif
ssl->verifyCallback = vc;
}
void wolfSSL_set_verify_result(WOLFSSL *ssl, long v)
{
WOLFSSL_ENTER("wolfSSL_set_verify_result");
if (ssl == NULL)
return;
#if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL) || \
defined(OPENSSL_ALL)
ssl->peerVerifyRet = (unsigned long)v;
#else
(void)v;
WOLFSSL_STUB("wolfSSL_set_verify_result");
#endif
}
#if defined(OPENSSL_EXTRA) && !defined(NO_CERTS) && \
defined(WOLFSSL_TLS13) && defined(WOLFSSL_POST_HANDSHAKE_AUTH)
/* For TLS v1.3 send handshake messages after handshake completes. */
/* Returns 1=WOLFSSL_SUCCESS or 0=WOLFSSL_FAILURE */
int wolfSSL_verify_client_post_handshake(WOLFSSL* ssl)
{
int ret = wolfSSL_request_certificate(ssl);
if (ret != WOLFSSL_SUCCESS) {
if (!IsAtLeastTLSv1_3(ssl->version)) {
/* specific error of wrong version expected */
WOLFSSL_ERROR(UNSUPPORTED_PROTO_VERSION);
}
else {
WOLFSSL_ERROR(ret); /* log the error in the error queue */
}
}
return (ret == WOLFSSL_SUCCESS) ? WOLFSSL_SUCCESS : WOLFSSL_FAILURE;
}
int wolfSSL_CTX_set_post_handshake_auth(WOLFSSL_CTX* ctx, int val)
{
int ret = wolfSSL_CTX_allow_post_handshake_auth(ctx);
if (ret == 0) {
ctx->postHandshakeAuth = (val != 0);
}
return (ret == 0) ? WOLFSSL_SUCCESS : WOLFSSL_FAILURE;
}
int wolfSSL_set_post_handshake_auth(WOLFSSL* ssl, int val)
{
int ret = wolfSSL_allow_post_handshake_auth(ssl);
if (ret == 0) {
ssl->options.postHandshakeAuth = (val != 0);
}
return (ret == 0) ? WOLFSSL_SUCCESS : WOLFSSL_FAILURE;
}
#endif /* OPENSSL_EXTRA && !NO_CERTS && WOLFSSL_TLS13 &&
* WOLFSSL_POST_HANDSHAKE_AUTH */
/* store user ctx for verify callback */
void wolfSSL_SetCertCbCtx(WOLFSSL* ssl, void* ctx)
{
WOLFSSL_ENTER("wolfSSL_SetCertCbCtx");
if (ssl)
ssl->verifyCbCtx = ctx;
}
/* store user ctx for verify callback */
void wolfSSL_CTX_SetCertCbCtx(WOLFSSL_CTX* ctx, void* userCtx)
{
WOLFSSL_ENTER("wolfSSL_CTX_SetCertCbCtx");
if (ctx)
ctx->verifyCbCtx = userCtx;
}
/* store context CA Cache addition callback */
void wolfSSL_CTX_SetCACb(WOLFSSL_CTX* ctx, CallbackCACache cb)
{
if (ctx && ctx->cm)
ctx->cm->caCacheCallback = cb;
}
#if defined(PERSIST_CERT_CACHE)
#if !defined(NO_FILESYSTEM)
/* Persist cert cache to file */
int wolfSSL_CTX_save_cert_cache(WOLFSSL_CTX* ctx, const char* fname)
{
WOLFSSL_ENTER("wolfSSL_CTX_save_cert_cache");
if (ctx == NULL || fname == NULL)
return BAD_FUNC_ARG;
return CM_SaveCertCache(ctx->cm, fname);
}
/* Persist cert cache from file */
int wolfSSL_CTX_restore_cert_cache(WOLFSSL_CTX* ctx, const char* fname)
{
WOLFSSL_ENTER("wolfSSL_CTX_restore_cert_cache");
if (ctx == NULL || fname == NULL)
return BAD_FUNC_ARG;
return CM_RestoreCertCache(ctx->cm, fname);
}
#endif /* NO_FILESYSTEM */
/* Persist cert cache to memory */
int wolfSSL_CTX_memsave_cert_cache(WOLFSSL_CTX* ctx, void* mem,
int sz, int* used)
{
WOLFSSL_ENTER("wolfSSL_CTX_memsave_cert_cache");
if (ctx == NULL || mem == NULL || used == NULL || sz <= 0)
return BAD_FUNC_ARG;
return CM_MemSaveCertCache(ctx->cm, mem, sz, used);
}
/* Restore cert cache from memory */
int wolfSSL_CTX_memrestore_cert_cache(WOLFSSL_CTX* ctx, const void* mem, int sz)
{
WOLFSSL_ENTER("wolfSSL_CTX_memrestore_cert_cache");
if (ctx == NULL || mem == NULL || sz <= 0)
return BAD_FUNC_ARG;
return CM_MemRestoreCertCache(ctx->cm, mem, sz);
}
/* get how big the the cert cache save buffer needs to be */
int wolfSSL_CTX_get_cert_cache_memsize(WOLFSSL_CTX* ctx)
{
WOLFSSL_ENTER("wolfSSL_CTX_get_cert_cache_memsize");
if (ctx == NULL)
return BAD_FUNC_ARG;
return CM_GetCertCacheMemSize(ctx->cm);
}
#endif /* PERSIST_CERT_CACHE */
#endif /* !NO_CERTS */
void wolfSSL_load_error_strings(void)
{
/* compatibility only */
}
int wolfSSL_library_init(void)
{
WOLFSSL_ENTER("wolfSSL_library_init");
if (wolfSSL_Init() == WOLFSSL_SUCCESS)
return WOLFSSL_SUCCESS;
else
return WOLFSSL_FATAL_ERROR;
}
#ifdef HAVE_SECRET_CALLBACK
int wolfSSL_set_session_secret_cb(WOLFSSL* ssl, SessionSecretCb cb, void* ctx)
{
WOLFSSL_ENTER("wolfSSL_set_session_secret_cb");
if (ssl == NULL)
return WOLFSSL_FAILURE;
ssl->sessionSecretCb = cb;
ssl->sessionSecretCtx = ctx;
if (cb != NULL) {
/* If using a pre-set key, assume session resumption. */
ssl->session->sessionIDSz = 0;
ssl->options.resuming = 1;
}
return WOLFSSL_SUCCESS;
}
int wolfSSL_set_session_ticket_ext_cb(WOLFSSL* ssl, TicketParseCb cb,
void *ctx)
{
WOLFSSL_ENTER("wolfSSL_set_session_ticket_ext_cb");
if (ssl == NULL)
return WOLFSSL_FAILURE;
ssl->ticketParseCb = cb;
ssl->ticketParseCtx = ctx;
return WOLFSSL_SUCCESS;
}
int wolfSSL_set_secret_cb(WOLFSSL* ssl, TlsSecretCb cb, void* ctx)
{
WOLFSSL_ENTER("wolfSSL_set_secret_cb");
if (ssl == NULL)
return WOLFSSL_FATAL_ERROR;
ssl->tlsSecretCb = cb;
ssl->tlsSecretCtx = ctx;
return WOLFSSL_SUCCESS;
}
#ifdef SHOW_SECRETS
int tlsShowSecrets(WOLFSSL* ssl, void* secret, int secretSz,
void* ctx)
{
/* Wireshark Pre-Master-Secret Format:
* CLIENT_RANDOM <clientrandom> <mastersecret>
*/
const char* CLIENT_RANDOM_LABEL = "CLIENT_RANDOM";
int i, pmsPos = 0;
char pmsBuf[13 + 1 + 64 + 1 + 96 + 1 + 1];
byte clientRandom[RAN_LEN];
int clientRandomSz;
(void)ctx;
clientRandomSz = (int)wolfSSL_get_client_random(ssl, clientRandom,
sizeof(clientRandom));
if (clientRandomSz <= 0) {
printf("Error getting server random %d\n", clientRandomSz);
return BAD_FUNC_ARG;
}
XSNPRINTF(&pmsBuf[pmsPos], sizeof(pmsBuf) - pmsPos, "%s ",
CLIENT_RANDOM_LABEL);
pmsPos += XSTRLEN(CLIENT_RANDOM_LABEL) + 1;
for (i = 0; i < clientRandomSz; i++) {
XSNPRINTF(&pmsBuf[pmsPos], sizeof(pmsBuf) - pmsPos, "%02x",
clientRandom[i]);
pmsPos += 2;
}
XSNPRINTF(&pmsBuf[pmsPos], sizeof(pmsBuf) - pmsPos, " ");
pmsPos += 1;
for (i = 0; i < secretSz; i++) {
XSNPRINTF(&pmsBuf[pmsPos], sizeof(pmsBuf) - pmsPos, "%02x",
((byte*)secret)[i]);
pmsPos += 2;
}
XSNPRINTF(&pmsBuf[pmsPos], sizeof(pmsBuf) - pmsPos, "\n");
pmsPos += 1;
/* print master secret */
puts(pmsBuf);
#if !defined(NO_FILESYSTEM) && defined(WOLFSSL_SSLKEYLOGFILE)
{
FILE* f = XFOPEN(WOLFSSL_SSLKEYLOGFILE_OUTPUT, "a");
if (f != XBADFILE) {
XFWRITE(pmsBuf, 1, pmsPos, f);
XFCLOSE(f);
}
}
#endif
return 0;
}
#endif /* SHOW_SECRETS */
#endif
#ifdef OPENSSL_EXTRA
/*
* check if the list has TLS13 and pre-TLS13 suites
* @param list cipher suite list that user want to set
* @return mixed: 0, only pre-TLS13: 1, only TLS13: 2
*/
static int CheckcipherList(const char* list)
{
int ret;
int findTLSv13Suites = 0;
int findbeforeSuites = 0;
byte cipherSuite0;
byte cipherSuite1;
int flags;
char* next = (char*)list;
do {
char* current = next;
char name[MAX_SUITE_NAME + 1];
word32 length = MAX_SUITE_NAME;
word32 current_length;
next = XSTRSTR(next, ":");
current_length = (!next) ? (word32)XSTRLEN(current)
: (word32)(next - current);
if (current_length < length) {
length = current_length;
}
XMEMCPY(name, current, length);
name[length] = 0;
if (XSTRCMP(name, "ALL") == 0 || XSTRCMP(name, "DEFAULT") == 0 ||
XSTRCMP(name, "HIGH") == 0) {
findTLSv13Suites = 1;
findbeforeSuites = 1;
break;
}
ret = wolfSSL_get_cipher_suite_from_name(name, &cipherSuite0,
&cipherSuite1, &flags);
if (ret == 0) {
if (cipherSuite0 == TLS13_BYTE) {
/* TLSv13 suite */
findTLSv13Suites = 1;
}
else {
findbeforeSuites = 1;
}
}
#if defined(OPENSSL_EXTRA) || defined(OPENSSL_ALL)
/* check if mixed due to names like RSA:ECDHE+AESGCM etc. */
if (ret != 0) {
char* subStr = name;
char* subStrNext;
do {
subStrNext = XSTRSTR(subStr, "+");
if ((XSTRCMP(subStr, "ECDHE") == 0) ||
(XSTRCMP(subStr, "RSA") == 0)) {
return 0;
}
if (subStrNext && (XSTRLEN(subStrNext) > 0)) {
subStr = subStrNext + 1; /* +1 to skip past '+' */
}
} while (subStrNext != NULL);
}
#endif
if (findTLSv13Suites == 1 && findbeforeSuites == 1) {
/* list has mixed suites */
return 0;
}
}
while (next++); /* ++ needed to skip ':' */
if (findTLSv13Suites == 0 && findbeforeSuites == 1) {
ret = 1;/* only before TLSv13 suites */
}
else if (findTLSv13Suites == 1 && findbeforeSuites == 0) {
ret = 2;/* only TLSv13 suties */
}
else {
ret = 0;/* handle as mixed */
}
return ret;
}
/* parse some bulk lists like !eNULL / !aNULL
*
* returns WOLFSSL_SUCCESS on success and sets the cipher suite list
*/
static int wolfSSL_parse_cipher_list(WOLFSSL_CTX* ctx, WOLFSSL* ssl,
Suites* suites, const char* list)
{
int ret = 0;
int listattribute = 0;
int tls13Only = 0;
#ifndef WOLFSSL_SMALL_STACK
byte suitesCpy[WOLFSSL_MAX_SUITE_SZ];
#else
byte* suitesCpy = NULL;
#endif
word16 suitesCpySz = 0;
word16 i = 0;
word16 j = 0;
if (suites == NULL || list == NULL) {
WOLFSSL_MSG("NULL argument");
return WOLFSSL_FAILURE;
}
listattribute = CheckcipherList(list);
if (listattribute == 0) {
/* list has mixed(pre-TLSv13 and TLSv13) suites
* update cipher suites the same as before
*/
return (SetCipherList_ex(ctx, ssl, suites, list)) ? WOLFSSL_SUCCESS :
WOLFSSL_FAILURE;
}
else if (listattribute == 1) {
/* list has only pre-TLSv13 suites.
* Only update before TLSv13 suites.
*/
tls13Only = 0;
}
else if (listattribute == 2) {
/* list has only TLSv13 suites. Only update TLv13 suites
* simulate set_ciphersuites() compatibility layer API
*/
tls13Only = 1;
if ((ctx != NULL && !IsAtLeastTLSv1_3(ctx->method->version)) ||
(ssl != NULL && !IsAtLeastTLSv1_3(ssl->version))) {
/* Silently ignore TLS 1.3 ciphers if we don't support it. */
return WOLFSSL_SUCCESS;
}
}
/* list contains ciphers either only for TLS 1.3 or <= TLS 1.2 */
if (suites->suiteSz == 0) {
WOLFSSL_MSG("Warning suites->suiteSz = 0 set to WOLFSSL_MAX_SUITE_SZ");
suites->suiteSz = WOLFSSL_MAX_SUITE_SZ;
}
#ifdef WOLFSSL_SMALL_STACK
if (suites->suiteSz > 0) {
suitesCpy = (byte*)XMALLOC(suites->suiteSz, NULL,
DYNAMIC_TYPE_TMP_BUFFER);
if (suitesCpy == NULL) {
return WOLFSSL_FAILURE;
}
XMEMSET(suitesCpy, 0, suites->suiteSz);
}
#else
XMEMSET(suitesCpy, 0, sizeof(suitesCpy));
#endif
if (suites->suiteSz > 0)
XMEMCPY(suitesCpy, suites->suites, suites->suiteSz);
suitesCpySz = suites->suiteSz;
ret = SetCipherList_ex(ctx, ssl, suites, list);
if (ret != 1) {
#ifdef WOLFSSL_SMALL_STACK
XFREE(suitesCpy, NULL, DYNAMIC_TYPE_TMP_BUFFER);
#endif
return WOLFSSL_FAILURE;
}
for (i = 0; i < suitesCpySz &&
suites->suiteSz <= (WOLFSSL_MAX_SUITE_SZ - SUITE_LEN); i += 2) {
/* Check for duplicates */
int duplicate = 0;
for (j = 0; j < suites->suiteSz; j += 2) {
if (suitesCpy[i] == suites->suites[j] &&
suitesCpy[i+1] == suites->suites[j+1]) {
duplicate = 1;
break;
}
}
if (!duplicate) {
if (tls13Only) {
/* Updating TLS 1.3 ciphers */
if (suitesCpy[i] != TLS13_BYTE) {
/* Only copy over <= TLS 1.2 ciphers */
/* TLS 1.3 ciphers take precedence */
suites->suites[suites->suiteSz++] = suitesCpy[i];
suites->suites[suites->suiteSz++] = suitesCpy[i+1];
}
}
else {
/* Updating <= TLS 1.2 ciphers */
if (suitesCpy[i] == TLS13_BYTE) {
/* Only copy over TLS 1.3 ciphers */
/* TLS 1.3 ciphers take precedence */
XMEMMOVE(suites->suites + SUITE_LEN, suites->suites,
suites->suiteSz);
suites->suites[0] = suitesCpy[i];
suites->suites[1] = suitesCpy[i+1];
suites->suiteSz += 2;
}
}
}
}
#ifdef WOLFSSL_SMALL_STACK
XFREE(suitesCpy, NULL, DYNAMIC_TYPE_TMP_BUFFER);
#endif
return ret;
}
#endif
int wolfSSL_CTX_set_cipher_list(WOLFSSL_CTX* ctx, const char* list)
{
WOLFSSL_ENTER("wolfSSL_CTX_set_cipher_list");
if (ctx == NULL)
return WOLFSSL_FAILURE;
if (AllocateCtxSuites(ctx) != 0)
return WOLFSSL_FAILURE;
#ifdef OPENSSL_EXTRA
return wolfSSL_parse_cipher_list(ctx, NULL, ctx->suites, list);
#else
return (SetCipherList(ctx, ctx->suites, list)) ?
WOLFSSL_SUCCESS : WOLFSSL_FAILURE;
#endif
}
#if defined(OPENSSL_EXTRA) || defined(WOLFSSL_SET_CIPHER_BYTES)
int wolfSSL_CTX_set_cipher_list_bytes(WOLFSSL_CTX* ctx, const byte* list,
const int listSz)
{
WOLFSSL_ENTER("wolfSSL_CTX_set_cipher_list_bytes");
if (ctx == NULL)
return WOLFSSL_FAILURE;
if (AllocateCtxSuites(ctx) != 0)
return WOLFSSL_FAILURE;
return (SetCipherListFromBytes(ctx, ctx->suites, list, listSz)) ?
WOLFSSL_SUCCESS : WOLFSSL_FAILURE;
}
#endif /* OPENSSL_EXTRA || WOLFSSL_SET_CIPHER_BYTES */
int wolfSSL_set_cipher_list(WOLFSSL* ssl, const char* list)
{
WOLFSSL_ENTER("wolfSSL_set_cipher_list");
if (ssl == NULL || ssl->ctx == NULL) {
return WOLFSSL_FAILURE;
}
if (AllocateSuites(ssl) != 0)
return WOLFSSL_FAILURE;
#ifdef OPENSSL_EXTRA
return wolfSSL_parse_cipher_list(NULL, ssl, ssl->suites, list);
#else
return (SetCipherList_ex(NULL, ssl, ssl->suites, list)) ?
WOLFSSL_SUCCESS :
WOLFSSL_FAILURE;
#endif
}
#if defined(OPENSSL_EXTRA) || defined(WOLFSSL_SET_CIPHER_BYTES)
int wolfSSL_set_cipher_list_bytes(WOLFSSL* ssl, const byte* list,
const int listSz)
{
WOLFSSL_ENTER("wolfSSL_set_cipher_list_bytes");
if (ssl == NULL || ssl->ctx == NULL) {
return WOLFSSL_FAILURE;
}
if (AllocateSuites(ssl) != 0)
return WOLFSSL_FAILURE;
return (SetCipherListFromBytes(ssl->ctx, ssl->suites, list, listSz))
? WOLFSSL_SUCCESS
: WOLFSSL_FAILURE;
}
#endif /* OPENSSL_EXTRA || WOLFSSL_SET_CIPHER_BYTES */
#ifdef HAVE_KEYING_MATERIAL
#define TLS_PRF_LABEL_CLIENT_FINISHED "client finished"
#define TLS_PRF_LABEL_SERVER_FINISHED "server finished"
#define TLS_PRF_LABEL_MASTER_SECRET "master secret"
#define TLS_PRF_LABEL_EXT_MASTER_SECRET "extended master secret"
#define TLS_PRF_LABEL_KEY_EXPANSION "key expansion"
static const struct ForbiddenLabels {
const char* label;
size_t labelLen;
} forbiddenLabels[] = {
{TLS_PRF_LABEL_CLIENT_FINISHED, XSTR_SIZEOF(TLS_PRF_LABEL_CLIENT_FINISHED)},
{TLS_PRF_LABEL_SERVER_FINISHED, XSTR_SIZEOF(TLS_PRF_LABEL_SERVER_FINISHED)},
{TLS_PRF_LABEL_MASTER_SECRET, XSTR_SIZEOF(TLS_PRF_LABEL_MASTER_SECRET)},
{TLS_PRF_LABEL_EXT_MASTER_SECRET,
XSTR_SIZEOF(TLS_PRF_LABEL_EXT_MASTER_SECRET)},
{TLS_PRF_LABEL_KEY_EXPANSION, XSTR_SIZEOF(TLS_PRF_LABEL_KEY_EXPANSION)},
{NULL, 0},
};
/**
* Implement RFC 5705
* TLS 1.3 uses a different exporter definition (section 7.5 of RFC 8446)
* @return WOLFSSL_SUCCESS on success and WOLFSSL_FAILURE on error
*/
int wolfSSL_export_keying_material(WOLFSSL *ssl,
unsigned char *out, size_t outLen,
const char *label, size_t labelLen,
const unsigned char *context, size_t contextLen,
int use_context)
{
byte* seed = NULL;
word32 seedLen;
const struct ForbiddenLabels* fl;
WOLFSSL_ENTER("wolfSSL_export_keying_material");
if (ssl == NULL || out == NULL || label == NULL ||
(use_context && contextLen && context == NULL)) {
WOLFSSL_MSG("Bad argument");
return WOLFSSL_FAILURE;
}
/* clientRandom + serverRandom
* OR
* clientRandom + serverRandom + ctx len encoding + ctx */
seedLen = !use_context ? (word32)SEED_LEN :
(word32)SEED_LEN + 2 + (word32)contextLen;
if (ssl->options.saveArrays == 0 || ssl->arrays == NULL) {
WOLFSSL_MSG("To export keying material wolfSSL needs to keep handshake "
"data. Call wolfSSL_KeepArrays before attempting to "
"export keyid material.");
return WOLFSSL_FAILURE;
}
/* check forbidden labels */
for (fl = &forbiddenLabels[0]; fl->label != NULL; fl++) {
if (labelLen >= fl->labelLen &&
XMEMCMP(label, fl->label, fl->labelLen) == 0) {
WOLFSSL_MSG("Forbidden label");
return WOLFSSL_FAILURE;
}
}
#ifdef WOLFSSL_TLS13
if (IsAtLeastTLSv1_3(ssl->version)) {
/* Path for TLS 1.3 */
if (!use_context) {
contextLen = 0;
context = (byte*)""; /* Give valid pointer for 0 length memcpy */
}
if (Tls13_Exporter(ssl, out, (word32)outLen, label, labelLen,
context, contextLen) != 0) {
WOLFSSL_MSG("Tls13_Exporter error");
return WOLFSSL_FAILURE;
}
return WOLFSSL_SUCCESS;
}
#endif
/* Path for <=TLS 1.2 */
seed = (byte*)XMALLOC(seedLen, NULL, DYNAMIC_TYPE_TMP_BUFFER);
if (seed == NULL) {
WOLFSSL_MSG("malloc error");
return WOLFSSL_FAILURE;
}
XMEMCPY(seed, ssl->arrays->clientRandom, RAN_LEN);
XMEMCPY(seed + RAN_LEN, ssl->arrays->serverRandom, RAN_LEN);
if (use_context) {
/* Encode len in big endian */
seed[SEED_LEN ] = (contextLen >> 8) & 0xFF;
seed[SEED_LEN + 1] = (contextLen) & 0xFF;
if (contextLen) {
/* 0 length context is allowed */
XMEMCPY(seed + SEED_LEN + 2, context, contextLen);
}
}
PRIVATE_KEY_UNLOCK();
if (wc_PRF_TLS(out, (word32)outLen, ssl->arrays->masterSecret, SECRET_LEN,
(byte*)label, (word32)labelLen, seed, seedLen,
IsAtLeastTLSv1_2(ssl), ssl->specs.mac_algorithm, ssl->heap,
ssl->devId) != 0) {
WOLFSSL_MSG("wc_PRF_TLS error");
PRIVATE_KEY_LOCK();
XFREE(seed, NULL, DYNAMIC_TYPE_TMP_BUFFER);
return WOLFSSL_FAILURE;
}
PRIVATE_KEY_LOCK();
XFREE(seed, NULL, DYNAMIC_TYPE_TMP_BUFFER);
return WOLFSSL_SUCCESS;
}
#endif /* HAVE_KEYING_MATERIAL */
int wolfSSL_dtls_get_using_nonblock(WOLFSSL* ssl)
{
int useNb = 0;
if (ssl == NULL)
return WOLFSSL_FAILURE;
WOLFSSL_ENTER("wolfSSL_dtls_get_using_nonblock");
if (ssl->options.dtls) {
#ifdef WOLFSSL_DTLS
useNb = ssl->options.dtlsUseNonblock;
#endif
}
else {
WOLFSSL_MSG("wolfSSL_dtls_get_using_nonblock() is "
"DEPRECATED for non-DTLS use.");
}
return useNb;
}
#ifndef WOLFSSL_LEANPSK
void wolfSSL_dtls_set_using_nonblock(WOLFSSL* ssl, int nonblock)
{
(void)nonblock;
WOLFSSL_ENTER("wolfSSL_dtls_set_using_nonblock");
if (ssl == NULL)
return;
if (ssl->options.dtls) {
#ifdef WOLFSSL_DTLS
ssl->options.dtlsUseNonblock = (nonblock != 0);
#endif
}
else {
WOLFSSL_MSG("wolfSSL_dtls_set_using_nonblock() is "
"DEPRECATED for non-DTLS use.");
}
}
#ifdef WOLFSSL_DTLS
int wolfSSL_dtls_get_current_timeout(WOLFSSL* ssl)
{
int timeout = 0;
if (ssl)
timeout = ssl->dtls_timeout;
WOLFSSL_LEAVE("wolfSSL_dtls_get_current_timeout", timeout);
return timeout;
}
#ifdef WOLFSSL_DTLS13
/*
* This API returns 1 when the user should set a short timeout for receiving
* data. It is recommended that it is at most 1/4 the value returned by
* wolfSSL_dtls_get_current_timeout().
*/
int wolfSSL_dtls13_use_quick_timeout(WOLFSSL* ssl)
{
return ssl->dtls13FastTimeout;
}
/*
* When this is set, a DTLS 1.3 connection will send acks immediately when a
* disruption is detected to shortcut timeouts. This results in potentially
* more traffic but may make the handshake quicker.
*/
void wolfSSL_dtls13_set_send_more_acks(WOLFSSL* ssl, int value)
{
if (ssl != NULL)
ssl->options.dtls13SendMoreAcks = !!value;
}
#endif /* WOLFSSL_DTLS13 */
int wolfSSL_DTLSv1_get_timeout(WOLFSSL* ssl, WOLFSSL_TIMEVAL* timeleft)
{
if (ssl && timeleft) {
XMEMSET(timeleft, 0, sizeof(WOLFSSL_TIMEVAL));
timeleft->tv_sec = ssl->dtls_timeout;
}
return 0;
}
#ifndef NO_WOLFSSL_STUB
int wolfSSL_DTLSv1_handle_timeout(WOLFSSL* ssl)
{
WOLFSSL_STUB("SSL_DTLSv1_handle_timeout");
(void)ssl;
return 0;
}
#endif
#ifndef NO_WOLFSSL_STUB
void wolfSSL_DTLSv1_set_initial_timeout_duration(WOLFSSL* ssl,
word32 duration_ms)
{
WOLFSSL_STUB("SSL_DTLSv1_set_initial_timeout_duration");
(void)ssl;
(void)duration_ms;
}
#endif
/* user may need to alter init dtls recv timeout, WOLFSSL_SUCCESS on ok */
int wolfSSL_dtls_set_timeout_init(WOLFSSL* ssl, int timeout)
{
if (ssl == NULL || timeout < 0)
return BAD_FUNC_ARG;
if (timeout > ssl->dtls_timeout_max) {
WOLFSSL_MSG("Can't set dtls timeout init greater than dtls timeout "
"max");
return BAD_FUNC_ARG;
}
ssl->dtls_timeout_init = timeout;
ssl->dtls_timeout = timeout;
return WOLFSSL_SUCCESS;
}
/* user may need to alter max dtls recv timeout, WOLFSSL_SUCCESS on ok */
int wolfSSL_dtls_set_timeout_max(WOLFSSL* ssl, int timeout)
{
if (ssl == NULL || timeout < 0)
return BAD_FUNC_ARG;
if (timeout < ssl->dtls_timeout_init) {
WOLFSSL_MSG("Can't set dtls timeout max less than dtls timeout init");
return BAD_FUNC_ARG;
}
ssl->dtls_timeout_max = timeout;
return WOLFSSL_SUCCESS;
}
int wolfSSL_dtls_got_timeout(WOLFSSL* ssl)
{
int result = WOLFSSL_SUCCESS;
WOLFSSL_ENTER("wolfSSL_dtls_got_timeout");
if (ssl == NULL)
return WOLFSSL_FATAL_ERROR;
#ifdef WOLFSSL_DTLS13
if (ssl->options.dtls && IsAtLeastTLSv1_3(ssl->version)) {
result = Dtls13RtxTimeout(ssl);
if (result < 0) {
if (result == WANT_WRITE)
ssl->dtls13SendingAckOrRtx = 1;
ssl->error = result;
WOLFSSL_ERROR(result);
return WOLFSSL_FATAL_ERROR;
}
return WOLFSSL_SUCCESS;
}
#endif /* WOLFSSL_DTLS13 */
if ((IsSCR(ssl) || !ssl->options.handShakeDone)) {
if (DtlsMsgPoolTimeout(ssl) < 0){
ssl->error = SOCKET_ERROR_E;
WOLFSSL_ERROR(ssl->error);
result = WOLFSSL_FATAL_ERROR;
}
else if ((result = DtlsMsgPoolSend(ssl, 0)) < 0) {
ssl->error = result;
WOLFSSL_ERROR(result);
result = WOLFSSL_FATAL_ERROR;
}
else {
/* Reset return value to success */
result = WOLFSSL_SUCCESS;
}
}
WOLFSSL_LEAVE("wolfSSL_dtls_got_timeout", result);
return result;
}
/* retransmit all the saves messages, WOLFSSL_SUCCESS on ok */
int wolfSSL_dtls_retransmit(WOLFSSL* ssl)
{
WOLFSSL_ENTER("wolfSSL_dtls_retransmit");
if (ssl == NULL)
return WOLFSSL_FATAL_ERROR;
if (!ssl->options.handShakeDone) {
int result = DtlsMsgPoolSend(ssl, 0);
if (result < 0) {
ssl->error = result;
WOLFSSL_ERROR(result);
return WOLFSSL_FATAL_ERROR;
}
}
return 0;
}
#endif /* DTLS */
#endif /* LEANPSK */
#if defined(WOLFSSL_DTLS) && !defined(NO_WOLFSSL_SERVER)
/* Not an SSL function, return 0 for success, error code otherwise */
/* Prereq: ssl's RNG needs to be initialized. */
int wolfSSL_DTLS_SetCookieSecret(WOLFSSL* ssl,
const byte* secret, word32 secretSz)
{
int ret = 0;
WOLFSSL_ENTER("wolfSSL_DTLS_SetCookieSecret");
if (ssl == NULL) {
WOLFSSL_MSG("need a SSL object");
return BAD_FUNC_ARG;
}
if (secret != NULL && secretSz == 0) {
WOLFSSL_MSG("can't have a new secret without a size");
return BAD_FUNC_ARG;
}
/* If secretSz is 0, use the default size. */
if (secretSz == 0)
secretSz = COOKIE_SECRET_SZ;
if (secretSz != ssl->buffers.dtlsCookieSecret.length) {
byte* newSecret;
if (ssl->buffers.dtlsCookieSecret.buffer != NULL) {
ForceZero(ssl->buffers.dtlsCookieSecret.buffer,
ssl->buffers.dtlsCookieSecret.length);
XFREE(ssl->buffers.dtlsCookieSecret.buffer,
ssl->heap, DYNAMIC_TYPE_COOKIE_PWD);
}
newSecret = (byte*)XMALLOC(secretSz, ssl->heap,DYNAMIC_TYPE_COOKIE_PWD);
if (newSecret == NULL) {
ssl->buffers.dtlsCookieSecret.buffer = NULL;
ssl->buffers.dtlsCookieSecret.length = 0;
WOLFSSL_MSG("couldn't allocate new cookie secret");
return MEMORY_ERROR;
}
ssl->buffers.dtlsCookieSecret.buffer = newSecret;
ssl->buffers.dtlsCookieSecret.length = secretSz;
#ifdef WOLFSSL_CHECK_MEM_ZERO
wc_MemZero_Add("wolfSSL_DTLS_SetCookieSecret secret",
ssl->buffers.dtlsCookieSecret.buffer,
ssl->buffers.dtlsCookieSecret.length);
#endif
}
/* If the supplied secret is NULL, randomly generate a new secret. */
if (secret == NULL) {
ret = wc_RNG_GenerateBlock(ssl->rng,
ssl->buffers.dtlsCookieSecret.buffer, secretSz);
}
else
XMEMCPY(ssl->buffers.dtlsCookieSecret.buffer, secret, secretSz);
WOLFSSL_LEAVE("wolfSSL_DTLS_SetCookieSecret", 0);
return ret;
}
#endif /* WOLFSSL_DTLS && !NO_WOLFSSL_SERVER */
/* EITHER SIDE METHODS */
#if defined(OPENSSL_EXTRA) || defined(WOLFSSL_EITHER_SIDE)
WOLFSSL_METHOD* wolfSSLv23_method(void)
{
return wolfSSLv23_method_ex(NULL);
}
WOLFSSL_METHOD* wolfSSLv23_method_ex(void* heap)
{
WOLFSSL_METHOD* m = NULL;
WOLFSSL_ENTER("wolfSSLv23_method");
#if !defined(NO_WOLFSSL_CLIENT)
m = wolfSSLv23_client_method_ex(heap);
#elif !defined(NO_WOLFSSL_SERVER)
m = wolfSSLv23_server_method_ex(heap);
#else
(void)heap;
#endif
if (m != NULL) {
m->side = WOLFSSL_NEITHER_END;
}
return m;
}
#ifndef NO_OLD_TLS
#ifdef WOLFSSL_ALLOW_SSLV3
WOLFSSL_METHOD* wolfSSLv3_method(void)
{
return wolfSSLv3_method_ex(NULL);
}
WOLFSSL_METHOD* wolfSSLv3_method_ex(void* heap)
{
WOLFSSL_METHOD* m = NULL;
WOLFSSL_ENTER("wolfSSLv3_method_ex");
#if !defined(NO_WOLFSSL_CLIENT)
m = wolfSSLv3_client_method_ex(heap);
#elif !defined(NO_WOLFSSL_SERVER)
m = wolfSSLv3_server_method_ex(heap);
#endif
if (m != NULL) {
m->side = WOLFSSL_NEITHER_END;
}
return m;
}
#endif
#endif
#endif /* OPENSSL_EXTRA || WOLFSSL_EITHER_SIDE */
/* client only parts */
#ifndef NO_WOLFSSL_CLIENT
#if defined(OPENSSL_EXTRA) && !defined(NO_OLD_TLS)
WOLFSSL_METHOD* wolfSSLv2_client_method(void)
{
WOLFSSL_STUB("wolfSSLv2_client_method");
return NULL;
}
#endif
#if defined(WOLFSSL_ALLOW_SSLV3) && !defined(NO_OLD_TLS)
WOLFSSL_METHOD* wolfSSLv3_client_method(void)
{
return wolfSSLv3_client_method_ex(NULL);
}
WOLFSSL_METHOD* wolfSSLv3_client_method_ex(void* heap)
{
WOLFSSL_METHOD* method =
(WOLFSSL_METHOD*) XMALLOC(sizeof(WOLFSSL_METHOD),
heap, DYNAMIC_TYPE_METHOD);
(void)heap;
WOLFSSL_ENTER("wolfSSLv3_client_method_ex");
if (method)
InitSSL_Method(method, MakeSSLv3());
return method;
}
#endif /* WOLFSSL_ALLOW_SSLV3 && !NO_OLD_TLS */
WOLFSSL_METHOD* wolfSSLv23_client_method(void)
{
return wolfSSLv23_client_method_ex(NULL);
}
WOLFSSL_METHOD* wolfSSLv23_client_method_ex(void* heap)
{
WOLFSSL_METHOD* method =
(WOLFSSL_METHOD*) XMALLOC(sizeof(WOLFSSL_METHOD),
heap, DYNAMIC_TYPE_METHOD);
(void)heap;
WOLFSSL_ENTER("wolfSSLv23_client_method_ex");
if (method) {
#if !defined(NO_SHA256) || defined(WOLFSSL_SHA384) || \
defined(WOLFSSL_SHA512)
#if defined(WOLFSSL_TLS13)
InitSSL_Method(method, MakeTLSv1_3());
#elif !defined(WOLFSSL_NO_TLS12)
InitSSL_Method(method, MakeTLSv1_2());
#elif !defined(NO_OLD_TLS)
InitSSL_Method(method, MakeTLSv1_1());
#endif
#else
#ifndef NO_OLD_TLS
InitSSL_Method(method, MakeTLSv1_1());
#endif
#endif
#if !defined(NO_OLD_TLS) || defined(WOLFSSL_TLS13)
method->downgrade = 1;
#endif
}
return method;
}
/* please see note at top of README if you get an error from connect */
WOLFSSL_ABI
int wolfSSL_connect(WOLFSSL* ssl)
{
#if !(defined(WOLFSSL_NO_TLS12) && defined(NO_OLD_TLS) && \
defined(WOLFSSL_TLS13))
int neededState;
byte advanceState;
#endif
int ret = 0;
(void)ret;
#ifdef HAVE_ERRNO_H
errno = 0;
#endif
if (ssl == NULL)
return BAD_FUNC_ARG;
#if defined(OPENSSL_EXTRA) || defined(WOLFSSL_EITHER_SIDE)
if (ssl->options.side == WOLFSSL_NEITHER_END) {
ssl->error = InitSSL_Side(ssl, WOLFSSL_CLIENT_END);
if (ssl->error != WOLFSSL_SUCCESS) {
WOLFSSL_ERROR(ssl->error);
return WOLFSSL_FATAL_ERROR;
}
ssl->error = 0; /* expected to be zero here */
}
#ifdef OPENSSL_EXTRA
if (ssl->CBIS != NULL) {
ssl->CBIS(ssl, SSL_ST_CONNECT, WOLFSSL_SUCCESS);
ssl->cbmode = SSL_CB_WRITE;
}
#endif
#endif /* OPENSSL_EXTRA || WOLFSSL_EITHER_SIDE */
#if defined(WOLFSSL_NO_TLS12) && defined(NO_OLD_TLS) && \
defined(WOLFSSL_TLS13)
return wolfSSL_connect_TLSv13(ssl);
#else
#ifdef WOLFSSL_TLS13
if (ssl->options.tls1_3) {
WOLFSSL_MSG("TLS 1.3");
return wolfSSL_connect_TLSv13(ssl);
}
#endif
WOLFSSL_MSG("TLS 1.2 or lower");
WOLFSSL_ENTER("wolfSSL_connect");
/* make sure this wolfSSL object has arrays and rng setup. Protects
* case where the WOLFSSL object is reused via wolfSSL_clear() */
if ((ret = ReinitSSL(ssl, ssl->ctx, 0)) != 0) {
return ret;
}
#ifdef WOLFSSL_WOLFSENTRY_HOOKS
if ((ssl->ConnectFilter != NULL) &&
(ssl->options.connectState == CONNECT_BEGIN)) {
wolfSSL_netfilter_decision_t res;
if ((ssl->ConnectFilter(ssl, ssl->ConnectFilter_arg, &res) ==
WOLFSSL_SUCCESS) &&
(res == WOLFSSL_NETFILTER_REJECT)) {
ssl->error = SOCKET_FILTERED_E;
WOLFSSL_ERROR(ssl->error);
return WOLFSSL_FATAL_ERROR;
}
}
#endif /* WOLFSSL_WOLFSENTRY_HOOKS */
if (ssl->options.side != WOLFSSL_CLIENT_END) {
ssl->error = SIDE_ERROR;
WOLFSSL_ERROR(ssl->error);
return WOLFSSL_FATAL_ERROR;
}
#ifdef WOLFSSL_DTLS
if (ssl->version.major == DTLS_MAJOR) {
ssl->options.dtls = 1;
ssl->options.tls = 1;
ssl->options.tls1_1 = 1;
ssl->options.dtlsStateful = 1;
}
#endif
/* fragOffset is non-zero when sending fragments. On the last
* fragment, fragOffset is zero again, and the state can be
* advanced. */
advanceState = ssl->fragOffset == 0 &&
(ssl->options.connectState == CONNECT_BEGIN ||
ssl->options.connectState == HELLO_AGAIN ||
(ssl->options.connectState >= FIRST_REPLY_DONE &&
ssl->options.connectState <= FIRST_REPLY_FOURTH));
#ifdef WOLFSSL_DTLS13
if (ssl->options.dtls && IsAtLeastTLSv1_3(ssl->version))
advanceState = advanceState && !ssl->dtls13SendingAckOrRtx;
#endif /* WOLFSSL_DTLS13 */
if (ssl->buffers.outputBuffer.length > 0
#ifdef WOLFSSL_ASYNC_CRYPT
/* do not send buffered or advance state if last error was an
async pending operation */
&& ssl->error != WC_PENDING_E
#endif
) {
ret = SendBuffered(ssl);
if (ret == 0) {
if (ssl->fragOffset == 0 && !ssl->options.buildingMsg) {
if (advanceState) {
ssl->options.connectState++;
WOLFSSL_MSG("connect state: Advanced from last "
"buffered fragment send");
#ifdef WOLFSSL_ASYNC_IO
/* Cleanup async */
FreeAsyncCtx(ssl, 0);
#endif
}
}
else {
WOLFSSL_MSG("connect state: "
"Not advanced, more fragments to send");
}
}
else {
ssl->error = ret;
WOLFSSL_ERROR(ssl->error);
return WOLFSSL_FATAL_ERROR;
}
#ifdef WOLFSSL_DTLS13
if (ssl->options.dtls)
ssl->dtls13SendingAckOrRtx = 0;
#endif /* WOLFSSL_DTLS13 */
}
ret = RetrySendAlert(ssl);
if (ret != 0) {
ssl->error = ret;
WOLFSSL_ERROR(ssl->error);
return WOLFSSL_FATAL_ERROR;
}
switch (ssl->options.connectState) {
case CONNECT_BEGIN :
/* always send client hello first */
if ( (ssl->error = SendClientHello(ssl)) != 0) {
WOLFSSL_ERROR(ssl->error);
return WOLFSSL_FATAL_ERROR;
}
ssl->options.connectState = CLIENT_HELLO_SENT;
WOLFSSL_MSG("connect state: CLIENT_HELLO_SENT");
FALL_THROUGH;
case CLIENT_HELLO_SENT :
neededState = ssl->options.resuming ? SERVER_FINISHED_COMPLETE :
SERVER_HELLODONE_COMPLETE;
#ifdef WOLFSSL_DTLS
/* In DTLS, when resuming, we can go straight to FINISHED,
* or do a cookie exchange and then skip to FINISHED, assume
* we need the cookie exchange first. */
if (IsDtlsNotSctpMode(ssl))
neededState = SERVER_HELLOVERIFYREQUEST_COMPLETE;
#endif
/* get response */
WOLFSSL_MSG("Server state up to needed state.");
while (ssl->options.serverState < neededState) {
WOLFSSL_MSG("Progressing server state...");
#ifdef WOLFSSL_TLS13
if (ssl->options.tls1_3)
return wolfSSL_connect_TLSv13(ssl);
#endif
WOLFSSL_MSG("ProcessReply...");
if ( (ssl->error = ProcessReply(ssl)) < 0) {
WOLFSSL_ERROR(ssl->error);
return WOLFSSL_FATAL_ERROR;
}
/* if resumption failed, reset needed state */
else if (neededState == SERVER_FINISHED_COMPLETE) {
if (!ssl->options.resuming) {
#ifdef WOLFSSL_DTLS
if (IsDtlsNotSctpMode(ssl))
neededState = SERVER_HELLOVERIFYREQUEST_COMPLETE;
else
#endif
neededState = SERVER_HELLODONE_COMPLETE;
}
}
WOLFSSL_MSG("ProcessReply done.");
#ifdef WOLFSSL_DTLS13
if (ssl->options.dtls && IsAtLeastTLSv1_3(ssl->version)
&& ssl->dtls13Rtx.sendAcks == 1
&& ssl->options.seenUnifiedHdr) {
/* we aren't negotiated the version yet, so we aren't sure
* the other end can speak v1.3. On the other side we have
* received a unified records, assuming that the
* ServerHello got lost, we will send an empty ACK. In case
* the server is a DTLS with version less than 1.3, it
* should just ignore the message */
ssl->dtls13Rtx.sendAcks = 0;
if ((ssl->error = SendDtls13Ack(ssl)) < 0) {
if (ssl->error == WANT_WRITE)
ssl->dtls13SendingAckOrRtx = 1;
WOLFSSL_ERROR(ssl->error);
return WOLFSSL_FATAL_ERROR;
}
}
#endif /* WOLFSSL_DTLS13 */
}
ssl->options.connectState = HELLO_AGAIN;
WOLFSSL_MSG("connect state: HELLO_AGAIN");
FALL_THROUGH;
case HELLO_AGAIN :
#ifdef WOLFSSL_TLS13
if (ssl->options.tls1_3)
return wolfSSL_connect_TLSv13(ssl);
#endif
#ifdef WOLFSSL_DTLS
if (ssl->options.serverState ==
SERVER_HELLOVERIFYREQUEST_COMPLETE) {
if (IsDtlsNotSctpMode(ssl)) {
/* re-init hashes, exclude first hello and verify request */
if ((ssl->error = InitHandshakeHashes(ssl)) != 0) {
WOLFSSL_ERROR(ssl->error);
return WOLFSSL_FATAL_ERROR;
}
if ( (ssl->error = SendClientHello(ssl)) != 0) {
WOLFSSL_ERROR(ssl->error);
return WOLFSSL_FATAL_ERROR;
}
}
}
#endif
ssl->options.connectState = HELLO_AGAIN_REPLY;
WOLFSSL_MSG("connect state: HELLO_AGAIN_REPLY");
FALL_THROUGH;
case HELLO_AGAIN_REPLY :
#ifdef WOLFSSL_DTLS
if (IsDtlsNotSctpMode(ssl)) {
neededState = ssl->options.resuming ?
SERVER_FINISHED_COMPLETE : SERVER_HELLODONE_COMPLETE;
/* get response */
while (ssl->options.serverState < neededState) {
if ( (ssl->error = ProcessReply(ssl)) < 0) {
WOLFSSL_ERROR(ssl->error);
return WOLFSSL_FATAL_ERROR;
}
/* if resumption failed, reset needed state */
if (neededState == SERVER_FINISHED_COMPLETE) {
if (!ssl->options.resuming)
neededState = SERVER_HELLODONE_COMPLETE;
}
}
}
#endif
ssl->options.connectState = FIRST_REPLY_DONE;
WOLFSSL_MSG("connect state: FIRST_REPLY_DONE");
FALL_THROUGH;
case FIRST_REPLY_DONE :
if (ssl->options.certOnly)
return WOLFSSL_SUCCESS;
#if !defined(NO_CERTS) && !defined(WOLFSSL_NO_CLIENT_AUTH)
#ifdef WOLFSSL_TLS13
if (ssl->options.tls1_3)
return wolfSSL_connect_TLSv13(ssl);
#endif
if (ssl->options.sendVerify) {
if ( (ssl->error = SendCertificate(ssl)) != 0) {
#ifdef WOLFSSL_CHECK_ALERT_ON_ERR
ProcessReplyEx(ssl, 1); /* See if an alert was sent. */
#endif
WOLFSSL_ERROR(ssl->error);
return WOLFSSL_FATAL_ERROR;
}
WOLFSSL_MSG("sent: certificate");
}
#endif
ssl->options.connectState = FIRST_REPLY_FIRST;
WOLFSSL_MSG("connect state: FIRST_REPLY_FIRST");
FALL_THROUGH;
case FIRST_REPLY_FIRST :
#ifdef WOLFSSL_TLS13
if (ssl->options.tls1_3)
return wolfSSL_connect_TLSv13(ssl);
#endif
if (!ssl->options.resuming) {
if ( (ssl->error = SendClientKeyExchange(ssl)) != 0) {
#ifdef WOLFSSL_CHECK_ALERT_ON_ERR
ProcessReplyEx(ssl, 1); /* See if an alert was sent. */
#endif
#ifdef WOLFSSL_EXTRA_ALERTS
if (ssl->error == NO_PEER_KEY ||
ssl->error == WC_NO_ERR_TRACE(PSK_KEY_ERROR)) {
SendAlert(ssl, alert_fatal, handshake_failure);
}
#endif
WOLFSSL_ERROR(ssl->error);
return WOLFSSL_FATAL_ERROR;
}
WOLFSSL_MSG("sent: client key exchange");
}
ssl->options.connectState = FIRST_REPLY_SECOND;
WOLFSSL_MSG("connect state: FIRST_REPLY_SECOND");
FALL_THROUGH;
#if !defined(WOLFSSL_NO_TLS12) || !defined(NO_OLD_TLS)
case FIRST_REPLY_SECOND :
/* CLIENT: Fail-safe for Server Authentication. */
if (!ssl->options.peerAuthGood) {
WOLFSSL_MSG("Server authentication did not happen");
ssl->error = NO_PEER_VERIFY;
return WOLFSSL_FATAL_ERROR;
}
#if !defined(NO_CERTS) && !defined(WOLFSSL_NO_CLIENT_AUTH)
if (ssl->options.sendVerify) {
if ( (ssl->error = SendCertificateVerify(ssl)) != 0) {
#ifdef WOLFSSL_CHECK_ALERT_ON_ERR
ProcessReplyEx(ssl, 1); /* See if an alert was sent. */
#endif
WOLFSSL_ERROR(ssl->error);
return WOLFSSL_FATAL_ERROR;
}
WOLFSSL_MSG("sent: certificate verify");
}
#endif /* !NO_CERTS && !WOLFSSL_NO_CLIENT_AUTH */
ssl->options.connectState = FIRST_REPLY_THIRD;
WOLFSSL_MSG("connect state: FIRST_REPLY_THIRD");
FALL_THROUGH;
case FIRST_REPLY_THIRD :
if ( (ssl->error = SendChangeCipher(ssl)) != 0) {
#ifdef WOLFSSL_CHECK_ALERT_ON_ERR
ProcessReplyEx(ssl, 1); /* See if an alert was sent. */
#endif
WOLFSSL_ERROR(ssl->error);
return WOLFSSL_FATAL_ERROR;
}
WOLFSSL_MSG("sent: change cipher spec");
ssl->options.connectState = FIRST_REPLY_FOURTH;
WOLFSSL_MSG("connect state: FIRST_REPLY_FOURTH");
FALL_THROUGH;
case FIRST_REPLY_FOURTH :
if ( (ssl->error = SendFinished(ssl)) != 0) {
#ifdef WOLFSSL_CHECK_ALERT_ON_ERR
ProcessReplyEx(ssl, 1); /* See if an alert was sent. */
#endif
WOLFSSL_ERROR(ssl->error);
return WOLFSSL_FATAL_ERROR;
}
WOLFSSL_MSG("sent: finished");
ssl->options.connectState = FINISHED_DONE;
WOLFSSL_MSG("connect state: FINISHED_DONE");
FALL_THROUGH;
#ifdef WOLFSSL_DTLS13
case WAIT_FINISHED_ACK:
ssl->options.connectState = FINISHED_DONE;
FALL_THROUGH;
#endif /* WOLFSSL_DTLS13 */
case FINISHED_DONE :
/* get response */
while (ssl->options.serverState < SERVER_FINISHED_COMPLETE)
if ( (ssl->error = ProcessReply(ssl)) < 0) {
WOLFSSL_ERROR(ssl->error);
return WOLFSSL_FATAL_ERROR;
}
ssl->options.connectState = SECOND_REPLY_DONE;
WOLFSSL_MSG("connect state: SECOND_REPLY_DONE");
FALL_THROUGH;
case SECOND_REPLY_DONE:
#ifndef NO_HANDSHAKE_DONE_CB
if (ssl->hsDoneCb) {
int cbret = ssl->hsDoneCb(ssl, ssl->hsDoneCtx);
if (cbret < 0) {
ssl->error = cbret;
WOLFSSL_MSG("HandShake Done Cb don't continue error");
return WOLFSSL_FATAL_ERROR;
}
}
#endif /* NO_HANDSHAKE_DONE_CB */
if (!ssl->options.dtls) {
if (!ssl->options.keepResources) {
FreeHandshakeResources(ssl);
}
}
#ifdef WOLFSSL_DTLS
else {
ssl->options.dtlsHsRetain = 1;
}
#endif /* WOLFSSL_DTLS */
#if defined(WOLFSSL_ASYNC_CRYPT) && defined(HAVE_SECURE_RENEGOTIATION)
/* This may be necessary in async so that we don't try to
* renegotiate again */
if (ssl->secure_renegotiation &&
ssl->secure_renegotiation->startScr) {
ssl->secure_renegotiation->startScr = 0;
}
#endif /* WOLFSSL_ASYNC_CRYPT && HAVE_SECURE_RENEGOTIATION */
#if defined(WOLFSSL_ASYNC_IO) && !defined(WOLFSSL_ASYNC_CRYPT)
/* Free the remaining async context if not using it for crypto */
FreeAsyncCtx(ssl, 1);
#endif
ssl->error = 0; /* clear the error */
WOLFSSL_LEAVE("wolfSSL_connect", WOLFSSL_SUCCESS);
return WOLFSSL_SUCCESS;
#endif /* !WOLFSSL_NO_TLS12 || !NO_OLD_TLS */
default:
WOLFSSL_MSG("Unknown connect state ERROR");
return WOLFSSL_FATAL_ERROR; /* unknown connect state */
}
#endif /* !WOLFSSL_NO_TLS12 || !NO_OLD_TLS || !WOLFSSL_TLS13 */
}
#endif /* NO_WOLFSSL_CLIENT */
/* server only parts */
#ifndef NO_WOLFSSL_SERVER
#if defined(OPENSSL_EXTRA) && !defined(NO_OLD_TLS)
WOLFSSL_METHOD* wolfSSLv2_server_method(void)
{
WOLFSSL_STUB("wolfSSLv2_server_method");
return 0;
}
#endif
#if defined(WOLFSSL_ALLOW_SSLV3) && !defined(NO_OLD_TLS)
WOLFSSL_METHOD* wolfSSLv3_server_method(void)
{
return wolfSSLv3_server_method_ex(NULL);
}
WOLFSSL_METHOD* wolfSSLv3_server_method_ex(void* heap)
{
WOLFSSL_METHOD* method =
(WOLFSSL_METHOD*) XMALLOC(sizeof(WOLFSSL_METHOD),
heap, DYNAMIC_TYPE_METHOD);
(void)heap;
WOLFSSL_ENTER("wolfSSLv3_server_method_ex");
if (method) {
InitSSL_Method(method, MakeSSLv3());
method->side = WOLFSSL_SERVER_END;
}
return method;
}
#endif /* WOLFSSL_ALLOW_SSLV3 && !NO_OLD_TLS */
WOLFSSL_METHOD* wolfSSLv23_server_method(void)
{
return wolfSSLv23_server_method_ex(NULL);
}
WOLFSSL_METHOD* wolfSSLv23_server_method_ex(void* heap)
{
WOLFSSL_METHOD* method =
(WOLFSSL_METHOD*) XMALLOC(sizeof(WOLFSSL_METHOD),
heap, DYNAMIC_TYPE_METHOD);
(void)heap;
WOLFSSL_ENTER("wolfSSLv23_server_method_ex");
if (method) {
#if !defined(NO_SHA256) || defined(WOLFSSL_SHA384) || \
defined(WOLFSSL_SHA512)
#ifdef WOLFSSL_TLS13
InitSSL_Method(method, MakeTLSv1_3());
#elif !defined(WOLFSSL_NO_TLS12)
InitSSL_Method(method, MakeTLSv1_2());
#elif !defined(NO_OLD_TLS)
InitSSL_Method(method, MakeTLSv1_1());
#endif
#else
#ifndef NO_OLD_TLS
InitSSL_Method(method, MakeTLSv1_1());
#else
#error Must have SHA256, SHA384 or SHA512 enabled for TLS 1.2
#endif
#endif
#if !defined(NO_OLD_TLS) || defined(WOLFSSL_TLS13)
method->downgrade = 1;
#endif
method->side = WOLFSSL_SERVER_END;
}
return method;
}
WOLFSSL_ABI
int wolfSSL_accept(WOLFSSL* ssl)
{
#if !(defined(WOLFSSL_NO_TLS12) && defined(NO_OLD_TLS) && \
defined(WOLFSSL_TLS13))
word16 havePSK = 0;
word16 haveAnon = 0;
word16 haveMcast = 0;
#endif
int ret = 0;
(void)ret;
if (ssl == NULL)
return WOLFSSL_FATAL_ERROR;
#if defined(OPENSSL_EXTRA) || defined(WOLFSSL_EITHER_SIDE)
if (ssl->options.side == WOLFSSL_NEITHER_END) {
WOLFSSL_MSG("Setting WOLFSSL_SSL to be server side");
ssl->error = InitSSL_Side(ssl, WOLFSSL_SERVER_END);
if (ssl->error != WOLFSSL_SUCCESS) {
WOLFSSL_ERROR(ssl->error);
return WOLFSSL_FATAL_ERROR;
}
ssl->error = 0; /* expected to be zero here */
}
#endif /* OPENSSL_EXTRA || WOLFSSL_EITHER_SIDE */
#if defined(WOLFSSL_NO_TLS12) && defined(NO_OLD_TLS) && defined(WOLFSSL_TLS13)
return wolfSSL_accept_TLSv13(ssl);
#else
#ifdef WOLFSSL_TLS13
if (ssl->options.tls1_3)
return wolfSSL_accept_TLSv13(ssl);
#endif
WOLFSSL_ENTER("wolfSSL_accept");
/* make sure this wolfSSL object has arrays and rng setup. Protects
* case where the WOLFSSL object is reused via wolfSSL_clear() */
if ((ret = ReinitSSL(ssl, ssl->ctx, 0)) != 0) {
return ret;
}
#ifdef WOLFSSL_WOLFSENTRY_HOOKS
if ((ssl->AcceptFilter != NULL) &&
((ssl->options.acceptState == ACCEPT_BEGIN)
#ifdef HAVE_SECURE_RENEGOTIATION
|| (ssl->options.acceptState == ACCEPT_BEGIN_RENEG)
#endif
))
{
wolfSSL_netfilter_decision_t res;
if ((ssl->AcceptFilter(ssl, ssl->AcceptFilter_arg, &res) ==
WOLFSSL_SUCCESS) &&
(res == WOLFSSL_NETFILTER_REJECT)) {
ssl->error = SOCKET_FILTERED_E;
WOLFSSL_ERROR(ssl->error);
return WOLFSSL_FATAL_ERROR;
}
}
#endif /* WOLFSSL_WOLFSENTRY_HOOKS */
#ifdef HAVE_ERRNO_H
errno = 0;
#endif
#ifndef NO_PSK
havePSK = ssl->options.havePSK;
#endif
(void)havePSK;
#ifdef HAVE_ANON
haveAnon = ssl->options.useAnon;
#endif
(void)haveAnon;
#ifdef WOLFSSL_MULTICAST
haveMcast = ssl->options.haveMcast;
#endif
(void)haveMcast;
if (ssl->options.side != WOLFSSL_SERVER_END) {
ssl->error = SIDE_ERROR;
WOLFSSL_ERROR(ssl->error);
return WOLFSSL_FATAL_ERROR;
}
#ifndef NO_CERTS
/* in case used set_accept_state after init */
if (!havePSK && !haveAnon && !haveMcast) {
#ifdef OPENSSL_EXTRA
if (ssl->ctx->certSetupCb != NULL) {
WOLFSSL_MSG("CertSetupCb set. server cert and "
"key not checked");
}
else
#endif
{
if (!ssl->buffers.certificate ||
!ssl->buffers.certificate->buffer) {
WOLFSSL_MSG("accept error: server cert required");
ssl->error = NO_PRIVATE_KEY;
WOLFSSL_ERROR(ssl->error);
return WOLFSSL_FATAL_ERROR;
}
if (!ssl->buffers.key || !ssl->buffers.key->buffer) {
/* allow no private key if using existing key */
#ifdef WOLF_PRIVATE_KEY_ID
if (ssl->devId != INVALID_DEVID
#ifdef HAVE_PK_CALLBACKS
|| wolfSSL_CTX_IsPrivatePkSet(ssl->ctx)
#endif
) {
WOLFSSL_MSG("Allowing no server private key "
"(external)");
}
else
#endif
{
WOLFSSL_MSG("accept error: server key required");
ssl->error = NO_PRIVATE_KEY;
WOLFSSL_ERROR(ssl->error);
return WOLFSSL_FATAL_ERROR;
}
}
}
}
#endif
#ifdef WOLFSSL_DTLS
if (ssl->version.major == DTLS_MAJOR) {
ssl->options.dtls = 1;
ssl->options.tls = 1;
ssl->options.tls1_1 = 1;
if (!IsDtlsNotSctpMode(ssl) || !IsDtlsNotSrtpMode(ssl) ||
IsSCR(ssl))
ssl->options.dtlsStateful = 1;
}
#endif
if (ssl->buffers.outputBuffer.length > 0
#ifdef WOLFSSL_ASYNC_CRYPT
/* do not send buffered or advance state if last error was an
async pending operation */
&& ssl->error != WC_PENDING_E
#endif
) {
ret = SendBuffered(ssl);
if (ret == 0) {
/* fragOffset is non-zero when sending fragments. On the last
* fragment, fragOffset is zero again, and the state can be
* advanced. */
if (ssl->fragOffset == 0 && !ssl->options.buildingMsg) {
if (ssl->options.acceptState == ACCEPT_FIRST_REPLY_DONE ||
ssl->options.acceptState == SERVER_HELLO_SENT ||
ssl->options.acceptState == CERT_SENT ||
ssl->options.acceptState == CERT_STATUS_SENT ||
ssl->options.acceptState == KEY_EXCHANGE_SENT ||
ssl->options.acceptState == CERT_REQ_SENT ||
ssl->options.acceptState == ACCEPT_SECOND_REPLY_DONE ||
ssl->options.acceptState == TICKET_SENT ||
ssl->options.acceptState == CHANGE_CIPHER_SENT) {
ssl->options.acceptState++;
WOLFSSL_MSG("accept state: Advanced from last "
"buffered fragment send");
#ifdef WOLFSSL_ASYNC_IO
/* Cleanup async */
FreeAsyncCtx(ssl, 0);
#endif
}
}
else {
WOLFSSL_MSG("accept state: "
"Not advanced, more fragments to send");
}
}
else {
ssl->error = ret;
WOLFSSL_ERROR(ssl->error);
return WOLFSSL_FATAL_ERROR;
}
#ifdef WOLFSSL_DTLS13
if (ssl->options.dtls)
ssl->dtls13SendingAckOrRtx = 0;
#endif /* WOLFSSL_DTLS13 */
}
ret = RetrySendAlert(ssl);
if (ret != 0) {
ssl->error = ret;
WOLFSSL_ERROR(ssl->error);
return WOLFSSL_FATAL_ERROR;
}
switch (ssl->options.acceptState) {
case ACCEPT_BEGIN :
#ifdef HAVE_SECURE_RENEGOTIATION
case ACCEPT_BEGIN_RENEG:
#endif
/* get response */
while (ssl->options.clientState < CLIENT_HELLO_COMPLETE)
if ( (ssl->error = ProcessReply(ssl)) < 0) {
WOLFSSL_ERROR(ssl->error);
return WOLFSSL_FATAL_ERROR;
}
#ifdef WOLFSSL_TLS13
ssl->options.acceptState = ACCEPT_CLIENT_HELLO_DONE;
WOLFSSL_MSG("accept state ACCEPT_CLIENT_HELLO_DONE");
FALL_THROUGH;
case ACCEPT_CLIENT_HELLO_DONE :
if (ssl->options.tls1_3) {
return wolfSSL_accept_TLSv13(ssl);
}
#endif
ssl->options.acceptState = ACCEPT_FIRST_REPLY_DONE;
WOLFSSL_MSG("accept state ACCEPT_FIRST_REPLY_DONE");
FALL_THROUGH;
case ACCEPT_FIRST_REPLY_DONE :
if ( (ssl->error = SendServerHello(ssl)) != 0) {
#ifdef WOLFSSL_CHECK_ALERT_ON_ERR
ProcessReplyEx(ssl, 1); /* See if an alert was sent. */
#endif
WOLFSSL_ERROR(ssl->error);
return WOLFSSL_FATAL_ERROR;
}
ssl->options.acceptState = SERVER_HELLO_SENT;
WOLFSSL_MSG("accept state SERVER_HELLO_SENT");
FALL_THROUGH;
case SERVER_HELLO_SENT :
#ifdef WOLFSSL_TLS13
if (ssl->options.tls1_3) {
return wolfSSL_accept_TLSv13(ssl);
}
#endif
#ifndef NO_CERTS
if (!ssl->options.resuming)
if ( (ssl->error = SendCertificate(ssl)) != 0) {
#ifdef WOLFSSL_CHECK_ALERT_ON_ERR
ProcessReplyEx(ssl, 1); /* See if an alert was sent. */
#endif
WOLFSSL_ERROR(ssl->error);
return WOLFSSL_FATAL_ERROR;
}
#endif
ssl->options.acceptState = CERT_SENT;
WOLFSSL_MSG("accept state CERT_SENT");
FALL_THROUGH;
case CERT_SENT :
#ifndef NO_CERTS
if (!ssl->options.resuming)
if ( (ssl->error = SendCertificateStatus(ssl)) != 0) {
#ifdef WOLFSSL_CHECK_ALERT_ON_ERR
ProcessReplyEx(ssl, 1); /* See if an alert was sent. */
#endif
WOLFSSL_ERROR(ssl->error);
return WOLFSSL_FATAL_ERROR;
}
#endif
ssl->options.acceptState = CERT_STATUS_SENT;
WOLFSSL_MSG("accept state CERT_STATUS_SENT");
FALL_THROUGH;
case CERT_STATUS_SENT :
#ifdef WOLFSSL_TLS13
if (ssl->options.tls1_3) {
return wolfSSL_accept_TLSv13(ssl);
}
#endif
if (!ssl->options.resuming)
if ( (ssl->error = SendServerKeyExchange(ssl)) != 0) {
#ifdef WOLFSSL_CHECK_ALERT_ON_ERR
ProcessReplyEx(ssl, 1); /* See if an alert was sent. */
#endif
WOLFSSL_ERROR(ssl->error);
return WOLFSSL_FATAL_ERROR;
}
ssl->options.acceptState = KEY_EXCHANGE_SENT;
WOLFSSL_MSG("accept state KEY_EXCHANGE_SENT");
FALL_THROUGH;
case KEY_EXCHANGE_SENT :
#ifndef NO_CERTS
if (!ssl->options.resuming) {
if (ssl->options.verifyPeer) {
if ( (ssl->error = SendCertificateRequest(ssl)) != 0) {
#ifdef WOLFSSL_CHECK_ALERT_ON_ERR
/* See if an alert was sent. */
ProcessReplyEx(ssl, 1);
#endif
WOLFSSL_ERROR(ssl->error);
return WOLFSSL_FATAL_ERROR;
}
}
else {
/* SERVER: Peer auth good if not verifying client. */
ssl->options.peerAuthGood = 1;
}
}
#endif
ssl->options.acceptState = CERT_REQ_SENT;
WOLFSSL_MSG("accept state CERT_REQ_SENT");
FALL_THROUGH;
case CERT_REQ_SENT :
if (!ssl->options.resuming)
if ( (ssl->error = SendServerHelloDone(ssl)) != 0) {
#ifdef WOLFSSL_CHECK_ALERT_ON_ERR
ProcessReplyEx(ssl, 1); /* See if an alert was sent. */
#endif
WOLFSSL_ERROR(ssl->error);
return WOLFSSL_FATAL_ERROR;
}
ssl->options.acceptState = SERVER_HELLO_DONE;
WOLFSSL_MSG("accept state SERVER_HELLO_DONE");
FALL_THROUGH;
case SERVER_HELLO_DONE :
if (!ssl->options.resuming) {
while (ssl->options.clientState < CLIENT_FINISHED_COMPLETE)
if ( (ssl->error = ProcessReply(ssl)) < 0) {
WOLFSSL_ERROR(ssl->error);
return WOLFSSL_FATAL_ERROR;
}
}
ssl->options.acceptState = ACCEPT_SECOND_REPLY_DONE;
WOLFSSL_MSG("accept state ACCEPT_SECOND_REPLY_DONE");
FALL_THROUGH;
case ACCEPT_SECOND_REPLY_DONE :
#ifndef NO_CERTS
/* SERVER: When not resuming and verifying peer but no certificate
* received and not failing when not received then peer auth good.
*/
if (!ssl->options.resuming && ssl->options.verifyPeer &&
!ssl->options.havePeerCert && !ssl->options.failNoCert) {
ssl->options.peerAuthGood = 1;
}
#endif /* !NO_CERTS */
#ifdef WOLFSSL_NO_CLIENT_AUTH
if (!ssl->options.resuming) {
ssl->options.peerAuthGood = 1;
}
#endif
#ifdef HAVE_SESSION_TICKET
if (ssl->options.createTicket && !ssl->options.noTicketTls12) {
if ( (ssl->error = SendTicket(ssl)) != 0) {
#ifdef WOLFSSL_CHECK_ALERT_ON_ERR
ProcessReplyEx(ssl, 1); /* See if an alert was sent. */
#endif
WOLFSSL_MSG("Thought we need ticket but failed");
WOLFSSL_ERROR(ssl->error);
return WOLFSSL_FATAL_ERROR;
}
}
#endif /* HAVE_SESSION_TICKET */
ssl->options.acceptState = TICKET_SENT;
WOLFSSL_MSG("accept state TICKET_SENT");
FALL_THROUGH;
case TICKET_SENT:
/* SERVER: Fail-safe for CLient Authentication. */
if (!ssl->options.peerAuthGood) {
WOLFSSL_MSG("Client authentication did not happen");
return WOLFSSL_FATAL_ERROR;
}
if ( (ssl->error = SendChangeCipher(ssl)) != 0) {
#ifdef WOLFSSL_CHECK_ALERT_ON_ERR
ProcessReplyEx(ssl, 1); /* See if an alert was sent. */
#endif
WOLFSSL_ERROR(ssl->error);
return WOLFSSL_FATAL_ERROR;
}
ssl->options.acceptState = CHANGE_CIPHER_SENT;
WOLFSSL_MSG("accept state CHANGE_CIPHER_SENT");
FALL_THROUGH;
case CHANGE_CIPHER_SENT :
if ( (ssl->error = SendFinished(ssl)) != 0) {
#ifdef WOLFSSL_CHECK_ALERT_ON_ERR
ProcessReplyEx(ssl, 1); /* See if an alert was sent. */
#endif
WOLFSSL_ERROR(ssl->error);
return WOLFSSL_FATAL_ERROR;
}
ssl->options.acceptState = ACCEPT_FINISHED_DONE;
WOLFSSL_MSG("accept state ACCEPT_FINISHED_DONE");
FALL_THROUGH;
case ACCEPT_FINISHED_DONE :
if (ssl->options.resuming) {
while (ssl->options.clientState < CLIENT_FINISHED_COMPLETE) {
if ( (ssl->error = ProcessReply(ssl)) < 0) {
WOLFSSL_ERROR(ssl->error);
return WOLFSSL_FATAL_ERROR;
}
}
}
ssl->options.acceptState = ACCEPT_THIRD_REPLY_DONE;
WOLFSSL_MSG("accept state ACCEPT_THIRD_REPLY_DONE");
FALL_THROUGH;
case ACCEPT_THIRD_REPLY_DONE :
#ifndef NO_HANDSHAKE_DONE_CB
if (ssl->hsDoneCb) {
int cbret = ssl->hsDoneCb(ssl, ssl->hsDoneCtx);
if (cbret < 0) {
ssl->error = cbret;
WOLFSSL_MSG("HandShake Done Cb don't continue error");
return WOLFSSL_FATAL_ERROR;
}
}
#endif /* NO_HANDSHAKE_DONE_CB */
if (!ssl->options.dtls) {
if (!ssl->options.keepResources) {
FreeHandshakeResources(ssl);
}
}
#ifdef WOLFSSL_DTLS
else {
ssl->options.dtlsHsRetain = 1;
}
#endif /* WOLFSSL_DTLS */
#if defined(WOLFSSL_ASYNC_CRYPT) && defined(HAVE_SECURE_RENEGOTIATION)
/* This may be necessary in async so that we don't try to
* renegotiate again */
if (ssl->secure_renegotiation &&
ssl->secure_renegotiation->startScr) {
ssl->secure_renegotiation->startScr = 0;
}
#endif /* WOLFSSL_ASYNC_CRYPT && HAVE_SECURE_RENEGOTIATION */
#if defined(WOLFSSL_ASYNC_IO) && !defined(WOLFSSL_ASYNC_CRYPT)
/* Free the remaining async context if not using it for crypto */
FreeAsyncCtx(ssl, 1);
#endif
#if defined(WOLFSSL_SESSION_EXPORT) && defined(WOLFSSL_DTLS)
if (ssl->dtls_export) {
if ((ssl->error = wolfSSL_send_session(ssl)) != 0) {
WOLFSSL_MSG("Export DTLS session error");
WOLFSSL_ERROR(ssl->error);
return WOLFSSL_FATAL_ERROR;
}
}
#endif
ssl->error = 0; /* clear the error */
WOLFSSL_LEAVE("wolfSSL_accept", WOLFSSL_SUCCESS);
return WOLFSSL_SUCCESS;
default :
WOLFSSL_MSG("Unknown accept state ERROR");
return WOLFSSL_FATAL_ERROR;
}
#endif /* !WOLFSSL_NO_TLS12 */
}
#endif /* NO_WOLFSSL_SERVER */
#if defined(WOLFSSL_DTLS) && !defined(NO_WOLFSSL_SERVER)
int wolfDTLS_SetChGoodCb(WOLFSSL* ssl, ClientHelloGoodCb cb, void* user_ctx)
{
WOLFSSL_ENTER("wolfDTLS_SetChGoodCb");
if (ssl == NULL)
return BAD_FUNC_ARG;
ssl->chGoodCb = cb;
ssl->chGoodCtx = user_ctx;
return WOLFSSL_SUCCESS;
}
#endif
#ifndef NO_HANDSHAKE_DONE_CB
int wolfSSL_SetHsDoneCb(WOLFSSL* ssl, HandShakeDoneCb cb, void* user_ctx)
{
WOLFSSL_ENTER("wolfSSL_SetHsDoneCb");
if (ssl == NULL)
return BAD_FUNC_ARG;
ssl->hsDoneCb = cb;
ssl->hsDoneCtx = user_ctx;
return WOLFSSL_SUCCESS;
}
#endif /* NO_HANDSHAKE_DONE_CB */
WOLFSSL_ABI
int wolfSSL_Cleanup(void)
{
int ret = WOLFSSL_SUCCESS; /* Only the first error will be returned */
int release = 0;
#if !defined(NO_SESSION_CACHE)
int i;
int j;
#endif
WOLFSSL_ENTER("wolfSSL_Cleanup");
#ifndef WOLFSSL_MUTEX_INITIALIZER
if (inits_count_mutex_valid == 1) {
#endif
if (wc_LockMutex(&inits_count_mutex) != 0) {
WOLFSSL_MSG("Bad Lock Mutex count");
return BAD_MUTEX_E;
}
#ifndef WOLFSSL_MUTEX_INITIALIZER
}
#endif
if (initRefCount > 0) {
--initRefCount;
if (initRefCount == 0)
release = 1;
}
#ifndef WOLFSSL_MUTEX_INITIALIZER
if (inits_count_mutex_valid == 1) {
#endif
wc_UnLockMutex(&inits_count_mutex);
#ifndef WOLFSSL_MUTEX_INITIALIZER
}
#endif
if (!release)
return ret;
#ifdef OPENSSL_EXTRA
wolfSSL_BN_free_one();
#endif
#ifndef NO_SESSION_CACHE
#ifdef ENABLE_SESSION_CACHE_ROW_LOCK
for (i = 0; i < SESSION_ROWS; ++i) {
if ((SessionCache[i].lock_valid == 1) &&
(wc_FreeRwLock(&SessionCache[i].row_lock) != 0)) {
if (ret == WOLFSSL_SUCCESS)
ret = BAD_MUTEX_E;
}
SessionCache[i].lock_valid = 0;
}
#else
if ((session_lock_valid == 1) && (wc_FreeRwLock(&session_lock) != 0)) {
if (ret == WOLFSSL_SUCCESS)
ret = BAD_MUTEX_E;
}
session_lock_valid = 0;
#endif
for (i = 0; i < SESSION_ROWS; i++) {
for (j = 0; j < SESSIONS_PER_ROW; j++) {
#ifdef SESSION_CACHE_DYNAMIC_MEM
if (SessionCache[i].Sessions[j]) {
EvictSessionFromCache(SessionCache[i].Sessions[j]);
XFREE(SessionCache[i].Sessions[j], SessionCache[i].heap,
DYNAMIC_TYPE_SESSION);
SessionCache[i].Sessions[j] = NULL;
}
#else
EvictSessionFromCache(&SessionCache[i].Sessions[j]);
#endif
}
}
#ifndef NO_CLIENT_CACHE
#ifndef WOLFSSL_MUTEX_INITIALIZER
if ((clisession_mutex_valid == 1) &&
(wc_FreeMutex(&clisession_mutex) != 0)) {
if (ret == WOLFSSL_SUCCESS)
ret = BAD_MUTEX_E;
}
clisession_mutex_valid = 0;
#endif
#endif
#endif /* !NO_SESSION_CACHE */
#ifndef WOLFSSL_MUTEX_INITIALIZER
if ((inits_count_mutex_valid == 1) &&
(wc_FreeMutex(&inits_count_mutex) != 0)) {
if (ret == WOLFSSL_SUCCESS)
ret = BAD_MUTEX_E;
}
inits_count_mutex_valid = 0;
#endif
#ifdef OPENSSL_EXTRA
wolfSSL_RAND_Cleanup();
#endif
if (wolfCrypt_Cleanup() != 0) {
WOLFSSL_MSG("Error with wolfCrypt_Cleanup call");
if (ret == WOLFSSL_SUCCESS)
ret = WC_CLEANUP_E;
}
#if FIPS_VERSION_GE(5,1)
if (wolfCrypt_SetPrivateKeyReadEnable_fips(0, WC_KEYTYPE_ALL) < 0) {
if (ret == WOLFSSL_SUCCESS)
ret = WC_CLEANUP_E;
}
#endif
#ifdef HAVE_GLOBAL_RNG
#ifndef WOLFSSL_MUTEX_INITIALIZER
if ((globalRNGMutex_valid == 1) && (wc_FreeMutex(&globalRNGMutex) != 0)) {
if (ret == WOLFSSL_SUCCESS)
ret = BAD_MUTEX_E;
}
globalRNGMutex_valid = 0;
#endif /* !WOLFSSL_MUTEX_INITIALIZER */
#if defined(OPENSSL_EXTRA) && defined(HAVE_HASHDRBG)
wolfSSL_FIPS_drbg_free(gDrbgDefCtx);
gDrbgDefCtx = NULL;
#endif
#endif
#if defined(HAVE_EX_DATA) && \
(defined(OPENSSL_ALL) || defined(WOLFSSL_NGINX) || \
defined(WOLFSSL_HAPROXY) || defined(OPENSSL_EXTRA) || \
defined(HAVE_LIGHTY)) || defined(HAVE_EX_DATA) || \
defined(WOLFSSL_WPAS_SMALL)
crypto_ex_cb_free(crypto_ex_cb_ctx_session);
crypto_ex_cb_ctx_session = NULL;
#endif
#ifdef WOLFSSL_MEM_FAIL_COUNT
wc_MemFailCount_Free();
#endif
return ret;
}
/* call before SSL_connect, if verifying will add name check to
date check and signature check */
WOLFSSL_ABI
int wolfSSL_check_domain_name(WOLFSSL* ssl, const char* dn)
{
WOLFSSL_ENTER("wolfSSL_check_domain_name");
if (ssl == NULL || dn == NULL) {
WOLFSSL_MSG("Bad function argument: NULL");
return WOLFSSL_FAILURE;
}
if (ssl->buffers.domainName.buffer)
XFREE(ssl->buffers.domainName.buffer, ssl->heap, DYNAMIC_TYPE_DOMAIN);
ssl->buffers.domainName.length = (word32)XSTRLEN(dn);
ssl->buffers.domainName.buffer = (byte*)XMALLOC(
ssl->buffers.domainName.length + 1, ssl->heap, DYNAMIC_TYPE_DOMAIN);
if (ssl->buffers.domainName.buffer) {
unsigned char* domainName = ssl->buffers.domainName.buffer;
XMEMCPY(domainName, dn, ssl->buffers.domainName.length);
domainName[ssl->buffers.domainName.length] = '\0';
return WOLFSSL_SUCCESS;
}
else {
ssl->error = MEMORY_ERROR;
return WOLFSSL_FAILURE;
}
}
/* turn on wolfSSL zlib compression
returns WOLFSSL_SUCCESS for success, else error (not built in)
*/
int wolfSSL_set_compression(WOLFSSL* ssl)
{
WOLFSSL_ENTER("wolfSSL_set_compression");
(void)ssl;
#ifdef HAVE_LIBZ
ssl->options.usingCompression = 1;
return WOLFSSL_SUCCESS;
#else
return NOT_COMPILED_IN;
#endif
}
#ifndef USE_WINDOWS_API
#ifndef NO_WRITEV
/* simulate writev semantics, doesn't actually do block at a time though
because of SSL_write behavior and because front adds may be small */
int wolfSSL_writev(WOLFSSL* ssl, const struct iovec* iov, int iovcnt)
{
#ifdef WOLFSSL_SMALL_STACK
byte staticBuffer[1]; /* force heap usage */
#else
byte staticBuffer[FILE_BUFFER_SIZE];
#endif
byte* myBuffer = staticBuffer;
int dynamic = 0;
int sending = 0;
int idx = 0;
int i;
int ret;
WOLFSSL_ENTER("wolfSSL_writev");
for (i = 0; i < iovcnt; i++)
sending += (int)iov[i].iov_len;
if (sending > (int)sizeof(staticBuffer)) {
myBuffer = (byte*)XMALLOC(sending, ssl->heap,
DYNAMIC_TYPE_WRITEV);
if (!myBuffer)
return MEMORY_ERROR;
dynamic = 1;
}
for (i = 0; i < iovcnt; i++) {
XMEMCPY(&myBuffer[idx], iov[i].iov_base, iov[i].iov_len);
idx += (int)iov[i].iov_len;
}
/* myBuffer may not be initialized fully, but the span up to the
* sending length will be.
*/
PRAGMA_GCC_DIAG_PUSH
PRAGMA_GCC("GCC diagnostic ignored \"-Wmaybe-uninitialized\"")
ret = wolfSSL_write(ssl, myBuffer, sending);
PRAGMA_GCC_DIAG_POP
if (dynamic)
XFREE(myBuffer, ssl->heap, DYNAMIC_TYPE_WRITEV);
return ret;
}
#endif
#endif
#ifdef WOLFSSL_CALLBACKS
typedef struct itimerval Itimerval;
/* don't keep calling simple functions while setting up timer and signals
if no inlining these are the next best */
#define AddTimes(a, b, c) \
do { \
(c).tv_sec = (a).tv_sec + (b).tv_sec; \
(c).tv_usec = (a).tv_usec + (b).tv_usec;\
if ((c).tv_usec >= 1000000) { \
(c).tv_sec++; \
(c).tv_usec -= 1000000; \
} \
} while (0)
#define SubtractTimes(a, b, c) \
do { \
(c).tv_sec = (a).tv_sec - (b).tv_sec; \
(c).tv_usec = (a).tv_usec - (b).tv_usec;\
if ((c).tv_usec < 0) { \
(c).tv_sec--; \
(c).tv_usec += 1000000; \
} \
} while (0)
#define CmpTimes(a, b, cmp) \
(((a).tv_sec == (b).tv_sec) ? \
((a).tv_usec cmp (b).tv_usec) : \
((a).tv_sec cmp (b).tv_sec)) \
/* do nothing handler */
static void myHandler(int signo)
{
(void)signo;
return;
}
static int wolfSSL_ex_wrapper(WOLFSSL* ssl, HandShakeCallBack hsCb,
TimeoutCallBack toCb, WOLFSSL_TIMEVAL timeout)
{
int ret = WOLFSSL_FATAL_ERROR;
int oldTimerOn = 0; /* was timer already on */
WOLFSSL_TIMEVAL startTime;
WOLFSSL_TIMEVAL endTime;
WOLFSSL_TIMEVAL totalTime;
Itimerval myTimeout;
Itimerval oldTimeout; /* if old timer adjust from total time to reset */
struct sigaction act, oact;
#define ERR_OUT(x) { ssl->hsInfoOn = 0; ssl->toInfoOn = 0; return x; }
if (hsCb) {
ssl->hsInfoOn = 1;
InitHandShakeInfo(&ssl->handShakeInfo, ssl);
}
if (toCb) {
ssl->toInfoOn = 1;
InitTimeoutInfo(&ssl->timeoutInfo);
if (gettimeofday(&startTime, 0) < 0)
ERR_OUT(GETTIME_ERROR);
/* use setitimer to simulate getitimer, init 0 myTimeout */
myTimeout.it_interval.tv_sec = 0;
myTimeout.it_interval.tv_usec = 0;
myTimeout.it_value.tv_sec = 0;
myTimeout.it_value.tv_usec = 0;
if (setitimer(ITIMER_REAL, &myTimeout, &oldTimeout) < 0)
ERR_OUT(SETITIMER_ERROR);
if (oldTimeout.it_value.tv_sec || oldTimeout.it_value.tv_usec) {
oldTimerOn = 1;
/* is old timer going to expire before ours */
if (CmpTimes(oldTimeout.it_value, timeout, <)) {
timeout.tv_sec = oldTimeout.it_value.tv_sec;
timeout.tv_usec = oldTimeout.it_value.tv_usec;
}
}
myTimeout.it_value.tv_sec = timeout.tv_sec;
myTimeout.it_value.tv_usec = timeout.tv_usec;
/* set up signal handler, don't restart socket send/recv */
act.sa_handler = myHandler;
sigemptyset(&act.sa_mask);
act.sa_flags = 0;
#ifdef SA_INTERRUPT
act.sa_flags |= SA_INTERRUPT;
#endif
if (sigaction(SIGALRM, &act, &oact) < 0)
ERR_OUT(SIGACT_ERROR);
if (setitimer(ITIMER_REAL, &myTimeout, 0) < 0)
ERR_OUT(SETITIMER_ERROR);
}
/* do main work */
#ifndef NO_WOLFSSL_CLIENT
if (ssl->options.side == WOLFSSL_CLIENT_END)
ret = wolfSSL_connect(ssl);
#endif
#ifndef NO_WOLFSSL_SERVER
if (ssl->options.side == WOLFSSL_SERVER_END)
ret = wolfSSL_accept(ssl);
#endif
/* do callbacks */
if (toCb) {
if (oldTimerOn) {
if (gettimeofday(&endTime, 0) < 0)
ERR_OUT(SYSLIB_FAILED_E);
SubtractTimes(endTime, startTime, totalTime);
/* adjust old timer for elapsed time */
if (CmpTimes(totalTime, oldTimeout.it_value, <))
SubtractTimes(oldTimeout.it_value, totalTime,
oldTimeout.it_value);
else {
/* reset value to interval, may be off */
oldTimeout.it_value.tv_sec = oldTimeout.it_interval.tv_sec;
oldTimeout.it_value.tv_usec =oldTimeout.it_interval.tv_usec;
}
/* keep iter the same whether there or not */
}
/* restore old handler */
if (sigaction(SIGALRM, &oact, 0) < 0)
ret = SIGACT_ERROR; /* more pressing error, stomp */
else
/* use old settings which may turn off (expired or not there) */
if (setitimer(ITIMER_REAL, &oldTimeout, 0) < 0)
ret = SETITIMER_ERROR;
/* if we had a timeout call callback */
if (ssl->timeoutInfo.timeoutName[0]) {
ssl->timeoutInfo.timeoutValue.tv_sec = timeout.tv_sec;
ssl->timeoutInfo.timeoutValue.tv_usec = timeout.tv_usec;
(toCb)(&ssl->timeoutInfo);
}
ssl->toInfoOn = 0;
}
/* clean up buffers allocated by AddPacketInfo */
FreeTimeoutInfo(&ssl->timeoutInfo, ssl->heap);
if (hsCb) {
FinishHandShakeInfo(&ssl->handShakeInfo);
(hsCb)(&ssl->handShakeInfo);
ssl->hsInfoOn = 0;
}
return ret;
}
#ifndef NO_WOLFSSL_CLIENT
int wolfSSL_connect_ex(WOLFSSL* ssl, HandShakeCallBack hsCb,
TimeoutCallBack toCb, WOLFSSL_TIMEVAL timeout)
{
WOLFSSL_ENTER("wolfSSL_connect_ex");
return wolfSSL_ex_wrapper(ssl, hsCb, toCb, timeout);
}
#endif
#ifndef NO_WOLFSSL_SERVER
int wolfSSL_accept_ex(WOLFSSL* ssl, HandShakeCallBack hsCb,
TimeoutCallBack toCb, WOLFSSL_TIMEVAL timeout)
{
WOLFSSL_ENTER("wolfSSL_accept_ex");
return wolfSSL_ex_wrapper(ssl, hsCb, toCb, timeout);
}
#endif
#endif /* WOLFSSL_CALLBACKS */
#ifndef NO_PSK
void wolfSSL_CTX_set_psk_client_callback(WOLFSSL_CTX* ctx,
wc_psk_client_callback cb)
{
WOLFSSL_ENTER("wolfSSL_CTX_set_psk_client_callback");
if (ctx == NULL)
return;
ctx->havePSK = 1;
ctx->client_psk_cb = cb;
}
void wolfSSL_set_psk_client_callback(WOLFSSL* ssl,wc_psk_client_callback cb)
{
byte haveRSA = 1;
int keySz = 0;
WOLFSSL_ENTER("wolfSSL_set_psk_client_callback");
if (ssl == NULL)
return;
ssl->options.havePSK = 1;
ssl->options.client_psk_cb = cb;
#ifdef NO_RSA
haveRSA = 0;
#endif
#ifndef NO_CERTS
keySz = ssl->buffers.keySz;
#endif
if (AllocateSuites(ssl) != 0)
return;
InitSuites(ssl->suites, ssl->version, keySz, haveRSA, TRUE,
ssl->options.haveDH, ssl->options.haveECDSAsig,
ssl->options.haveECC, TRUE, ssl->options.haveStaticECC,
ssl->options.haveFalconSig, ssl->options.haveDilithiumSig,
ssl->options.useAnon, TRUE, ssl->options.side);
}
#ifdef OPENSSL_EXTRA
/**
* set call back function for psk session use
* @param ssl a pointer to WOLFSSL structure
* @param cb a function pointer to wc_psk_use_session_cb
* @return none
*/
void wolfSSL_set_psk_use_session_callback(WOLFSSL* ssl,
wc_psk_use_session_cb_func cb)
{
WOLFSSL_ENTER("wolfSSL_set_psk_use_session_callback");
if (ssl != NULL) {
ssl->options.havePSK = 1;
ssl->options.session_psk_cb = cb;
}
WOLFSSL_LEAVE("wolfSSL_set_psk_use_session_callback", WOLFSSL_SUCCESS);
}
#endif
void wolfSSL_CTX_set_psk_server_callback(WOLFSSL_CTX* ctx,
wc_psk_server_callback cb)
{
WOLFSSL_ENTER("wolfSSL_CTX_set_psk_server_callback");
if (ctx == NULL)
return;
ctx->havePSK = 1;
ctx->server_psk_cb = cb;
}
void wolfSSL_set_psk_server_callback(WOLFSSL* ssl,wc_psk_server_callback cb)
{
byte haveRSA = 1;
int keySz = 0;
WOLFSSL_ENTER("wolfSSL_set_psk_server_callback");
if (ssl == NULL)
return;
ssl->options.havePSK = 1;
ssl->options.server_psk_cb = cb;
#ifdef NO_RSA
haveRSA = 0;
#endif
#ifndef NO_CERTS
keySz = ssl->buffers.keySz;
#endif
if (AllocateSuites(ssl) != 0)
return;
InitSuites(ssl->suites, ssl->version, keySz, haveRSA, TRUE,
ssl->options.haveDH, ssl->options.haveECDSAsig,
ssl->options.haveECC, TRUE, ssl->options.haveStaticECC,
ssl->options.haveFalconSig, ssl->options.haveDilithiumSig,
ssl->options.useAnon, TRUE, ssl->options.side);
}
const char* wolfSSL_get_psk_identity_hint(const WOLFSSL* ssl)
{
WOLFSSL_ENTER("wolfSSL_get_psk_identity_hint");
if (ssl == NULL || ssl->arrays == NULL)
return NULL;
return ssl->arrays->server_hint;
}
const char* wolfSSL_get_psk_identity(const WOLFSSL* ssl)
{
WOLFSSL_ENTER("wolfSSL_get_psk_identity");
if (ssl == NULL || ssl->arrays == NULL)
return NULL;
return ssl->arrays->client_identity;
}
int wolfSSL_CTX_use_psk_identity_hint(WOLFSSL_CTX* ctx, const char* hint)
{
WOLFSSL_ENTER("wolfSSL_CTX_use_psk_identity_hint");
if (hint == 0)
ctx->server_hint[0] = '\0';
else {
/* Qt does not call CTX_set_*_psk_callbacks where havePSK is set */
#ifdef WOLFSSL_QT
ctx->havePSK=1;
#endif
XSTRNCPY(ctx->server_hint, hint, MAX_PSK_ID_LEN);
ctx->server_hint[MAX_PSK_ID_LEN] = '\0'; /* null term */
}
return WOLFSSL_SUCCESS;
}
int wolfSSL_use_psk_identity_hint(WOLFSSL* ssl, const char* hint)
{
WOLFSSL_ENTER("wolfSSL_use_psk_identity_hint");
if (ssl == NULL || ssl->arrays == NULL)
return WOLFSSL_FAILURE;
if (hint == 0)
ssl->arrays->server_hint[0] = 0;
else {
XSTRNCPY(ssl->arrays->server_hint, hint,
sizeof(ssl->arrays->server_hint)-1);
ssl->arrays->server_hint[sizeof(ssl->arrays->server_hint)-1] = '\0';
}
return WOLFSSL_SUCCESS;
}
void* wolfSSL_get_psk_callback_ctx(WOLFSSL* ssl)
{
return ssl ? ssl->options.psk_ctx : NULL;
}
void* wolfSSL_CTX_get_psk_callback_ctx(WOLFSSL_CTX* ctx)
{
return ctx ? ctx->psk_ctx : NULL;
}
int wolfSSL_set_psk_callback_ctx(WOLFSSL* ssl, void* psk_ctx)
{
if (ssl == NULL)
return WOLFSSL_FAILURE;
ssl->options.psk_ctx = psk_ctx;
return WOLFSSL_SUCCESS;
}
int wolfSSL_CTX_set_psk_callback_ctx(WOLFSSL_CTX* ctx, void* psk_ctx)
{
if (ctx == NULL)
return WOLFSSL_FAILURE;
ctx->psk_ctx = psk_ctx;
return WOLFSSL_SUCCESS;
}
#endif /* NO_PSK */
#ifdef HAVE_ANON
int wolfSSL_CTX_allow_anon_cipher(WOLFSSL_CTX* ctx)
{
WOLFSSL_ENTER("wolfSSL_CTX_allow_anon_cipher");
if (ctx == NULL)
return WOLFSSL_FAILURE;
ctx->useAnon = 1;
return WOLFSSL_SUCCESS;
}
#endif /* HAVE_ANON */
#ifndef NO_CERTS
/* unload any certs or keys that SSL owns, leave CTX as is
WOLFSSL_SUCCESS on ok */
int wolfSSL_UnloadCertsKeys(WOLFSSL* ssl)
{
if (ssl == NULL) {
WOLFSSL_MSG("Null function arg");
return BAD_FUNC_ARG;
}
if (ssl->buffers.weOwnCert && !ssl->keepCert) {
WOLFSSL_MSG("Unloading cert");
FreeDer(&ssl->buffers.certificate);
#ifdef KEEP_OUR_CERT
wolfSSL_X509_free(ssl->ourCert);
ssl->ourCert = NULL;
#endif
ssl->buffers.weOwnCert = 0;
}
if (ssl->buffers.weOwnCertChain) {
WOLFSSL_MSG("Unloading cert chain");
FreeDer(&ssl->buffers.certChain);
ssl->buffers.weOwnCertChain = 0;
}
if (ssl->buffers.weOwnKey) {
WOLFSSL_MSG("Unloading key");
ForceZero(ssl->buffers.key->buffer, ssl->buffers.key->length);
FreeDer(&ssl->buffers.key);
#ifdef WOLFSSL_BLIND_PRIVATE_KEY
FreeDer(&ssl->buffers.keyMask);
#endif
ssl->buffers.weOwnKey = 0;
}
#ifdef WOLFSSL_DUAL_ALG_CERTS
if (ssl->buffers.weOwnAltKey) {
WOLFSSL_MSG("Unloading alt key");
ForceZero(ssl->buffers.altKey->buffer, ssl->buffers.altKey->length);
FreeDer(&ssl->buffers.altKey);
#ifdef WOLFSSL_BLIND_PRIVATE_KEY
FreeDer(&ssl->buffers.altKeyMask);
#endif
ssl->buffers.weOwnAltKey = 0;
}
#endif /* WOLFSSL_DUAL_ALG_CERTS */
return WOLFSSL_SUCCESS;
}
int wolfSSL_CTX_UnloadCAs(WOLFSSL_CTX* ctx)
{
WOLFSSL_ENTER("wolfSSL_CTX_UnloadCAs");
if (ctx == NULL)
return BAD_FUNC_ARG;
return wolfSSL_CertManagerUnloadCAs(ctx->cm);
}
int wolfSSL_CTX_UnloadIntermediateCerts(WOLFSSL_CTX* ctx)
{
WOLFSSL_ENTER("wolfSSL_CTX_UnloadIntermediateCerts");
if (ctx == NULL)
return BAD_FUNC_ARG;
if (ctx->ref.count > 1) {
WOLFSSL_MSG("ctx object must have a ref count of 1 before "
"unloading intermediate certs");
return BAD_STATE_E;
}
return wolfSSL_CertManagerUnloadIntermediateCerts(ctx->cm);
}
#ifdef WOLFSSL_TRUST_PEER_CERT
int wolfSSL_CTX_Unload_trust_peers(WOLFSSL_CTX* ctx)
{
WOLFSSL_ENTER("wolfSSL_CTX_Unload_trust_peers");
if (ctx == NULL)
return BAD_FUNC_ARG;
return wolfSSL_CertManagerUnload_trust_peers(ctx->cm);
}
#ifdef WOLFSSL_LOCAL_X509_STORE
int wolfSSL_Unload_trust_peers(WOLFSSL* ssl)
{
WOLFSSL_ENTER("wolfSSL_CTX_Unload_trust_peers");
if (ssl == NULL)
return BAD_FUNC_ARG;
SSL_CM_WARNING(ssl);
return wolfSSL_CertManagerUnload_trust_peers(SSL_CM(ssl));
}
#endif /* WOLFSSL_LOCAL_X509_STORE */
#endif /* WOLFSSL_TRUST_PEER_CERT */
/* old NO_FILESYSTEM end */
#endif /* !NO_CERTS */
#ifdef OPENSSL_EXTRA
int wolfSSL_add_all_algorithms(void)
{
WOLFSSL_ENTER("wolfSSL_add_all_algorithms");
if (initRefCount != 0 || wolfSSL_Init() == WOLFSSL_SUCCESS)
return WOLFSSL_SUCCESS;
else
return WOLFSSL_FATAL_ERROR;
}
int wolfSSL_OpenSSL_add_all_algorithms_noconf(void)
{
WOLFSSL_ENTER("wolfSSL_OpenSSL_add_all_algorithms_noconf");
if (wolfSSL_add_all_algorithms() == WOLFSSL_FATAL_ERROR)
return WOLFSSL_FATAL_ERROR;
return WOLFSSL_SUCCESS;
}
int wolfSSL_OpenSSL_add_all_algorithms_conf(void)
{
WOLFSSL_ENTER("wolfSSL_OpenSSL_add_all_algorithms_conf");
/* This function is currently the same as
wolfSSL_OpenSSL_add_all_algorithms_noconf since we do not employ
the use of a wolfssl.cnf type configuration file and is only used for
OpenSSL compatibility. */
if (wolfSSL_add_all_algorithms() == WOLFSSL_FATAL_ERROR) {
return WOLFSSL_FATAL_ERROR;
}
return WOLFSSL_SUCCESS;
}
#endif
#if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL) || \
defined(WOLFSSL_EXTRA) || defined(WOLFSSL_WPAS_SMALL)
void wolfSSL_CTX_set_quiet_shutdown(WOLFSSL_CTX* ctx, int mode)
{
WOLFSSL_ENTER("wolfSSL_CTX_set_quiet_shutdown");
if (mode)
ctx->quietShutdown = 1;
}
void wolfSSL_set_quiet_shutdown(WOLFSSL* ssl, int mode)
{
WOLFSSL_ENTER("wolfSSL_set_quiet_shutdown");
if (mode)
ssl->options.quietShutdown = 1;
}
#endif /* OPENSSL_EXTRA || OPENSSL_EXTRA_X509_SMALL ||
WOLFSSL_EXTRA || WOLFSSL_WPAS_SMALL */
#ifdef OPENSSL_EXTRA
#ifndef NO_BIO
void wolfSSL_set_bio(WOLFSSL* ssl, WOLFSSL_BIO* rd, WOLFSSL_BIO* wr)
{
WOLFSSL_ENTER("wolfSSL_set_bio");
if (ssl == NULL) {
WOLFSSL_MSG("Bad argument, ssl was NULL");
return;
}
/* free any existing WOLFSSL_BIOs in use but don't free those in
* a chain */
if (ssl->biord != NULL) {
if (ssl->biord != ssl->biowr) {
if (ssl->biowr != NULL && ssl->biowr->prev != NULL)
wolfSSL_BIO_free(ssl->biowr);
ssl->biowr = NULL;
}
if (ssl->biord->prev != NULL)
wolfSSL_BIO_free(ssl->biord);
ssl->biord = NULL;
}
/* set flag obviously */
if (rd && !(rd->flags & WOLFSSL_BIO_FLAG_READ))
rd->flags |= WOLFSSL_BIO_FLAG_READ;
if (wr && !(wr->flags & WOLFSSL_BIO_FLAG_WRITE))
wr->flags |= WOLFSSL_BIO_FLAG_WRITE;
ssl->biord = rd;
ssl->biowr = wr;
/* set SSL to use BIO callbacks instead */
if (((ssl->cbioFlag & WOLFSSL_CBIO_RECV) == 0)) {
ssl->CBIORecv = BioReceive;
}
if (((ssl->cbioFlag & WOLFSSL_CBIO_SEND) == 0)) {
ssl->CBIOSend = BioSend;
}
/* User programs should always retry reading from these BIOs */
if (rd) {
/* User writes to rd */
BIO_set_retry_write(rd);
}
if (wr) {
/* User reads from wr */
BIO_set_retry_read(wr);
}
}
#endif /* !NO_BIO */
#endif /* OPENSSL_EXTRA */
#if defined(OPENSSL_EXTRA) || defined(WOLFSSL_EXTRA)
void wolfSSL_CTX_set_client_CA_list(WOLFSSL_CTX* ctx,
WOLF_STACK_OF(WOLFSSL_X509_NAME)* names)
{
WOLFSSL_ENTER("wolfSSL_CTX_set_client_CA_list");
if (ctx != NULL) {
wolfSSL_sk_X509_NAME_pop_free(ctx->client_ca_names, NULL);
ctx->client_ca_names = names;
}
}
void wolfSSL_set_client_CA_list(WOLFSSL* ssl,
WOLF_STACK_OF(WOLFSSL_X509_NAME)* names)
{
WOLFSSL_ENTER("wolfSSL_set_client_CA_list");
if (ssl != NULL) {
if (ssl->client_ca_names != ssl->ctx->client_ca_names)
wolfSSL_sk_X509_NAME_pop_free(ssl->client_ca_names, NULL);
ssl->client_ca_names = names;
}
}
#ifdef OPENSSL_EXTRA
/* registers client cert callback, called during handshake if server
requests client auth but user has not loaded client cert/key */
void wolfSSL_CTX_set_client_cert_cb(WOLFSSL_CTX *ctx, client_cert_cb cb)
{
WOLFSSL_ENTER("wolfSSL_CTX_set_client_cert_cb");
if (ctx != NULL) {
ctx->CBClientCert = cb;
}
}
void wolfSSL_CTX_set_cert_cb(WOLFSSL_CTX* ctx,
CertSetupCallback cb, void *arg)
{
WOLFSSL_ENTER("wolfSSL_CTX_set_cert_cb");
if (ctx == NULL)
return;
ctx->certSetupCb = cb;
ctx->certSetupCbArg = arg;
}
int wolfSSL_get_client_suites_sigalgs(const WOLFSSL* ssl,
const byte** suites, word16* suiteSz,
const byte** hashSigAlgo, word16* hashSigAlgoSz)
{
WOLFSSL_ENTER("wolfSSL_get_client_suites_sigalgs");
if (suites != NULL)
*suites = NULL;
if (suiteSz != NULL)
*suiteSz = 0;
if (hashSigAlgo != NULL)
*hashSigAlgo = NULL;
if (hashSigAlgoSz != NULL)
*hashSigAlgoSz = 0;
if (ssl != NULL && ssl->clSuites != NULL) {
if (suites != NULL && suiteSz != NULL) {
*suites = ssl->clSuites->suites;
*suiteSz = ssl->clSuites->suiteSz;
}
if (hashSigAlgo != NULL && hashSigAlgoSz != NULL) {
*hashSigAlgo = ssl->clSuites->hashSigAlgo;
*hashSigAlgoSz = ssl->clSuites->hashSigAlgoSz;
}
return WOLFSSL_SUCCESS;
}
return WOLFSSL_FAILURE;
}
WOLFSSL_CIPHERSUITE_INFO wolfSSL_get_ciphersuite_info(byte first,
byte second)
{
WOLFSSL_CIPHERSUITE_INFO info;
info.rsaAuth = (byte)(CipherRequires(first, second, REQUIRES_RSA) ||
CipherRequires(first, second, REQUIRES_RSA_SIG));
info.eccAuth = (byte)(CipherRequires(first, second, REQUIRES_ECC) ||
/* Static ECC ciphers may require RSA for authentication */
(CipherRequires(first, second, REQUIRES_ECC_STATIC) &&
!CipherRequires(first, second, REQUIRES_RSA_SIG)));
info.eccStatic =
(byte)CipherRequires(first, second, REQUIRES_ECC_STATIC);
info.psk = (byte)CipherRequires(first, second, REQUIRES_PSK);
return info;
}
/**
* @param first First byte of the hash and signature algorithm
* @param second Second byte of the hash and signature algorithm
* @param hashAlgo The enum wc_HashType of the MAC algorithm
* @param sigAlgo The enum Key_Sum of the authentication algorithm
*/
int wolfSSL_get_sigalg_info(byte first, byte second,
int* hashAlgo, int* sigAlgo)
{
byte input[2];
byte hashType;
byte sigType;
if (hashAlgo == NULL || sigAlgo == NULL)
return BAD_FUNC_ARG;
input[0] = first;
input[1] = second;
DecodeSigAlg(input, &hashType, &sigType);
/* cast so that compiler reminds us of unimplemented values */
switch ((enum SignatureAlgorithm)sigType) {
case anonymous_sa_algo:
*sigAlgo = ANONk;
break;
case rsa_sa_algo:
*sigAlgo = RSAk;
break;
case dsa_sa_algo:
*sigAlgo = DSAk;
break;
case ecc_dsa_sa_algo:
*sigAlgo = ECDSAk;
break;
case rsa_pss_sa_algo:
*sigAlgo = RSAPSSk;
break;
case ed25519_sa_algo:
*sigAlgo = ED25519k;
break;
case rsa_pss_pss_algo:
*sigAlgo = RSAPSSk;
break;
case ed448_sa_algo:
*sigAlgo = ED448k;
break;
case falcon_level1_sa_algo:
*sigAlgo = FALCON_LEVEL1k;
break;
case falcon_level5_sa_algo:
*sigAlgo = FALCON_LEVEL5k;
break;
case dilithium_level2_sa_algo:
*sigAlgo = DILITHIUM_LEVEL2k;
break;
case dilithium_level3_sa_algo:
*sigAlgo = DILITHIUM_LEVEL3k;
break;
case dilithium_level5_sa_algo:
*sigAlgo = DILITHIUM_LEVEL5k;
break;
case sm2_sa_algo:
*sigAlgo = SM2k;
break;
case invalid_sa_algo:
default:
*hashAlgo = WC_HASH_TYPE_NONE;
*sigAlgo = 0;
return BAD_FUNC_ARG;
}
/* cast so that compiler reminds us of unimplemented values */
switch((enum wc_MACAlgorithm)hashType) {
case no_mac:
case rmd_mac: /* Don't have a RIPEMD type in wc_HashType */
*hashAlgo = WC_HASH_TYPE_NONE;
break;
case md5_mac:
*hashAlgo = WC_HASH_TYPE_MD5;
break;
case sha_mac:
*hashAlgo = WC_HASH_TYPE_SHA;
break;
case sha224_mac:
*hashAlgo = WC_HASH_TYPE_SHA224;
break;
case sha256_mac:
*hashAlgo = WC_HASH_TYPE_SHA256;
break;
case sha384_mac:
*hashAlgo = WC_HASH_TYPE_SHA384;
break;
case sha512_mac:
*hashAlgo = WC_HASH_TYPE_SHA512;
break;
case blake2b_mac:
*hashAlgo = WC_HASH_TYPE_BLAKE2B;
break;
case sm3_mac:
#ifdef WOLFSSL_SM3
*hashAlgo = WC_HASH_TYPE_SM3;
#else
*hashAlgo = WC_HASH_TYPE_NONE;
#endif
break;
default:
*hashAlgo = WC_HASH_TYPE_NONE;
*sigAlgo = 0;
return BAD_FUNC_ARG;
}
return 0;
}
/**
* Internal wrapper for calling certSetupCb
* @param ssl The SSL/TLS Object
* @return 0 on success
*/
int CertSetupCbWrapper(WOLFSSL* ssl)
{
int ret = 0;
if (ssl->ctx->certSetupCb != NULL) {
WOLFSSL_MSG("Calling user cert setup callback");
ret = ssl->ctx->certSetupCb(ssl, ssl->ctx->certSetupCbArg);
if (ret == 1) {
WOLFSSL_MSG("User cert callback returned success");
ret = 0;
}
else if (ret == 0) {
SendAlert(ssl, alert_fatal, internal_error);
ret = CLIENT_CERT_CB_ERROR;
}
else if (ret < 0) {
ret = WOLFSSL_ERROR_WANT_X509_LOOKUP;
}
else {
WOLFSSL_MSG("Unexpected user callback return");
ret = CLIENT_CERT_CB_ERROR;
}
}
return ret;
}
#endif /* OPENSSL_EXTRA */
#endif /* OPENSSL_EXTRA || WOLFSSL_EXTRA || HAVE_WEBSERVER */
#ifndef WOLFSSL_NO_CA_NAMES
WOLF_STACK_OF(WOLFSSL_X509_NAME)* wolfSSL_CTX_get_client_CA_list(
const WOLFSSL_CTX *ctx)
{
WOLFSSL_ENTER("wolfSSL_CTX_get_client_CA_list");
if (ctx == NULL) {
WOLFSSL_MSG("Bad argument passed to "
"wolfSSL_CTX_get_client_CA_list");
return NULL;
}
return ctx->client_ca_names;
}
/* returns the CA's set on server side or the CA's sent from server when
* on client side */
WOLF_STACK_OF(WOLFSSL_X509_NAME)* wolfSSL_get_client_CA_list(
const WOLFSSL* ssl)
{
WOLFSSL_ENTER("wolfSSL_get_client_CA_list");
if (ssl == NULL) {
WOLFSSL_MSG("Bad argument passed to wolfSSL_get_client_CA_list");
return NULL;
}
return SSL_CA_NAMES(ssl);
}
#if !defined(NO_CERTS)
int wolfSSL_CTX_add_client_CA(WOLFSSL_CTX* ctx, WOLFSSL_X509* x509)
{
WOLFSSL_X509_NAME *nameCopy = NULL;
WOLFSSL_ENTER("wolfSSL_CTX_add_client_CA");
if (ctx == NULL || x509 == NULL){
WOLFSSL_MSG("Bad argument");
return WOLFSSL_FAILURE;
}
if (ctx->client_ca_names == NULL) {
ctx->client_ca_names = wolfSSL_sk_X509_NAME_new(NULL);
if (ctx->client_ca_names == NULL) {
WOLFSSL_MSG("wolfSSL_sk_X509_NAME_new error");
return WOLFSSL_FAILURE;
}
}
nameCopy = wolfSSL_X509_NAME_dup(wolfSSL_X509_get_subject_name(x509));
if (nameCopy == NULL) {
WOLFSSL_MSG("wolfSSL_X509_NAME_dup error");
return WOLFSSL_FAILURE;
}
if (wolfSSL_sk_X509_NAME_push(ctx->client_ca_names, nameCopy) !=
WOLFSSL_SUCCESS) {
WOLFSSL_MSG("wolfSSL_sk_X509_NAME_push error");
wolfSSL_X509_NAME_free(nameCopy);
return WOLFSSL_FAILURE;
}
return WOLFSSL_SUCCESS;
}
#endif
#ifndef NO_BIO
#if !defined(NO_RSA) && !defined(NO_CERTS)
WOLF_STACK_OF(WOLFSSL_X509_NAME)* wolfSSL_load_client_CA_file(
const char* fname)
{
/* The webserver build is using this to load a CA into the server
* for client authentication as an option. Have this return NULL in
* that case. If OPENSSL_EXTRA is enabled, go ahead and include
* the function. */
#ifdef OPENSSL_EXTRA
WOLFSSL_STACK *list = NULL;
WOLFSSL_BIO* bio = NULL;
WOLFSSL_X509 *cert = NULL;
WOLFSSL_X509_NAME *nameCopy = NULL;
unsigned long err = WOLFSSL_FAILURE;
WOLFSSL_ENTER("wolfSSL_load_client_CA_file");
bio = wolfSSL_BIO_new_file(fname, "rb");
if (bio == NULL) {
WOLFSSL_MSG("wolfSSL_BIO_new_file error");
goto cleanup;
}
list = wolfSSL_sk_X509_NAME_new(NULL);
if (list == NULL) {
WOLFSSL_MSG("wolfSSL_sk_X509_NAME_new error");
goto cleanup;
}
/* Read each certificate in the chain out of the file. */
while (wolfSSL_PEM_read_bio_X509(bio, &cert, NULL, NULL) != NULL) {
/* Need a persistent copy of the subject name. */
nameCopy = wolfSSL_X509_NAME_dup(
wolfSSL_X509_get_subject_name(cert));
if (nameCopy == NULL) {
WOLFSSL_MSG("wolfSSL_X509_NAME_dup error");
goto cleanup;
}
/*
* Original cert will be freed so make sure not to try to access
* it in the future.
*/
nameCopy->x509 = NULL;
if (wolfSSL_sk_X509_NAME_push(list, nameCopy) !=
WOLFSSL_SUCCESS) {
WOLFSSL_MSG("wolfSSL_sk_X509_NAME_push error");
/* Do free in loop because nameCopy is now responsibility
* of list to free and adding jumps to cleanup after this
* might result in a double free. */
wolfSSL_X509_NAME_free(nameCopy);
goto cleanup;
}
wolfSSL_X509_free(cert);
cert = NULL;
}
CLEAR_ASN_NO_PEM_HEADER_ERROR(err);
err = WOLFSSL_SUCCESS;
cleanup:
wolfSSL_X509_free(cert);
wolfSSL_BIO_free(bio);
if (err != WOLFSSL_SUCCESS) {
/* We failed so return NULL */
wolfSSL_sk_X509_NAME_pop_free(list, NULL);
list = NULL;
}
return list;
#else
(void)fname;
return NULL;
#endif
}
#endif
#endif /* !NO_BIO */
#endif /* OPENSSL_EXTRA || WOLFSSL_EXTRA */
#ifdef OPENSSL_EXTRA
#if defined(WOLFCRYPT_HAVE_SRP) && !defined(NO_SHA256) \
&& !defined(WC_NO_RNG)
static const byte srp_N[] = {
0xEE, 0xAF, 0x0A, 0xB9, 0xAD, 0xB3, 0x8D, 0xD6, 0x9C, 0x33, 0xF8,
0x0A, 0xFA, 0x8F, 0xC5, 0xE8, 0x60, 0x72, 0x61, 0x87, 0x75, 0xFF,
0x3C, 0x0B, 0x9E, 0xA2, 0x31, 0x4C, 0x9C, 0x25, 0x65, 0x76, 0xD6,
0x74, 0xDF, 0x74, 0x96, 0xEA, 0x81, 0xD3, 0x38, 0x3B, 0x48, 0x13,
0xD6, 0x92, 0xC6, 0xE0, 0xE0, 0xD5, 0xD8, 0xE2, 0x50, 0xB9, 0x8B,
0xE4, 0x8E, 0x49, 0x5C, 0x1D, 0x60, 0x89, 0xDA, 0xD1, 0x5D, 0xC7,
0xD7, 0xB4, 0x61, 0x54, 0xD6, 0xB6, 0xCE, 0x8E, 0xF4, 0xAD, 0x69,
0xB1, 0x5D, 0x49, 0x82, 0x55, 0x9B, 0x29, 0x7B, 0xCF, 0x18, 0x85,
0xC5, 0x29, 0xF5, 0x66, 0x66, 0x0E, 0x57, 0xEC, 0x68, 0xED, 0xBC,
0x3C, 0x05, 0x72, 0x6C, 0xC0, 0x2F, 0xD4, 0xCB, 0xF4, 0x97, 0x6E,
0xAA, 0x9A, 0xFD, 0x51, 0x38, 0xFE, 0x83, 0x76, 0x43, 0x5B, 0x9F,
0xC6, 0x1D, 0x2F, 0xC0, 0xEB, 0x06, 0xE3
};
static const byte srp_g[] = {
0x02
};
int wolfSSL_CTX_set_srp_username(WOLFSSL_CTX* ctx, char* username)
{
int r = 0;
SrpSide srp_side = SRP_CLIENT_SIDE;
byte salt[SRP_SALT_SIZE];
WOLFSSL_ENTER("wolfSSL_CTX_set_srp_username");
if (ctx == NULL || ctx->srp == NULL || username==NULL)
return WOLFSSL_FAILURE;
if (ctx->method->side == WOLFSSL_SERVER_END){
srp_side = SRP_SERVER_SIDE;
} else if (ctx->method->side == WOLFSSL_CLIENT_END){
srp_side = SRP_CLIENT_SIDE;
} else {
WOLFSSL_MSG("Init CTX failed");
return WOLFSSL_FAILURE;
}
if (wc_SrpInit(ctx->srp, SRP_TYPE_SHA256, srp_side) < 0) {
WOLFSSL_MSG("Init SRP CTX failed");
XFREE(ctx->srp, ctx->heap, DYNAMIC_TYPE_SRP);
ctx->srp = NULL;
return WOLFSSL_FAILURE;
}
r = wc_SrpSetUsername(ctx->srp, (const byte*)username,
(word32)XSTRLEN(username));
if (r < 0) {
WOLFSSL_MSG("fail to set srp username.");
return WOLFSSL_FAILURE;
}
/* if wolfSSL_CTX_set_srp_password has already been called, */
/* execute wc_SrpSetPassword here */
if (ctx->srp_password != NULL) {
WC_RNG rng;
if (wc_InitRng(&rng) < 0){
WOLFSSL_MSG("wc_InitRng failed");
return WOLFSSL_FAILURE;
}
XMEMSET(salt, 0, sizeof(salt)/sizeof(salt[0]));
r = wc_RNG_GenerateBlock(&rng, salt, sizeof(salt)/sizeof(salt[0]));
wc_FreeRng(&rng);
if (r < 0) {
WOLFSSL_MSG("wc_RNG_GenerateBlock failed");
return WOLFSSL_FAILURE;
}
if (wc_SrpSetParams(ctx->srp, srp_N, sizeof(srp_N)/sizeof(srp_N[0]),
srp_g, sizeof(srp_g)/sizeof(srp_g[0]),
salt, sizeof(salt)/sizeof(salt[0])) < 0) {
WOLFSSL_MSG("wc_SrpSetParam failed");
return WOLFSSL_FAILURE;
}
r = wc_SrpSetPassword(ctx->srp,
(const byte*)ctx->srp_password,
(word32)XSTRLEN((char *)ctx->srp_password));
if (r < 0) {
WOLFSSL_MSG("fail to set srp password.");
return WOLFSSL_FAILURE;
}
XFREE(ctx->srp_password, ctx->heap, DYNAMIC_TYPE_SRP);
ctx->srp_password = NULL;
}
return WOLFSSL_SUCCESS;
}
int wolfSSL_CTX_set_srp_password(WOLFSSL_CTX* ctx, char* password)
{
int r;
byte salt[SRP_SALT_SIZE];
WOLFSSL_ENTER("wolfSSL_CTX_set_srp_password");
if (ctx == NULL || ctx->srp == NULL || password == NULL)
return WOLFSSL_FAILURE;
if (ctx->srp->user != NULL) {
WC_RNG rng;
if (wc_InitRng(&rng) < 0) {
WOLFSSL_MSG("wc_InitRng failed");
return WOLFSSL_FAILURE;
}
XMEMSET(salt, 0, sizeof(salt)/sizeof(salt[0]));
r = wc_RNG_GenerateBlock(&rng, salt, sizeof(salt)/sizeof(salt[0]));
wc_FreeRng(&rng);
if (r < 0) {
WOLFSSL_MSG("wc_RNG_GenerateBlock failed");
return WOLFSSL_FAILURE;
}
if (wc_SrpSetParams(ctx->srp, srp_N, sizeof(srp_N)/sizeof(srp_N[0]),
srp_g, sizeof(srp_g)/sizeof(srp_g[0]),
salt, sizeof(salt)/sizeof(salt[0])) < 0){
WOLFSSL_MSG("wc_SrpSetParam failed");
wc_FreeRng(&rng);
return WOLFSSL_FAILURE;
}
r = wc_SrpSetPassword(ctx->srp, (const byte*)password,
(word32)XSTRLEN(password));
if (r < 0) {
WOLFSSL_MSG("wc_SrpSetPassword failed.");
wc_FreeRng(&rng);
return WOLFSSL_FAILURE;
}
if (ctx->srp_password != NULL){
XFREE(ctx->srp_password,NULL,
DYNAMIC_TYPE_SRP);
ctx->srp_password = NULL;
}
wc_FreeRng(&rng);
} else {
/* save password for wolfSSL_set_srp_username */
if (ctx->srp_password != NULL)
XFREE(ctx->srp_password,ctx->heap, DYNAMIC_TYPE_SRP);
ctx->srp_password = (byte*)XMALLOC(XSTRLEN(password) + 1, ctx->heap,
DYNAMIC_TYPE_SRP);
if (ctx->srp_password == NULL){
WOLFSSL_MSG("memory allocation error");
return WOLFSSL_FAILURE;
}
XMEMCPY(ctx->srp_password, password, XSTRLEN(password) + 1);
}
return WOLFSSL_SUCCESS;
}
/**
* The modulus passed to wc_SrpSetParams in ssl.c is constant so check
* that the requested strength is less than or equal to the size of the
* static modulus size.
* @param ctx Not used
* @param strength Minimum number of bits for the modulus
* @return 1 if strength is less than or equal to static modulus
* 0 if strength is greater than static modulus
*/
int wolfSSL_CTX_set_srp_strength(WOLFSSL_CTX *ctx, int strength)
{
(void)ctx;
WOLFSSL_ENTER("wolfSSL_CTX_set_srp_strength");
if (strength > (int)(sizeof(srp_N)*8)) {
WOLFSSL_MSG("Bad Parameter");
return WOLFSSL_FAILURE;
}
return WOLFSSL_SUCCESS;
}
char* wolfSSL_get_srp_username(WOLFSSL *ssl)
{
if (ssl && ssl->ctx && ssl->ctx->srp) {
return (char*) ssl->ctx->srp->user;
}
return NULL;
}
#endif /* WOLFCRYPT_HAVE_SRP && !NO_SHA256 && !WC_NO_RNG */
/* keyblock size in bytes or -1 */
int wolfSSL_get_keyblock_size(WOLFSSL* ssl)
{
if (ssl == NULL)
return WOLFSSL_FATAL_ERROR;
return 2 * (ssl->specs.key_size + ssl->specs.iv_size +
ssl->specs.hash_size);
}
#endif /* OPENSSL_EXTRA */
#if defined(OPENSSL_EXTRA) || defined(WOLFSSL_EXTRA) || \
defined(WOLFSSL_WPAS_SMALL)
/* store keys returns WOLFSSL_SUCCESS or -1 on error */
int wolfSSL_get_keys(WOLFSSL* ssl, unsigned char** ms, unsigned int* msLen,
unsigned char** sr, unsigned int* srLen,
unsigned char** cr, unsigned int* crLen)
{
if (ssl == NULL || ssl->arrays == NULL)
return WOLFSSL_FATAL_ERROR;
*ms = ssl->arrays->masterSecret;
*sr = ssl->arrays->serverRandom;
*cr = ssl->arrays->clientRandom;
*msLen = SECRET_LEN;
*srLen = RAN_LEN;
*crLen = RAN_LEN;
return WOLFSSL_SUCCESS;
}
void wolfSSL_set_accept_state(WOLFSSL* ssl)
{
WOLFSSL_ENTER("wolfSSL_set_accept_state");
if (ssl == NULL)
return;
if (ssl->options.side == WOLFSSL_CLIENT_END) {
#ifdef HAVE_ECC
#ifdef WOLFSSL_SMALL_STACK
ecc_key* key = NULL;
#else
ecc_key key[1];
#endif
word32 idx = 0;
#ifdef WOLFSSL_SMALL_STACK
key = (ecc_key*)XMALLOC(sizeof(ecc_key), ssl->heap,
DYNAMIC_TYPE_ECC);
if (key == NULL) {
WOLFSSL_MSG("Error allocating memory for ecc_key");
}
#endif
if (ssl->options.haveStaticECC && ssl->buffers.key != NULL) {
if (wc_ecc_init(key) >= 0) {
if (wc_EccPrivateKeyDecode(ssl->buffers.key->buffer, &idx,
key, ssl->buffers.key->length) != 0) {
ssl->options.haveECDSAsig = 0;
ssl->options.haveECC = 0;
ssl->options.haveStaticECC = 0;
}
wc_ecc_free(key);
}
}
#ifdef WOLFSSL_SMALL_STACK
XFREE(key, ssl->heap, DYNAMIC_TYPE_ECC);
#endif
#endif
#ifndef NO_DH
if (!ssl->options.haveDH && ssl->ctx->haveDH) {
ssl->buffers.serverDH_P = ssl->ctx->serverDH_P;
ssl->buffers.serverDH_G = ssl->ctx->serverDH_G;
ssl->options.haveDH = 1;
}
#endif
}
if (InitSSL_Side(ssl, WOLFSSL_SERVER_END) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("Error initializing server side");
}
}
#endif /* OPENSSL_EXTRA || WOLFSSL_EXTRA || WOLFSSL_WPAS_SMALL */
/* return true if connection established */
int wolfSSL_is_init_finished(const WOLFSSL* ssl)
{
if (ssl == NULL)
return 0;
/* Can't use ssl->options.connectState and ssl->options.acceptState
* because they differ in meaning for TLS <=1.2 and 1.3 */
if (ssl->options.handShakeState == HANDSHAKE_DONE)
return 1;
return 0;
}
#ifdef OPENSSL_EXTRA
void wolfSSL_CTX_set_tmp_rsa_callback(WOLFSSL_CTX* ctx,
WOLFSSL_RSA*(*f)(WOLFSSL*, int, int))
{
/* wolfSSL verifies all these internally */
(void)ctx;
(void)f;
}
void wolfSSL_set_shutdown(WOLFSSL* ssl, int opt)
{
WOLFSSL_ENTER("wolfSSL_set_shutdown");
if(ssl==NULL) {
WOLFSSL_MSG("Shutdown not set. ssl is null");
return;
}
ssl->options.sentNotify = (opt&WOLFSSL_SENT_SHUTDOWN) > 0;
ssl->options.closeNotify = (opt&WOLFSSL_RECEIVED_SHUTDOWN) > 0;
}
#endif
long wolfSSL_CTX_get_options(WOLFSSL_CTX* ctx)
{
WOLFSSL_ENTER("wolfSSL_CTX_get_options");
WOLFSSL_MSG("wolfSSL options are set through API calls and macros");
if(ctx == NULL)
return BAD_FUNC_ARG;
return ctx->mask;
}
/* forward declaration */
static long wolf_set_options(long old_op, long op);
long wolfSSL_CTX_set_options(WOLFSSL_CTX* ctx, long opt)
{
WOLFSSL_ENTER("wolfSSL_CTX_set_options");
if (ctx == NULL)
return BAD_FUNC_ARG;
ctx->mask = wolf_set_options(ctx->mask, opt);
#if defined(HAVE_SESSION_TICKET) && (defined(OPENSSL_EXTRA) \
|| defined(HAVE_WEBSERVER) || defined(WOLFSSL_WPAS_SMALL))
if ((ctx->mask & WOLFSSL_OP_NO_TICKET) == WOLFSSL_OP_NO_TICKET) {
ctx->noTicketTls12 = 1;
}
/* This code is here for documentation purpose. You must not turn off
* session tickets with the WOLFSSL_OP_NO_TICKET option for TLSv1.3.
* Because we need to support both stateful and stateless tickets.
#ifdef WOLFSSL_TLS13
if ((ctx->mask & WOLFSSL_OP_NO_TICKET) == WOLFSSL_OP_NO_TICKET) {
ctx->noTicketTls13 = 1;
}
#endif
*/
#endif
return ctx->mask;
}
long wolfSSL_CTX_clear_options(WOLFSSL_CTX* ctx, long opt)
{
WOLFSSL_ENTER("wolfSSL_CTX_clear_options");
if(ctx == NULL)
return BAD_FUNC_ARG;
ctx->mask &= ~opt;
return ctx->mask;
}
#ifdef OPENSSL_EXTRA
int wolfSSL_set_rfd(WOLFSSL* ssl, int rfd)
{
WOLFSSL_ENTER("wolfSSL_set_rfd");
ssl->rfd = rfd; /* not used directly to allow IO callbacks */
ssl->IOCB_ReadCtx = &ssl->rfd;
#ifdef WOLFSSL_DTLS
if (ssl->options.dtls) {
ssl->IOCB_ReadCtx = &ssl->buffers.dtlsCtx;
ssl->buffers.dtlsCtx.rfd = rfd;
}
#endif
return WOLFSSL_SUCCESS;
}
int wolfSSL_set_wfd(WOLFSSL* ssl, int wfd)
{
WOLFSSL_ENTER("wolfSSL_set_wfd");
ssl->wfd = wfd; /* not used directly to allow IO callbacks */
ssl->IOCB_WriteCtx = &ssl->wfd;
return WOLFSSL_SUCCESS;
}
#endif /* OPENSSL_EXTRA */
#if !defined(NO_CERTS) && (defined(OPENSSL_EXTRA) || \
defined(WOLFSSL_WPAS_SMALL))
#if defined(SESSION_CERTS) && defined(OPENSSL_EXTRA)
/**
* Implemented in a similar way that ngx_ssl_ocsp_validate does it when
* SSL_get0_verified_chain is not available.
* @param ssl WOLFSSL object to extract certs from
* @return Stack of verified certs
*/
WOLF_STACK_OF(WOLFSSL_X509) *wolfSSL_get0_verified_chain(const WOLFSSL *ssl)
{
WOLF_STACK_OF(WOLFSSL_X509)* chain = NULL;
WOLFSSL_X509_STORE_CTX* storeCtx = NULL;
WOLFSSL_X509* peerCert = NULL;
WOLFSSL_ENTER("wolfSSL_get0_verified_chain");
if (ssl == NULL || ssl->ctx == NULL) {
WOLFSSL_MSG("Bad parameter");
return NULL;
}
peerCert = wolfSSL_get_peer_certificate((WOLFSSL*)ssl);
if (peerCert == NULL) {
WOLFSSL_MSG("wolfSSL_get_peer_certificate error");
return NULL;
}
/* wolfSSL_get_peer_certificate returns a copy. We want the internal
* member so that we don't have to worry about free'ing it. We call
* wolfSSL_get_peer_certificate so that we don't have to worry about
* setting up the internal pointer. */
wolfSSL_X509_free(peerCert);
peerCert = (WOLFSSL_X509*)&ssl->peerCert;
chain = wolfSSL_get_peer_cert_chain(ssl);
if (chain == NULL) {
WOLFSSL_MSG("wolfSSL_get_peer_cert_chain error");
return NULL;
}
storeCtx = wolfSSL_X509_STORE_CTX_new();
if (storeCtx == NULL) {
WOLFSSL_MSG("wolfSSL_X509_STORE_CTX_new error");
return NULL;
}
if (wolfSSL_X509_STORE_CTX_init(storeCtx, SSL_STORE(ssl),
peerCert, chain) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("wolfSSL_X509_STORE_CTX_init error");
wolfSSL_X509_STORE_CTX_free(storeCtx);
return NULL;
}
if (wolfSSL_X509_verify_cert(storeCtx) <= 0) {
WOLFSSL_MSG("wolfSSL_X509_verify_cert error");
wolfSSL_X509_STORE_CTX_free(storeCtx);
return NULL;
}
wolfSSL_X509_STORE_CTX_free(storeCtx);
return chain;
}
#endif /* SESSION_CERTS && OPENSSL_EXTRA */
WOLFSSL_X509_STORE* wolfSSL_CTX_get_cert_store(const WOLFSSL_CTX* ctx)
{
if (ctx == NULL) {
return NULL;
}
if (ctx->x509_store_pt != NULL)
return ctx->x509_store_pt;
return &((WOLFSSL_CTX*)ctx)->x509_store;
}
void wolfSSL_CTX_set_cert_store(WOLFSSL_CTX* ctx, WOLFSSL_X509_STORE* str)
{
WOLFSSL_ENTER("wolfSSL_CTX_set_cert_store");
if (ctx == NULL || str == NULL || ctx->cm == str->cm) {
return;
}
if (wolfSSL_CertManager_up_ref(str->cm) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("wolfSSL_CertManager_up_ref error");
return;
}
/* free cert manager if have one */
if (ctx->cm != NULL) {
wolfSSL_CertManagerFree(ctx->cm);
}
ctx->cm = str->cm;
ctx->x509_store.cm = str->cm;
/* free existing store if it exists */
wolfSSL_X509_STORE_free(ctx->x509_store_pt);
ctx->x509_store.cache = str->cache;
ctx->x509_store_pt = str; /* take ownership of store and free it
with CTX free */
ctx->cm->x509_store_p = ctx->x509_store_pt;/* CTX has ownership
and free it with CTX free*/
}
#ifdef OPENSSL_ALL
int wolfSSL_CTX_set1_verify_cert_store(WOLFSSL_CTX* ctx,
WOLFSSL_X509_STORE* str)
{
WOLFSSL_ENTER("wolfSSL_CTX_set1_verify_cert_store");
if (ctx == NULL || str == NULL) {
WOLFSSL_MSG("Bad parameter");
return WOLFSSL_FAILURE;
}
/* NO-OP when setting existing store */
if (str == CTX_STORE(ctx))
return WOLFSSL_SUCCESS;
if (wolfSSL_X509_STORE_up_ref(str) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("wolfSSL_X509_STORE_up_ref error");
return WOLFSSL_FAILURE;
}
/* free existing store if it exists */
wolfSSL_X509_STORE_free(ctx->x509_store_pt);
ctx->x509_store_pt = str; /* take ownership of store and free it
with CTX free */
return WOLFSSL_SUCCESS;
}
#endif
int wolfSSL_set0_verify_cert_store(WOLFSSL *ssl, WOLFSSL_X509_STORE* str)
{
WOLFSSL_ENTER("wolfSSL_set0_verify_cert_store");
if (ssl == NULL || str == NULL) {
WOLFSSL_MSG("Bad parameter");
return WOLFSSL_FAILURE;
}
/* NO-OP when setting existing store */
if (str == SSL_STORE(ssl))
return WOLFSSL_SUCCESS;
/* free existing store if it exists */
wolfSSL_X509_STORE_free(ssl->x509_store_pt);
if (str == ssl->ctx->x509_store_pt)
ssl->x509_store_pt = NULL; /* if setting ctx store then just revert
to using that instead */
else
ssl->x509_store_pt = str; /* take ownership of store and free it
with SSL free */
return WOLFSSL_SUCCESS;
}
int wolfSSL_set1_verify_cert_store(WOLFSSL *ssl, WOLFSSL_X509_STORE* str)
{
WOLFSSL_ENTER("wolfSSL_set1_verify_cert_store");
if (ssl == NULL || str == NULL) {
WOLFSSL_MSG("Bad parameter");
return WOLFSSL_FAILURE;
}
/* NO-OP when setting existing store */
if (str == SSL_STORE(ssl))
return WOLFSSL_SUCCESS;
if (wolfSSL_X509_STORE_up_ref(str) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("wolfSSL_X509_STORE_up_ref error");
return WOLFSSL_FAILURE;
}
/* free existing store if it exists */
wolfSSL_X509_STORE_free(ssl->x509_store_pt);
if (str == ssl->ctx->x509_store_pt)
ssl->x509_store_pt = NULL; /* if setting ctx store then just revert
to using that instead */
else
ssl->x509_store_pt = str; /* take ownership of store and free it
with SSL free */
return WOLFSSL_SUCCESS;
}
#endif /* !NO_CERTS && (OPENSSL_EXTRA || WOLFSSL_WPAS_SMALL) */
#ifdef WOLFSSL_ENCRYPTED_KEYS
void wolfSSL_CTX_set_default_passwd_cb_userdata(WOLFSSL_CTX* ctx,
void* userdata)
{
WOLFSSL_ENTER("wolfSSL_CTX_set_default_passwd_cb_userdata");
if (ctx)
ctx->passwd_userdata = userdata;
}
void wolfSSL_CTX_set_default_passwd_cb(WOLFSSL_CTX* ctx, wc_pem_password_cb*
cb)
{
WOLFSSL_ENTER("wolfSSL_CTX_set_default_passwd_cb");
if (ctx)
ctx->passwd_cb = cb;
}
wc_pem_password_cb* wolfSSL_CTX_get_default_passwd_cb(WOLFSSL_CTX *ctx)
{
if (ctx == NULL || ctx->passwd_cb == NULL) {
return NULL;
}
return ctx->passwd_cb;
}
void* wolfSSL_CTX_get_default_passwd_cb_userdata(WOLFSSL_CTX *ctx)
{
if (ctx == NULL) {
return NULL;
}
return ctx->passwd_userdata;
}
#endif /* WOLFSSL_ENCRYPTED_KEYS */
#if defined(OPENSSL_EXTRA) || defined(HAVE_WEBSERVER) || defined(HAVE_MEMCACHED)
unsigned long wolfSSL_ERR_get_error(void)
{
WOLFSSL_ENTER("wolfSSL_ERR_get_error");
#ifdef WOLFSSL_HAVE_ERROR_QUEUE
return wc_GetErrorNodeErr();
#else
return (unsigned long)(0 - NOT_COMPILED_IN);
#endif
}
#endif
#if defined(OPENSSL_EXTRA) || defined(HAVE_WEBSERVER)
int wolfSSL_num_locks(void)
{
return 0;
}
void wolfSSL_set_locking_callback(mutex_cb* f)
{
WOLFSSL_ENTER("wolfSSL_set_locking_callback");
if (wc_SetMutexCb(f) != 0) {
WOLFSSL_MSG("Error when setting mutex call back");
}
}
mutex_cb* wolfSSL_get_locking_callback(void)
{
WOLFSSL_ENTER("wolfSSL_get_locking_callback");
return wc_GetMutexCb();
}
typedef unsigned long (idCb)(void);
static idCb* inner_idCb = NULL;
unsigned long wolfSSL_thread_id(void)
{
if (inner_idCb != NULL) {
return inner_idCb();
}
else {
return 0;
}
}
void wolfSSL_set_id_callback(unsigned long (*f)(void))
{
inner_idCb = f;
}
#ifdef WOLFSSL_HAVE_ERROR_QUEUE
#ifndef NO_BIO
/* print out and clear all errors */
void wolfSSL_ERR_print_errors(WOLFSSL_BIO* bio)
{
const char* file = NULL;
const char* reason = NULL;
int ret;
int line = 0;
char buf[WOLFSSL_MAX_ERROR_SZ * 2];
WOLFSSL_ENTER("wolfSSL_ERR_print_errors");
if (bio == NULL) {
WOLFSSL_MSG("BIO passed in was null");
return;
}
do {
ret = wc_PeekErrorNode(0, &file, &reason, &line);
if (ret >= 0) {
const char* r = wolfSSL_ERR_reason_error_string(0 - ret);
if (XSNPRINTF(buf, sizeof(buf),
"error:%d:wolfSSL library:%s:%s:%d\n",
ret, r, file, line)
>= (int)sizeof(buf))
{
WOLFSSL_MSG("Buffer overrun formatting error message");
}
wolfSSL_BIO_write(bio, buf, (int)XSTRLEN(buf));
wc_RemoveErrorNode(0);
}
} while (ret >= 0);
if (wolfSSL_BIO_write(bio, "", 1) != 1) {
WOLFSSL_MSG("Issue writing final string terminator");
}
}
#endif /* !NO_BIO */
#endif /* WOLFSSL_HAVE_ERROR_QUEUE */
#endif /* OPENSSL_EXTRA || HAVE_WEBSERVER */
#if defined(OPENSSL_EXTRA) || defined(WOLFSSL_WPAS_SMALL) || \
defined(HAVE_SECRET_CALLBACK)
#if !defined(NO_WOLFSSL_SERVER)
/* Return the amount of random bytes copied over or error case.
* ssl : ssl struct after handshake
* out : buffer to hold random bytes
* outSz : either 0 (return max buffer sz) or size of out buffer
*/
size_t wolfSSL_get_server_random(const WOLFSSL *ssl, unsigned char *out,
size_t outSz)
{
size_t size;
/* return max size of buffer */
if (outSz == 0) {
return RAN_LEN;
}
if (ssl == NULL || out == NULL) {
return 0;
}
if (ssl->arrays == NULL) {
WOLFSSL_MSG("Arrays struct not saved after handshake");
return 0;
}
if (outSz > RAN_LEN) {
size = RAN_LEN;
}
else {
size = outSz;
}
XMEMCPY(out, ssl->arrays->serverRandom, size);
return size;
}
#endif /* !NO_WOLFSSL_SERVER */
#endif /* OPENSSL_EXTRA || WOLFSSL_WPAS_SMALL || HAVE_SECRET_CALLBACK */
#ifdef OPENSSL_EXTRA
#if !defined(NO_WOLFSSL_SERVER)
/* Used to get the peer ephemeral public key sent during the connection
* NOTE: currently wolfSSL_KeepHandshakeResources(WOLFSSL* ssl) must be called
* before the ephemeral key is stored.
* return WOLFSSL_SUCCESS on success */
int wolfSSL_get_peer_tmp_key(const WOLFSSL* ssl, WOLFSSL_EVP_PKEY** pkey)
{
WOLFSSL_EVP_PKEY* ret = NULL;
WOLFSSL_ENTER("wolfSSL_get_server_tmp_key");
if (ssl == NULL || pkey == NULL) {
WOLFSSL_MSG("Bad argument passed in");
return WOLFSSL_FAILURE;
}
#ifdef HAVE_ECC
if (ssl->peerEccKey != NULL) {
unsigned char* der;
const unsigned char* pt;
unsigned int derSz = 0;
int sz;
PRIVATE_KEY_UNLOCK();
if (wc_ecc_export_x963(ssl->peerEccKey, NULL, &derSz) !=
LENGTH_ONLY_E) {
WOLFSSL_MSG("get ecc der size failed");
PRIVATE_KEY_LOCK();
return WOLFSSL_FAILURE;
}
PRIVATE_KEY_LOCK();
derSz += MAX_SEQ_SZ + (2 * MAX_ALGO_SZ) + MAX_SEQ_SZ + TRAILING_ZERO;
der = (unsigned char*)XMALLOC(derSz, ssl->heap, DYNAMIC_TYPE_KEY);
if (der == NULL) {
WOLFSSL_MSG("Memory error");
return WOLFSSL_FAILURE;
}
if ((sz = wc_EccPublicKeyToDer(ssl->peerEccKey, der, derSz, 1)) <= 0) {
WOLFSSL_MSG("get ecc der failed");
XFREE(der, ssl->heap, DYNAMIC_TYPE_KEY);
return WOLFSSL_FAILURE;
}
pt = der; /* in case pointer gets advanced */
ret = wolfSSL_d2i_PUBKEY(NULL, &pt, sz);
XFREE(der, ssl->heap, DYNAMIC_TYPE_KEY);
}
#endif
*pkey = ret;
#ifdef HAVE_ECC
if (ret != NULL)
return WOLFSSL_SUCCESS;
else
#endif
return WOLFSSL_FAILURE;
}
#endif /* !NO_WOLFSSL_SERVER */
/**
* This function checks if any compiled in protocol versions are
* left enabled after calls to set_min or set_max API.
* @param major The SSL/TLS major version
* @return WOLFSSL_SUCCESS on valid settings and WOLFSSL_FAILURE when no
* protocol versions are left enabled.
*/
static int CheckSslMethodVersion(byte major, unsigned long options)
{
int sanityConfirmed = 0;
(void)options;
switch (major) {
#ifndef NO_TLS
case SSLv3_MAJOR:
#ifdef WOLFSSL_ALLOW_SSLV3
if (!(options & WOLFSSL_OP_NO_SSLv3)) {
sanityConfirmed = 1;
}
#endif
#ifndef NO_OLD_TLS
if (!(options & WOLFSSL_OP_NO_TLSv1))
sanityConfirmed = 1;
if (!(options & WOLFSSL_OP_NO_TLSv1_1))
sanityConfirmed = 1;
#endif
#ifndef WOLFSSL_NO_TLS12
if (!(options & WOLFSSL_OP_NO_TLSv1_2))
sanityConfirmed = 1;
#endif
#ifdef WOLFSSL_TLS13
if (!(options & WOLFSSL_OP_NO_TLSv1_3))
sanityConfirmed = 1;
#endif
break;
#endif
#ifdef WOLFSSL_DTLS
case DTLS_MAJOR:
sanityConfirmed = 1;
break;
#endif
default:
WOLFSSL_MSG("Invalid major version");
return WOLFSSL_FAILURE;
}
if (!sanityConfirmed) {
WOLFSSL_MSG("All compiled in TLS versions disabled");
return WOLFSSL_FAILURE;
}
return WOLFSSL_SUCCESS;
}
/**
* protoVerTbl holds (D)TLS version numbers in ascending order.
* Except DTLS versions, the newer version is located in the latter part of
* the table. This table is referred by wolfSSL_CTX_set_min_proto_version and
* wolfSSL_CTX_set_max_proto_version.
*/
static const int protoVerTbl[] = {
SSL3_VERSION,
TLS1_VERSION,
TLS1_1_VERSION,
TLS1_2_VERSION,
TLS1_3_VERSION,
DTLS1_VERSION,
DTLS1_2_VERSION
};
/* number of protocol versions listed in protoVerTbl */
#define NUMBER_OF_PROTOCOLS (sizeof(protoVerTbl)/sizeof(int))
/**
* wolfSSL_CTX_set_min_proto_version attempts to set the minimum protocol
* version to use by SSL objects created from this WOLFSSL_CTX.
* This API guarantees that a version of SSL/TLS lower than specified
* here will not be allowed. If the version specified is not compiled in
* then this API sets the lowest compiled in protocol version.
* This API also accept 0 as version, to set the minimum version automatically.
* CheckSslMethodVersion() is called to check if any remaining protocol versions
* are enabled.
* @param ctx The wolfSSL CONTEXT factory for spawning SSL/TLS objects
* @param version Any of the following
* * 0
* * SSL3_VERSION
* * TLS1_VERSION
* * TLS1_1_VERSION
* * TLS1_2_VERSION
* * TLS1_3_VERSION
* * DTLS1_VERSION
* * DTLS1_2_VERSION
* @return WOLFSSL_SUCCESS on valid settings and WOLFSSL_FAILURE when no
* protocol versions are left enabled.
*/
static int Set_CTX_min_proto_version(WOLFSSL_CTX* ctx, int version)
{
WOLFSSL_ENTER("wolfSSL_CTX_set_min_proto_version_ex");
if (ctx == NULL) {
return WOLFSSL_FAILURE;
}
switch (version) {
#ifndef NO_TLS
case SSL3_VERSION:
#if defined(WOLFSSL_ALLOW_SSLV3) && !defined(NO_OLD_TLS)
ctx->minDowngrade = SSLv3_MINOR;
break;
#endif
case TLS1_VERSION:
#ifdef WOLFSSL_ALLOW_TLSV10
ctx->minDowngrade = TLSv1_MINOR;
break;
#endif
case TLS1_1_VERSION:
#ifndef NO_OLD_TLS
ctx->minDowngrade = TLSv1_1_MINOR;
break;
#endif
case TLS1_2_VERSION:
#ifndef WOLFSSL_NO_TLS12
ctx->minDowngrade = TLSv1_2_MINOR;
break;
#endif
case TLS1_3_VERSION:
#ifdef WOLFSSL_TLS13
ctx->minDowngrade = TLSv1_3_MINOR;
break;
#endif
#endif
#ifdef WOLFSSL_DTLS
case DTLS1_VERSION:
#ifndef NO_OLD_TLS
ctx->minDowngrade = DTLS_MINOR;
break;
#endif
case DTLS1_2_VERSION:
ctx->minDowngrade = DTLSv1_2_MINOR;
break;
#endif
default:
WOLFSSL_MSG("Unrecognized protocol version or not compiled in");
return WOLFSSL_FAILURE;
}
switch (version) {
#ifndef NO_TLS
case TLS1_3_VERSION:
wolfSSL_CTX_set_options(ctx, WOLFSSL_OP_NO_TLSv1_2);
FALL_THROUGH;
case TLS1_2_VERSION:
wolfSSL_CTX_set_options(ctx, WOLFSSL_OP_NO_TLSv1_1);
FALL_THROUGH;
case TLS1_1_VERSION:
wolfSSL_CTX_set_options(ctx, WOLFSSL_OP_NO_TLSv1);
FALL_THROUGH;
case TLS1_VERSION:
wolfSSL_CTX_set_options(ctx, WOLFSSL_OP_NO_SSLv3);
break;
case SSL3_VERSION:
case SSL2_VERSION:
/* Nothing to do here */
break;
#endif
#ifdef WOLFSSL_DTLS
case DTLS1_VERSION:
case DTLS1_2_VERSION:
break;
#endif
default:
WOLFSSL_MSG("Unrecognized protocol version or not compiled in");
return WOLFSSL_FAILURE;
}
return CheckSslMethodVersion(ctx->method->version.major, ctx->mask);
}
/* Sets the min protocol version allowed with WOLFSSL_CTX
* returns WOLFSSL_SUCCESS on success */
int wolfSSL_CTX_set_min_proto_version(WOLFSSL_CTX* ctx, int version)
{
int ret;
int proto = 0;
int maxProto = 0;
int i;
int idx = 0;
WOLFSSL_ENTER("wolfSSL_CTX_set_min_proto_version");
if (ctx == NULL) {
return WOLFSSL_FAILURE;
}
if (version != 0) {
proto = version;
ctx->minProto = 0; /* turn min proto flag off */
for (i = 0; (unsigned)i < NUMBER_OF_PROTOCOLS; i++) {
if (protoVerTbl[i] == version) {
break;
}
}
}
else {
/* when 0 is specified as version, try to find out the min version */
for (i = 0; (unsigned)i < NUMBER_OF_PROTOCOLS; i++) {
ret = Set_CTX_min_proto_version(ctx, protoVerTbl[i]);
if (ret == WOLFSSL_SUCCESS) {
proto = protoVerTbl[i];
ctx->minProto = 1; /* turn min proto flag on */
break;
}
}
}
/* check case where max > min , if so then clear the NO_* options
* i is the index into the table for proto version used, see if the max
* proto version index found is smaller */
maxProto = wolfSSL_CTX_get_max_proto_version(ctx);
for (idx = 0; (unsigned)idx < NUMBER_OF_PROTOCOLS; idx++) {
if (protoVerTbl[idx] == maxProto) {
break;
}
}
if (idx < i) {
wolfSSL_CTX_clear_options(ctx, WOLFSSL_OP_NO_TLSv1 |
WOLFSSL_OP_NO_TLSv1_1 | WOLFSSL_OP_NO_TLSv1_2 |
WOLFSSL_OP_NO_TLSv1_3);
}
ret = Set_CTX_min_proto_version(ctx, proto);
return ret;
}
/**
* wolfSSL_CTX_set_max_proto_version attempts to set the maximum protocol
* version to use by SSL objects created from this WOLFSSL_CTX.
* This API guarantees that a version of SSL/TLS higher than specified
* here will not be allowed. If the version specified is not compiled in
* then this API sets the highest compiled in protocol version.
* This API also accept 0 as version, to set the maximum version automatically.
* CheckSslMethodVersion() is called to check if any remaining protocol versions
* are enabled.
* @param ctx The wolfSSL CONTEXT factory for spawning SSL/TLS objects
* @param ver Any of the following
* * 0
* * SSL3_VERSION
* * TLS1_VERSION
* * TLS1_1_VERSION
* * TLS1_2_VERSION
* * TLS1_3_VERSION
* * DTLS1_VERSION
* * DTLS1_2_VERSION
* @return WOLFSSL_SUCCESS on valid settings and WOLFSSL_FAILURE when no
* protocol versions are left enabled.
*/
static int Set_CTX_max_proto_version(WOLFSSL_CTX* ctx, int ver)
{
int ret;
WOLFSSL_ENTER("Set_CTX_max_proto_version");
if (!ctx || !ctx->method) {
WOLFSSL_MSG("Bad parameter");
return WOLFSSL_FAILURE;
}
switch (ver) {
case SSL2_VERSION:
WOLFSSL_MSG("wolfSSL does not support SSLv2");
return WOLFSSL_FAILURE;
#ifndef NO_TLS
case SSL3_VERSION:
wolfSSL_CTX_set_options(ctx, WOLFSSL_OP_NO_TLSv1);
FALL_THROUGH;
case TLS1_VERSION:
wolfSSL_CTX_set_options(ctx, WOLFSSL_OP_NO_TLSv1_1);
FALL_THROUGH;
case TLS1_1_VERSION:
wolfSSL_CTX_set_options(ctx, WOLFSSL_OP_NO_TLSv1_2);
FALL_THROUGH;
case TLS1_2_VERSION:
wolfSSL_CTX_set_options(ctx, WOLFSSL_OP_NO_TLSv1_3);
FALL_THROUGH;
case TLS1_3_VERSION:
/* Nothing to do here */
break;
#endif
#ifdef WOLFSSL_DTLS
case DTLS1_VERSION:
case DTLS1_2_VERSION:
break;
#endif
default:
WOLFSSL_MSG("Unrecognized protocol version or not compiled in");
return WOLFSSL_FAILURE;
}
ret = CheckSslMethodVersion(ctx->method->version.major, ctx->mask);
if (ret == WOLFSSL_SUCCESS) {
/* Check the major */
switch (ver) {
#ifndef NO_TLS
case SSL3_VERSION:
case TLS1_VERSION:
case TLS1_1_VERSION:
case TLS1_2_VERSION:
case TLS1_3_VERSION:
if (ctx->method->version.major != SSLv3_MAJOR) {
WOLFSSL_MSG("Mismatched protocol version");
return WOLFSSL_FAILURE;
}
break;
#endif
#ifdef WOLFSSL_DTLS
case DTLS1_VERSION:
case DTLS1_2_VERSION:
if (ctx->method->version.major != DTLS_MAJOR) {
WOLFSSL_MSG("Mismatched protocol version");
return WOLFSSL_FAILURE;
}
break;
#endif
}
/* Update the method */
switch (ver) {
case SSL2_VERSION:
WOLFSSL_MSG("wolfSSL does not support SSLv2");
return WOLFSSL_FAILURE;
#ifndef NO_TLS
case SSL3_VERSION:
ctx->method->version.minor = SSLv3_MINOR;
break;
case TLS1_VERSION:
ctx->method->version.minor = TLSv1_MINOR;
break;
case TLS1_1_VERSION:
ctx->method->version.minor = TLSv1_1_MINOR;
break;
case TLS1_2_VERSION:
ctx->method->version.minor = TLSv1_2_MINOR;
break;
case TLS1_3_VERSION:
ctx->method->version.minor = TLSv1_3_MINOR;
break;
#endif
#ifdef WOLFSSL_DTLS
case DTLS1_VERSION:
ctx->method->version.minor = DTLS_MINOR;
break;
case DTLS1_2_VERSION:
ctx->method->version.minor = DTLSv1_2_MINOR;
break;
#endif
default:
WOLFSSL_MSG("Unrecognized protocol version or not compiled in");
return WOLFSSL_FAILURE;
}
}
return ret;
}
/* Sets the max protocol version allowed with WOLFSSL_CTX
* returns WOLFSSL_SUCCESS on success */
int wolfSSL_CTX_set_max_proto_version(WOLFSSL_CTX* ctx, int version)
{
int i;
int ret = WOLFSSL_FAILURE;
int minProto;
WOLFSSL_ENTER("wolfSSL_CTX_set_max_proto_version");
if (ctx == NULL) {
return ret;
}
/* clear out flags and reset min protocol version */
minProto = wolfSSL_CTX_get_min_proto_version(ctx);
wolfSSL_CTX_clear_options(ctx,
WOLFSSL_OP_NO_TLSv1 | WOLFSSL_OP_NO_TLSv1_1 |
WOLFSSL_OP_NO_TLSv1_2 | WOLFSSL_OP_NO_TLSv1_3);
wolfSSL_CTX_set_min_proto_version(ctx, minProto);
if (version != 0) {
ctx->maxProto = 0; /* turn max proto flag off */
return Set_CTX_max_proto_version(ctx, version);
}
/* when 0 is specified as version, try to find out the min version from
* the bottom to top of the protoverTbl.
*/
for (i = NUMBER_OF_PROTOCOLS -1; i >= 0; i--) {
ret = Set_CTX_max_proto_version(ctx, protoVerTbl[i]);
if (ret == WOLFSSL_SUCCESS) {
ctx->maxProto = 1; /* turn max proto flag on */
break;
}
}
return ret;
}
static int Set_SSL_min_proto_version(WOLFSSL* ssl, int ver)
{
WOLFSSL_ENTER("Set_SSL_min_proto_version");
if (ssl == NULL) {
return WOLFSSL_FAILURE;
}
switch (ver) {
#ifndef NO_TLS
case SSL3_VERSION:
#if defined(WOLFSSL_ALLOW_SSLV3) && !defined(NO_OLD_TLS)
ssl->options.minDowngrade = SSLv3_MINOR;
break;
#endif
case TLS1_VERSION:
#ifdef WOLFSSL_ALLOW_TLSV10
ssl->options.minDowngrade = TLSv1_MINOR;
break;
#endif
case TLS1_1_VERSION:
#ifndef NO_OLD_TLS
ssl->options.minDowngrade = TLSv1_1_MINOR;
break;
#endif
case TLS1_2_VERSION:
#ifndef WOLFSSL_NO_TLS12
ssl->options.minDowngrade = TLSv1_2_MINOR;
break;
#endif
case TLS1_3_VERSION:
#ifdef WOLFSSL_TLS13
ssl->options.minDowngrade = TLSv1_3_MINOR;
break;
#endif
#endif
#ifdef WOLFSSL_DTLS
case DTLS1_VERSION:
#ifndef NO_OLD_TLS
ssl->options.minDowngrade = DTLS_MINOR;
break;
#endif
case DTLS1_2_VERSION:
ssl->options.minDowngrade = DTLSv1_2_MINOR;
break;
#endif
default:
WOLFSSL_MSG("Unrecognized protocol version or not compiled in");
return WOLFSSL_FAILURE;
}
switch (ver) {
#ifndef NO_TLS
case TLS1_3_VERSION:
ssl->options.mask |= WOLFSSL_OP_NO_TLSv1_2;
FALL_THROUGH;
case TLS1_2_VERSION:
ssl->options.mask |= WOLFSSL_OP_NO_TLSv1_1;
FALL_THROUGH;
case TLS1_1_VERSION:
ssl->options.mask |= WOLFSSL_OP_NO_TLSv1;
FALL_THROUGH;
case TLS1_VERSION:
ssl->options.mask |= WOLFSSL_OP_NO_SSLv3;
break;
case SSL3_VERSION:
case SSL2_VERSION:
/* Nothing to do here */
break;
#endif
#ifdef WOLFSSL_DTLS
case DTLS1_VERSION:
case DTLS1_2_VERSION:
break;
#endif
default:
WOLFSSL_MSG("Unrecognized protocol version or not compiled in");
return WOLFSSL_FAILURE;
}
return CheckSslMethodVersion(ssl->version.major, ssl->options.mask);
}
int wolfSSL_set_min_proto_version(WOLFSSL* ssl, int version)
{
int i;
int ret = WOLFSSL_FAILURE;;
WOLFSSL_ENTER("wolfSSL_set_min_proto_version");
if (ssl == NULL) {
return WOLFSSL_FAILURE;
}
if (version != 0) {
return Set_SSL_min_proto_version(ssl, version);
}
/* when 0 is specified as version, try to find out the min version */
for (i= 0; (unsigned)i < NUMBER_OF_PROTOCOLS; i++) {
ret = Set_SSL_min_proto_version(ssl, protoVerTbl[i]);
if (ret == WOLFSSL_SUCCESS)
break;
}
return ret;
}
static int Set_SSL_max_proto_version(WOLFSSL* ssl, int ver)
{
WOLFSSL_ENTER("Set_SSL_max_proto_version");
if (!ssl) {
WOLFSSL_MSG("Bad parameter");
return WOLFSSL_FAILURE;
}
switch (ver) {
case SSL2_VERSION:
WOLFSSL_MSG("wolfSSL does not support SSLv2");
return WOLFSSL_FAILURE;
#ifndef NO_TLS
case SSL3_VERSION:
ssl->options.mask |= WOLFSSL_OP_NO_TLSv1;
FALL_THROUGH;
case TLS1_VERSION:
ssl->options.mask |= WOLFSSL_OP_NO_TLSv1_1;
FALL_THROUGH;
case TLS1_1_VERSION:
ssl->options.mask |= WOLFSSL_OP_NO_TLSv1_2;
FALL_THROUGH;
case TLS1_2_VERSION:
ssl->options.mask |= WOLFSSL_OP_NO_TLSv1_3;
FALL_THROUGH;
case TLS1_3_VERSION:
/* Nothing to do here */
break;
#endif
#ifdef WOLFSSL_DTLS
case DTLS1_VERSION:
case DTLS1_2_VERSION:
break;
#endif
default:
WOLFSSL_MSG("Unrecognized protocol version or not compiled in");
return WOLFSSL_FAILURE;
}
return CheckSslMethodVersion(ssl->version.major, ssl->options.mask);
}
int wolfSSL_set_max_proto_version(WOLFSSL* ssl, int version)
{
int i;
int ret = WOLFSSL_FAILURE;;
WOLFSSL_ENTER("wolfSSL_set_max_proto_version");
if (ssl == NULL) {
return WOLFSSL_FAILURE;
}
if (version != 0) {
return Set_SSL_max_proto_version(ssl, version);
}
/* when 0 is specified as version, try to find out the min version from
* the bottom to top of the protoverTbl.
*/
for (i = NUMBER_OF_PROTOCOLS -1; i >= 0; i--) {
ret = Set_SSL_max_proto_version(ssl, protoVerTbl[i]);
if (ret == WOLFSSL_SUCCESS)
break;
}
return ret;
}
static int GetMinProtoVersion(int minDowngrade)
{
int ret;
switch (minDowngrade) {
#ifndef NO_OLD_TLS
#ifdef WOLFSSL_ALLOW_SSLV3
case SSLv3_MINOR:
ret = SSL3_VERSION;
break;
#endif
#ifdef WOLFSSL_ALLOW_TLSV10
case TLSv1_MINOR:
ret = TLS1_VERSION;
break;
#endif
case TLSv1_1_MINOR:
ret = TLS1_1_VERSION;
break;
#endif
#ifndef WOLFSSL_NO_TLS12
case TLSv1_2_MINOR:
ret = TLS1_2_VERSION;
break;
#endif
#ifdef WOLFSSL_TLS13
case TLSv1_3_MINOR:
ret = TLS1_3_VERSION;
break;
#endif
default:
ret = 0;
break;
}
return ret;
}
int wolfSSL_CTX_get_min_proto_version(WOLFSSL_CTX* ctx)
{
int ret = 0;
WOLFSSL_ENTER("wolfSSL_CTX_get_min_proto_version");
if (ctx != NULL) {
if (ctx->minProto) {
ret = 0;
}
else {
ret = GetMinProtoVersion(ctx->minDowngrade);
}
}
else {
ret = GetMinProtoVersion(WOLFSSL_MIN_DOWNGRADE);
}
WOLFSSL_LEAVE("wolfSSL_CTX_get_min_proto_version", ret);
return ret;
}
/* returns the maximum allowed protocol version given the 'options' used
* returns WOLFSSL_FATAL_ERROR on no match */
static int GetMaxProtoVersion(long options)
{
#ifndef NO_TLS
#ifdef WOLFSSL_TLS13
if (!(options & WOLFSSL_OP_NO_TLSv1_3))
return TLS1_3_VERSION;
#endif
#ifndef WOLFSSL_NO_TLS12
if (!(options & WOLFSSL_OP_NO_TLSv1_2))
return TLS1_2_VERSION;
#endif
#ifndef NO_OLD_TLS
if (!(options & WOLFSSL_OP_NO_TLSv1_1))
return TLS1_1_VERSION;
#ifdef WOLFSSL_ALLOW_TLSV10
if (!(options & WOLFSSL_OP_NO_TLSv1))
return TLS1_VERSION;
#endif
#ifdef WOLFSSL_ALLOW_SSLV3
if (!(options & WOLFSSL_OP_NO_SSLv3))
return SSL3_VERSION;
#endif
#endif
#else
(void)options;
#endif /* NO_TLS */
return WOLFSSL_FATAL_ERROR;
}
/* returns the maximum protocol version for 'ctx' */
int wolfSSL_CTX_get_max_proto_version(WOLFSSL_CTX* ctx)
{
int ret = 0;
long options = 0; /* default to nothing set */
WOLFSSL_ENTER("wolfSSL_CTX_get_max_proto_version");
if (ctx != NULL) {
options = wolfSSL_CTX_get_options(ctx);
}
if ((ctx != NULL) && ctx->maxProto) {
ret = 0;
}
else {
ret = GetMaxProtoVersion(options);
}
WOLFSSL_LEAVE("wolfSSL_CTX_get_max_proto_version", ret);
if (ret == WOLFSSL_FATAL_ERROR) {
WOLFSSL_MSG("Error getting max proto version");
ret = 0; /* setting ret to 0 to match compat return */
}
return ret;
}
#endif /* OPENSSL_EXTRA */
#if defined(OPENSSL_EXTRA) || defined(WOLFSSL_WPAS_SMALL) || \
defined(HAVE_SECRET_CALLBACK)
#if !defined(NO_WOLFSSL_CLIENT)
/* Return the amount of random bytes copied over or error case.
* ssl : ssl struct after handshake
* out : buffer to hold random bytes
* outSz : either 0 (return max buffer sz) or size of out buffer
*/
size_t wolfSSL_get_client_random(const WOLFSSL* ssl, unsigned char* out,
size_t outSz)
{
size_t size;
/* return max size of buffer */
if (outSz == 0) {
return RAN_LEN;
}
if (ssl == NULL || out == NULL) {
return 0;
}
if (ssl->arrays == NULL) {
WOLFSSL_MSG("Arrays struct not saved after handshake");
return 0;
}
if (outSz > RAN_LEN) {
size = RAN_LEN;
}
else {
size = outSz;
}
XMEMCPY(out, ssl->arrays->clientRandom, size);
return size;
}
#endif /* !NO_WOLFSSL_CLIENT */
#endif /* OPENSSL_EXTRA || WOLFSSL_WPAS_SMALL || HAVE_SECRET_CALLBACK */
#ifdef OPENSSL_EXTRA
unsigned long wolfSSLeay(void)
{
return SSLEAY_VERSION_NUMBER;
}
unsigned long wolfSSL_OpenSSL_version_num(void)
{
return OPENSSL_VERSION_NUMBER;
}
const char* wolfSSLeay_version(int type)
{
(void)type;
#if defined(OPENSSL_VERSION_NUMBER) && OPENSSL_VERSION_NUMBER >= 0x10100000L
return wolfSSL_OpenSSL_version(type);
#else
return wolfSSL_OpenSSL_version();
#endif
}
#endif /* OPENSSL_EXTRA */
#ifdef OPENSSL_EXTRA
void wolfSSL_ERR_free_strings(void)
{
/* handled internally */
}
void wolfSSL_cleanup_all_ex_data(void)
{
/* nothing to do here */
}
#endif /* OPENSSL_EXTRA */
#if defined(OPENSSL_EXTRA) || defined(DEBUG_WOLFSSL_VERBOSE) || \
defined(HAVE_CURL)
void wolfSSL_ERR_clear_error(void)
{
WOLFSSL_ENTER("wolfSSL_ERR_clear_error");
#if defined(OPENSSL_EXTRA) || defined(DEBUG_WOLFSSL_VERBOSE)
wc_ClearErrorNodes();
#endif
}
#endif
#if defined(OPENSSL_EXTRA) || defined(WOLFSSL_WPAS_SMALL)
int wolfSSL_clear(WOLFSSL* ssl)
{
WOLFSSL_ENTER("wolfSSL_clear");
if (ssl == NULL) {
return WOLFSSL_FAILURE;
}
if (!ssl->options.handShakeDone) {
/* Only reset the session if we didn't complete a handshake */
wolfSSL_FreeSession(ssl->ctx, ssl->session);
ssl->session = wolfSSL_NewSession(ssl->heap);
if (ssl->session == NULL) {
return WOLFSSL_FAILURE;
}
}
/* reset error */
ssl->error = 0;
/* reset option bits */
ssl->options.isClosed = 0;
ssl->options.connReset = 0;
ssl->options.sentNotify = 0;
ssl->options.closeNotify = 0;
ssl->options.sendVerify = 0;
ssl->options.serverState = NULL_STATE;
ssl->options.clientState = NULL_STATE;
ssl->options.connectState = CONNECT_BEGIN;
ssl->options.acceptState = ACCEPT_BEGIN;
ssl->options.handShakeState = NULL_STATE;
ssl->options.handShakeDone = 0;
ssl->options.processReply = 0; /* doProcessInit */
ssl->options.havePeerVerify = 0;
ssl->options.havePeerCert = 0;
ssl->options.peerAuthGood = 0;
ssl->options.tls1_3 = 0;
ssl->options.haveSessionId = 0;
ssl->options.tls = 0;
ssl->options.tls1_1 = 0;
#ifdef WOLFSSL_DTLS
ssl->options.dtlsStateful = 0;
#endif
#if defined(HAVE_SESSION_TICKET) || !defined(NO_PSK)
ssl->options.noPskDheKe = 0;
#ifdef HAVE_SUPPORTED_CURVES
ssl->options.onlyPskDheKe = 0;
#endif
#endif
#ifdef HAVE_SESSION_TICKET
#ifdef WOLFSSL_TLS13
ssl->options.ticketsSent = 0;
#endif
ssl->options.rejectTicket = 0;
#endif
#ifdef WOLFSSL_EARLY_DATA
ssl->earlyData = no_early_data;
ssl->earlyDataSz = 0;
#endif
#if defined(HAVE_TLS_EXTENSIONS) && !defined(NO_TLS)
TLSX_FreeAll(ssl->extensions, ssl->heap);
ssl->extensions = NULL;
#endif
if (ssl->keys.encryptionOn) {
ForceZero(ssl->buffers.inputBuffer.buffer -
ssl->buffers.inputBuffer.offset,
ssl->buffers.inputBuffer.bufferSize);
#ifdef WOLFSSL_CHECK_MEM_ZERO
wc_MemZero_Check(ssl->buffers.inputBuffer.buffer -
ssl->buffers.inputBuffer.offset,
ssl->buffers.inputBuffer.bufferSize);
#endif
}
ssl->keys.encryptionOn = 0;
XMEMSET(&ssl->msgsReceived, 0, sizeof(ssl->msgsReceived));
if (InitSSL_Suites(ssl) != WOLFSSL_SUCCESS)
return WOLFSSL_FAILURE;
if (InitHandshakeHashes(ssl) != 0)
return WOLFSSL_FAILURE;
#ifdef KEEP_PEER_CERT
FreeX509(&ssl->peerCert);
InitX509(&ssl->peerCert, 0, ssl->heap);
#endif
#ifdef WOLFSSL_QUIC
wolfSSL_quic_clear(ssl);
#endif
return WOLFSSL_SUCCESS;
}
#endif /* OPENSSL_EXTRA || WOLFSSL_WPAS_SMALL */
#if defined(OPENSSL_EXTRA) || defined(HAVE_WEBSERVER) || defined(HAVE_MEMCACHED)
long wolfSSL_CTX_set_mode(WOLFSSL_CTX* ctx, long mode)
{
/* WOLFSSL_MODE_ACCEPT_MOVING_WRITE_BUFFER is wolfSSL default mode */
WOLFSSL_ENTER("wolfSSL_CTX_set_mode");
switch(mode) {
case SSL_MODE_ENABLE_PARTIAL_WRITE:
ctx->partialWrite = 1;
break;
#if defined(OPENSSL_ALL) || defined(WOLFSSL_QT)
case SSL_MODE_RELEASE_BUFFERS:
WOLFSSL_MSG("SSL_MODE_RELEASE_BUFFERS not implemented.");
break;
#endif
case SSL_MODE_AUTO_RETRY:
ctx->autoRetry = 1;
break;
default:
WOLFSSL_MSG("Mode Not Implemented");
}
/* SSL_MODE_AUTO_RETRY
* Should not return -1 with renegotiation on read/write */
return mode;
}
long wolfSSL_CTX_clear_mode(WOLFSSL_CTX* ctx, long mode)
{
/* WOLFSSL_MODE_ACCEPT_MOVING_WRITE_BUFFER is wolfSSL default mode */
WOLFSSL_ENTER("wolfSSL_CTX_clear_mode");
switch(mode) {
case SSL_MODE_ENABLE_PARTIAL_WRITE:
ctx->partialWrite = 0;
break;
#if defined(OPENSSL_ALL) || defined(WOLFSSL_QT)
case SSL_MODE_RELEASE_BUFFERS:
WOLFSSL_MSG("SSL_MODE_RELEASE_BUFFERS not implemented.");
break;
#endif
case SSL_MODE_AUTO_RETRY:
ctx->autoRetry = 0;
break;
default:
WOLFSSL_MSG("Mode Not Implemented");
}
/* SSL_MODE_AUTO_RETRY
* Should not return -1 with renegotiation on read/write */
return 0;
}
#endif
#ifdef OPENSSL_EXTRA
#ifndef NO_WOLFSSL_STUB
long wolfSSL_SSL_get_mode(WOLFSSL* ssl)
{
/* TODO: */
(void)ssl;
WOLFSSL_STUB("SSL_get_mode");
return 0;
}
#endif
#ifndef NO_WOLFSSL_STUB
long wolfSSL_CTX_get_mode(WOLFSSL_CTX* ctx)
{
/* TODO: */
(void)ctx;
WOLFSSL_STUB("SSL_CTX_get_mode");
return 0;
}
#endif
#ifndef NO_WOLFSSL_STUB
void wolfSSL_CTX_set_default_read_ahead(WOLFSSL_CTX* ctx, int m)
{
/* TODO: maybe? */
(void)ctx;
(void)m;
WOLFSSL_STUB("SSL_CTX_set_default_read_ahead");
}
#endif
/* returns the unsigned error value and increments the pointer into the
* error queue.
*
* file pointer to file name
* line gets set to line number of error when not NULL
*/
unsigned long wolfSSL_ERR_get_error_line(const char** file, int* line)
{
#ifdef WOLFSSL_HAVE_ERROR_QUEUE
int ret = wc_PullErrorNode(file, NULL, line);
if (ret < 0) {
if (ret == WC_NO_ERR_TRACE(BAD_STATE_E))
return 0; /* no errors in queue */
WOLFSSL_MSG("Issue getting error node");
WOLFSSL_LEAVE("wolfSSL_ERR_get_error_line", ret);
ret = 0 - ret; /* return absolute value of error */
/* panic and try to clear out nodes */
wc_ClearErrorNodes();
}
return (unsigned long)ret;
#else
(void)file;
(void)line;
return 0;
#endif
}
#if (defined(DEBUG_WOLFSSL) || defined(OPENSSL_EXTRA)) && \
(!defined(_WIN32) && !defined(NO_ERROR_QUEUE))
static const char WOLFSSL_SYS_ACCEPT_T[] = "accept";
static const char WOLFSSL_SYS_BIND_T[] = "bind";
static const char WOLFSSL_SYS_CONNECT_T[] = "connect";
static const char WOLFSSL_SYS_FOPEN_T[] = "fopen";
static const char WOLFSSL_SYS_FREAD_T[] = "fread";
static const char WOLFSSL_SYS_GETADDRINFO_T[] = "getaddrinfo";
static const char WOLFSSL_SYS_GETSOCKOPT_T[] = "getsockopt";
static const char WOLFSSL_SYS_GETSOCKNAME_T[] = "getsockname";
static const char WOLFSSL_SYS_GETHOSTBYNAME_T[] = "gethostbyname";
static const char WOLFSSL_SYS_GETNAMEINFO_T[] = "getnameinfo";
static const char WOLFSSL_SYS_GETSERVBYNAME_T[] = "getservbyname";
static const char WOLFSSL_SYS_IOCTLSOCKET_T[] = "ioctlsocket";
static const char WOLFSSL_SYS_LISTEN_T[] = "listen";
static const char WOLFSSL_SYS_OPENDIR_T[] = "opendir";
static const char WOLFSSL_SYS_SETSOCKOPT_T[] = "setsockopt";
static const char WOLFSSL_SYS_SOCKET_T[] = "socket";
/* switch with int mapped to function name for compatibility */
static const char* wolfSSL_ERR_sys_func(int fun)
{
switch (fun) {
case WOLFSSL_SYS_ACCEPT: return WOLFSSL_SYS_ACCEPT_T;
case WOLFSSL_SYS_BIND: return WOLFSSL_SYS_BIND_T;
case WOLFSSL_SYS_CONNECT: return WOLFSSL_SYS_CONNECT_T;
case WOLFSSL_SYS_FOPEN: return WOLFSSL_SYS_FOPEN_T;
case WOLFSSL_SYS_FREAD: return WOLFSSL_SYS_FREAD_T;
case WOLFSSL_SYS_GETADDRINFO: return WOLFSSL_SYS_GETADDRINFO_T;
case WOLFSSL_SYS_GETSOCKOPT: return WOLFSSL_SYS_GETSOCKOPT_T;
case WOLFSSL_SYS_GETSOCKNAME: return WOLFSSL_SYS_GETSOCKNAME_T;
case WOLFSSL_SYS_GETHOSTBYNAME: return WOLFSSL_SYS_GETHOSTBYNAME_T;
case WOLFSSL_SYS_GETNAMEINFO: return WOLFSSL_SYS_GETNAMEINFO_T;
case WOLFSSL_SYS_GETSERVBYNAME: return WOLFSSL_SYS_GETSERVBYNAME_T;
case WOLFSSL_SYS_IOCTLSOCKET: return WOLFSSL_SYS_IOCTLSOCKET_T;
case WOLFSSL_SYS_LISTEN: return WOLFSSL_SYS_LISTEN_T;
case WOLFSSL_SYS_OPENDIR: return WOLFSSL_SYS_OPENDIR_T;
case WOLFSSL_SYS_SETSOCKOPT: return WOLFSSL_SYS_SETSOCKOPT_T;
case WOLFSSL_SYS_SOCKET: return WOLFSSL_SYS_SOCKET_T;
default:
return "NULL";
}
}
#endif /* DEBUG_WOLFSSL */
void wolfSSL_ERR_put_error(int lib, int fun, int err, const char* file,
int line)
{
WOLFSSL_ENTER("wolfSSL_ERR_put_error");
#if !defined(DEBUG_WOLFSSL) && !defined(OPENSSL_EXTRA)
(void)fun;
(void)err;
(void)file;
(void)line;
WOLFSSL_MSG("Not compiled in debug mode");
#elif defined(OPENSSL_EXTRA) && \
(defined(_WIN32) || defined(NO_ERROR_QUEUE))
(void)fun;
(void)file;
(void)line;
WOLFSSL_ERROR(err);
#else
WOLFSSL_ERROR_LINE(err, wolfSSL_ERR_sys_func(fun), (unsigned int)line,
file, NULL);
#endif
(void)lib;
}
/* Similar to wolfSSL_ERR_get_error_line but takes in a flags argument for
* more flexibility.
*
* file output pointer to file where error happened
* line output to line number of error
* data output data. Is a string if ERR_TXT_STRING flag is used
* flags output format of output
*
* Returns the error value or 0 if no errors are in the queue
*/
unsigned long wolfSSL_ERR_get_error_line_data(const char** file, int* line,
const char** data, int *flags)
{
#ifdef WOLFSSL_HAVE_ERROR_QUEUE
int ret;
WOLFSSL_ENTER("wolfSSL_ERR_get_error_line_data");
if (flags != NULL)
*flags = ERR_TXT_STRING; /* Clear the flags */
ret = wc_PullErrorNode(file, data, line);
if (ret < 0) {
if (ret == WC_NO_ERR_TRACE(BAD_STATE_E))
return 0; /* no errors in queue */
WOLFSSL_MSG("Error with pulling error node!");
WOLFSSL_LEAVE("wolfSSL_ERR_get_error_line_data", ret);
ret = 0 - ret; /* return absolute value of error */
/* panic and try to clear out nodes */
wc_ClearErrorNodes();
}
return (unsigned long)ret;
#else
WOLFSSL_ENTER("wolfSSL_ERR_get_error_line_data");
WOLFSSL_MSG("Error queue turned off, can not get error line");
(void)file;
(void)line;
(void)data;
(void)flags;
return 0;
#endif
}
#endif /* OPENSSL_EXTRA */
#if (defined(KEEP_PEER_CERT) && defined(SESSION_CERTS)) || \
(defined(OPENSSL_EXTRA) && defined(SESSION_CERTS))
/* Decode the X509 DER encoded certificate into a WOLFSSL_X509 object.
*
* x509 WOLFSSL_X509 object to decode into.
* in X509 DER data.
* len Length of the X509 DER data.
* returns the new certificate on success, otherwise NULL.
*/
static int DecodeToX509(WOLFSSL_X509* x509, const byte* in, int len)
{
int ret;
#ifdef WOLFSSL_SMALL_STACK
DecodedCert* cert;
#else
DecodedCert cert[1];
#endif
if (x509 == NULL || in == NULL || len <= 0)
return BAD_FUNC_ARG;
#ifdef WOLFSSL_SMALL_STACK
cert = (DecodedCert*)XMALLOC(sizeof(DecodedCert), NULL,
DYNAMIC_TYPE_DCERT);
if (cert == NULL)
return MEMORY_E;
#endif
/* Create a DecodedCert object and copy fields into WOLFSSL_X509 object.
*/
InitDecodedCert(cert, (byte*)in, (word32)len, NULL);
if ((ret = ParseCertRelative(cert, CERT_TYPE, 0, NULL)) == 0) {
/* Check if x509 was not previously initialized by wolfSSL_X509_new() */
if (x509->dynamicMemory != TRUE)
InitX509(x509, 0, NULL);
ret = CopyDecodedToX509(x509, cert);
}
FreeDecodedCert(cert);
#ifdef WOLFSSL_SMALL_STACK
XFREE(cert, NULL, DYNAMIC_TYPE_DCERT);
#endif
return ret;
}
#endif /* (KEEP_PEER_CERT & SESSION_CERTS) || (OPENSSL_EXTRA & SESSION_CERTS) */
#ifdef KEEP_PEER_CERT
WOLFSSL_ABI
WOLFSSL_X509* wolfSSL_get_peer_certificate(WOLFSSL* ssl)
{
WOLFSSL_X509* ret = NULL;
WOLFSSL_ENTER("wolfSSL_get_peer_certificate");
if (ssl != NULL) {
if (ssl->peerCert.issuer.sz)
ret = wolfSSL_X509_dup(&ssl->peerCert);
#ifdef SESSION_CERTS
else if (ssl->session->chain.count > 0) {
if (DecodeToX509(&ssl->peerCert,
ssl->session->chain.certs[0].buffer,
ssl->session->chain.certs[0].length) == 0) {
ret = wolfSSL_X509_dup(&ssl->peerCert);
}
}
#endif
}
WOLFSSL_LEAVE("wolfSSL_get_peer_certificate", ret != NULL);
return ret;
}
#endif /* KEEP_PEER_CERT */
#if defined(SESSION_CERTS) && defined(OPENSSL_EXTRA)
/* Return stack of peer certs.
* Caller does not need to free return. The stack is Free'd when WOLFSSL* ssl
* is.
*/
WOLF_STACK_OF(WOLFSSL_X509)* wolfSSL_get_peer_cert_chain(const WOLFSSL* ssl)
{
WOLFSSL_ENTER("wolfSSL_get_peer_cert_chain");
if (ssl == NULL)
return NULL;
/* Try to populate if NULL or empty */
if (ssl->peerCertChain == NULL ||
wolfSSL_sk_X509_num(ssl->peerCertChain) == 0)
wolfSSL_set_peer_cert_chain((WOLFSSL*) ssl);
return ssl->peerCertChain;
}
#ifndef WOLFSSL_QT
static int x509GetIssuerFromCM(WOLFSSL_X509 **issuer, WOLFSSL_CERT_MANAGER* cm,
WOLFSSL_X509 *x);
/**
* Recursively push the issuer CA chain onto the stack
* @param cm The cert manager that is queried for the issuer
* @param x This cert's issuer will be queried in cm
* @param sk The issuer is pushed onto this stack
* @return WOLFSSL_SUCCESS on success
* WOLFSSL_FAILURE on no issuer found
* WOLFSSL_FATAL_ERROR on a fatal error
*/
static int PushCAx509Chain(WOLFSSL_CERT_MANAGER* cm,
WOLFSSL_X509 *x, WOLFSSL_STACK* sk)
{
WOLFSSL_X509* issuer[MAX_CHAIN_DEPTH];
int i;
int push = 1;
int ret = WOLFSSL_SUCCESS;
for (i = 0; i < MAX_CHAIN_DEPTH; i++) {
if (x509GetIssuerFromCM(&issuer[i], cm, x)
!= WOLFSSL_SUCCESS)
break;
x = issuer[i];
}
if (i == 0) /* No further chain found */
return WOLFSSL_FAILURE;
i--;
for (; i >= 0; i--) {
if (push) {
if (wolfSSL_sk_X509_push(sk, issuer[i]) != WOLFSSL_SUCCESS) {
wolfSSL_X509_free(issuer[i]);
ret = WOLFSSL_FATAL_ERROR;
push = 0; /* Free the rest of the unpushed certs */
}
}
else {
wolfSSL_X509_free(issuer[i]);
}
}
return ret;
}
#endif /* !WOLFSSL_QT */
/* Builds up and creates a stack of peer certificates for ssl->peerCertChain
based off of the ssl session chain. Attempts to place CA certificates
at the bottom of the stack. Returns stack of WOLFSSL_X509 certs or
NULL on failure */
WOLF_STACK_OF(WOLFSSL_X509)* wolfSSL_set_peer_cert_chain(WOLFSSL* ssl)
{
WOLFSSL_STACK* sk;
WOLFSSL_X509* x509;
int i = 0;
int ret;
WOLFSSL_ENTER("wolfSSL_set_peer_cert_chain");
if ((ssl == NULL) || (ssl->session->chain.count == 0))
return NULL;
sk = wolfSSL_sk_X509_new_null();
i = ssl->session->chain.count-1;
for (; i >= 0; i--) {
x509 = wolfSSL_X509_new_ex(ssl->heap);
if (x509 == NULL) {
WOLFSSL_MSG("Error Creating X509");
wolfSSL_sk_X509_pop_free(sk, NULL);
return NULL;
}
ret = DecodeToX509(x509, ssl->session->chain.certs[i].buffer,
ssl->session->chain.certs[i].length);
#if !defined(WOLFSSL_QT)
if (ret == 0 && i == ssl->session->chain.count-1) {
/* On the last element in the chain try to add the CA chain
* first if we have one for this cert */
SSL_CM_WARNING(ssl);
if (PushCAx509Chain(SSL_CM(ssl), x509, sk)
== WOLFSSL_FATAL_ERROR) {
ret = WOLFSSL_FATAL_ERROR;
}
}
#endif
if (ret != 0 || wolfSSL_sk_X509_push(sk, x509) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("Error decoding cert");
wolfSSL_X509_free(x509);
wolfSSL_sk_X509_pop_free(sk, NULL);
return NULL;
}
}
if (sk == NULL) {
WOLFSSL_MSG("Null session chain");
}
#if defined(OPENSSL_ALL)
else if (ssl->options.side == WOLFSSL_SERVER_END) {
/* to be compliant with openssl
first element is kept as peer cert on server side.*/
wolfSSL_sk_X509_pop(sk);
}
#endif
if (ssl->peerCertChain != NULL)
wolfSSL_sk_X509_pop_free(ssl->peerCertChain, NULL);
/* This is Free'd when ssl is Free'd */
ssl->peerCertChain = sk;
return sk;
}
#endif /* SESSION_CERTS && OPENSSL_EXTRA */
#ifndef NO_CERTS
#if defined(OPENSSL_EXTRA) || defined(WOLFSSL_WPAS_SMALL)
/* create a generic wolfSSL stack node
* returns a new WOLFSSL_STACK structure on success */
WOLFSSL_STACK* wolfSSL_sk_new_node(void* heap)
{
WOLFSSL_STACK* sk;
WOLFSSL_ENTER("wolfSSL_sk_new_node");
sk = (WOLFSSL_STACK*)XMALLOC(sizeof(WOLFSSL_STACK), heap,
DYNAMIC_TYPE_OPENSSL);
if (sk != NULL) {
XMEMSET(sk, 0, sizeof(*sk));
sk->heap = heap;
}
return sk;
}
/* free's node but does not free internal data such as in->data.x509 */
void wolfSSL_sk_free_node(WOLFSSL_STACK* in)
{
if (in != NULL) {
XFREE(in, in->heap, DYNAMIC_TYPE_OPENSSL);
}
}
/* pushes node "in" onto "stack" and returns pointer to the new stack on success
* also handles internal "num" for number of nodes on stack
* return WOLFSSL_SUCCESS on success
*/
int wolfSSL_sk_push_node(WOLFSSL_STACK** stack, WOLFSSL_STACK* in)
{
if (stack == NULL || in == NULL) {
return WOLFSSL_FAILURE;
}
if (*stack == NULL) {
in->num = 1;
*stack = in;
return WOLFSSL_SUCCESS;
}
in->num = (*stack)->num + 1;
in->next = *stack;
*stack = in;
return WOLFSSL_SUCCESS;
}
#if defined(OPENSSL_ALL) || defined(WOLFSSL_QT)
static WC_INLINE int compare_WOLFSSL_CIPHER(
WOLFSSL_CIPHER *a,
WOLFSSL_CIPHER *b)
{
if ((a->cipherSuite0 == b->cipherSuite0) &&
(a->cipherSuite == b->cipherSuite) &&
(a->ssl == b->ssl) &&
(XMEMCMP(a->description, b->description, sizeof a->description) == 0) &&
(a->offset == b->offset) &&
(a->in_stack == b->in_stack) &&
(a->bits == b->bits))
return 0;
else
return -1;
}
#endif /* OPENSSL_ALL || WOLFSSL_QT */
/* return 1 on success 0 on fail */
int wolfSSL_sk_push(WOLFSSL_STACK* sk, const void *data)
{
WOLFSSL_STACK* node;
#if defined(OPENSSL_ALL) || defined(WOLFSSL_QT)
WOLFSSL_CIPHER ciph;
#endif
WOLFSSL_ENTER("wolfSSL_sk_push");
if (!sk) {
return WOLFSSL_FAILURE;
}
/* Check if empty data */
switch (sk->type) {
case STACK_TYPE_CIPHER:
#if defined(OPENSSL_ALL) || defined(WOLFSSL_QT)
/* check if entire struct is zero */
XMEMSET(&ciph, 0, sizeof(WOLFSSL_CIPHER));
if (compare_WOLFSSL_CIPHER(&sk->data.cipher, &ciph) == 0) {
sk->data.cipher = *(WOLFSSL_CIPHER*)data;
sk->num = 1;
if (sk->hash_fn) {
sk->hash = sk->hash_fn(&sk->data.cipher);
}
return WOLFSSL_SUCCESS;
}
break;
#endif
case STACK_TYPE_X509:
case STACK_TYPE_GEN_NAME:
case STACK_TYPE_BIO:
case STACK_TYPE_OBJ:
case STACK_TYPE_STRING:
case STACK_TYPE_ACCESS_DESCRIPTION:
case STACK_TYPE_X509_EXT:
case STACK_TYPE_X509_REQ_ATTR:
case STACK_TYPE_NULL:
case STACK_TYPE_X509_NAME:
case STACK_TYPE_X509_NAME_ENTRY:
case STACK_TYPE_CONF_VALUE:
case STACK_TYPE_X509_INFO:
case STACK_TYPE_BY_DIR_entry:
case STACK_TYPE_BY_DIR_hash:
case STACK_TYPE_X509_OBJ:
case STACK_TYPE_DIST_POINT:
case STACK_TYPE_X509_CRL:
default:
/* All other types are pointers */
if (!sk->data.generic) {
sk->data.generic = (void*)data;
sk->num = 1;
#ifdef OPENSSL_ALL
if (sk->hash_fn) {
sk->hash = sk->hash_fn(sk->data.generic);
}
#endif
return WOLFSSL_SUCCESS;
}
break;
}
/* stack already has value(s) create a new node and add more */
node = wolfSSL_sk_new_node(sk->heap);
if (!node) {
WOLFSSL_MSG("Memory error");
return WOLFSSL_FAILURE;
}
/* push new x509 onto head of stack */
node->next = sk->next;
node->type = sk->type;
sk->next = node;
sk->num += 1;
#ifdef OPENSSL_ALL
node->hash_fn = sk->hash_fn;
node->hash = sk->hash;
sk->hash = 0;
#endif
switch (sk->type) {
case STACK_TYPE_CIPHER:
#if defined(OPENSSL_ALL) || defined(WOLFSSL_QT)
node->data.cipher = sk->data.cipher;
sk->data.cipher = *(WOLFSSL_CIPHER*)data;
if (sk->hash_fn) {
sk->hash = sk->hash_fn(&sk->data.cipher);
}
break;
#endif
case STACK_TYPE_X509:
case STACK_TYPE_GEN_NAME:
case STACK_TYPE_BIO:
case STACK_TYPE_OBJ:
case STACK_TYPE_STRING:
case STACK_TYPE_ACCESS_DESCRIPTION:
case STACK_TYPE_X509_EXT:
case STACK_TYPE_X509_REQ_ATTR:
case STACK_TYPE_NULL:
case STACK_TYPE_X509_NAME:
case STACK_TYPE_X509_NAME_ENTRY:
case STACK_TYPE_CONF_VALUE:
case STACK_TYPE_X509_INFO:
case STACK_TYPE_BY_DIR_entry:
case STACK_TYPE_BY_DIR_hash:
case STACK_TYPE_X509_OBJ:
case STACK_TYPE_DIST_POINT:
case STACK_TYPE_X509_CRL:
default:
/* All other types are pointers */
node->data.generic = sk->data.generic;
sk->data.generic = (void*)data;
#ifdef OPENSSL_ALL
if (sk->hash_fn) {
sk->hash = sk->hash_fn(sk->data.generic);
}
#endif
break;
}
return WOLFSSL_SUCCESS;
}
#endif /* OPENSSL_EXTRA || WOLFSSL_WPAS_SMALL */
#ifdef OPENSSL_EXTRA
/* returns the node at index "idx", NULL if not found */
WOLFSSL_STACK* wolfSSL_sk_get_node(WOLFSSL_STACK* sk, int idx)
{
int i;
WOLFSSL_STACK* ret = NULL;
WOLFSSL_STACK* current;
current = sk;
for (i = 0; i <= idx && current != NULL; i++) {
if (i == idx) {
ret = current;
break;
}
current = current->next;
}
return ret;
}
#endif /* OPENSSL_EXTRA */
#ifdef OPENSSL_EXTRA
#if defined(OPENSSL_ALL)
void *wolfSSL_lh_retrieve(WOLFSSL_STACK *sk, void *data)
{
unsigned long hash;
WOLFSSL_ENTER("wolfSSL_lh_retrieve");
if (!sk || !data) {
WOLFSSL_MSG("Bad parameters");
return NULL;
}
if (!sk->hash_fn) {
WOLFSSL_MSG("No hash function defined");
return NULL;
}
hash = sk->hash_fn(data);
while (sk) {
/* Calc hash if not done so yet */
if (!sk->hash) {
switch (sk->type) {
case STACK_TYPE_CIPHER:
sk->hash = sk->hash_fn(&sk->data.cipher);
break;
case STACK_TYPE_X509:
case STACK_TYPE_GEN_NAME:
case STACK_TYPE_BIO:
case STACK_TYPE_OBJ:
case STACK_TYPE_STRING:
case STACK_TYPE_ACCESS_DESCRIPTION:
case STACK_TYPE_X509_EXT:
case STACK_TYPE_X509_REQ_ATTR:
case STACK_TYPE_NULL:
case STACK_TYPE_X509_NAME:
case STACK_TYPE_X509_NAME_ENTRY:
case STACK_TYPE_CONF_VALUE:
case STACK_TYPE_X509_INFO:
case STACK_TYPE_BY_DIR_entry:
case STACK_TYPE_BY_DIR_hash:
case STACK_TYPE_X509_OBJ:
case STACK_TYPE_DIST_POINT:
case STACK_TYPE_X509_CRL:
default:
sk->hash = sk->hash_fn(sk->data.generic);
break;
}
}
if (sk->hash == hash) {
switch (sk->type) {
case STACK_TYPE_CIPHER:
return &sk->data.cipher;
case STACK_TYPE_X509:
case STACK_TYPE_GEN_NAME:
case STACK_TYPE_BIO:
case STACK_TYPE_OBJ:
case STACK_TYPE_STRING:
case STACK_TYPE_ACCESS_DESCRIPTION:
case STACK_TYPE_X509_EXT:
case STACK_TYPE_X509_REQ_ATTR:
case STACK_TYPE_NULL:
case STACK_TYPE_X509_NAME:
case STACK_TYPE_X509_NAME_ENTRY:
case STACK_TYPE_CONF_VALUE:
case STACK_TYPE_X509_INFO:
case STACK_TYPE_BY_DIR_entry:
case STACK_TYPE_BY_DIR_hash:
case STACK_TYPE_X509_OBJ:
case STACK_TYPE_DIST_POINT:
case STACK_TYPE_X509_CRL:
default:
return sk->data.generic;
}
}
sk = sk->next;
}
return NULL;
}
#endif /* OPENSSL_ALL */
#endif /* OPENSSL_EXTRA */
/* OPENSSL_EXTRA is needed for wolfSSL_X509_d21 function
KEEP_OUR_CERT is to insure ability for returning ssl certificate */
#if (defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)) && \
defined(KEEP_OUR_CERT)
WOLFSSL_X509* wolfSSL_get_certificate(WOLFSSL* ssl)
{
if (ssl == NULL) {
return NULL;
}
if (ssl->buffers.weOwnCert) {
if (ssl->ourCert == NULL) {
if (ssl->buffers.certificate == NULL) {
WOLFSSL_MSG("Certificate buffer not set!");
return NULL;
}
#ifndef WOLFSSL_X509_STORE_CERTS
ssl->ourCert = wolfSSL_X509_d2i_ex(NULL,
ssl->buffers.certificate->buffer,
ssl->buffers.certificate->length,
ssl->heap);
#endif
}
return ssl->ourCert;
}
else { /* if cert not owned get parent ctx cert or return null */
if (ssl->ctx) {
if (ssl->ctx->ourCert == NULL) {
if (ssl->ctx->certificate == NULL) {
WOLFSSL_MSG("Ctx Certificate buffer not set!");
return NULL;
}
#ifndef WOLFSSL_X509_STORE_CERTS
ssl->ctx->ourCert = wolfSSL_X509_d2i_ex(NULL,
ssl->ctx->certificate->buffer,
ssl->ctx->certificate->length,
ssl->heap);
#endif
ssl->ctx->ownOurCert = 1;
}
return ssl->ctx->ourCert;
}
}
return NULL;
}
WOLFSSL_X509* wolfSSL_CTX_get0_certificate(WOLFSSL_CTX* ctx)
{
if (ctx) {
if (ctx->ourCert == NULL) {
if (ctx->certificate == NULL) {
WOLFSSL_MSG("Ctx Certificate buffer not set!");
return NULL;
}
#ifndef WOLFSSL_X509_STORE_CERTS
ctx->ourCert = wolfSSL_X509_d2i_ex(NULL,
ctx->certificate->buffer,
ctx->certificate->length, ctx->heap);
#endif
ctx->ownOurCert = 1;
}
return ctx->ourCert;
}
return NULL;
}
#endif /* OPENSSL_EXTRA && KEEP_OUR_CERT */
#endif /* NO_CERTS */
#if defined(OPENSSL_EXTRA) || defined(WOLFSSL_WPAS_SMALL)
void wolfSSL_set_connect_state(WOLFSSL* ssl)
{
WOLFSSL_ENTER("wolfSSL_set_connect_state");
if (ssl == NULL) {
WOLFSSL_MSG("WOLFSSL struct pointer passed in was null");
return;
}
#ifndef NO_DH
/* client creates its own DH parameters on handshake */
if (ssl->buffers.serverDH_P.buffer && ssl->buffers.weOwnDH) {
XFREE(ssl->buffers.serverDH_P.buffer, ssl->heap,
DYNAMIC_TYPE_PUBLIC_KEY);
}
ssl->buffers.serverDH_P.buffer = NULL;
if (ssl->buffers.serverDH_G.buffer && ssl->buffers.weOwnDH) {
XFREE(ssl->buffers.serverDH_G.buffer, ssl->heap,
DYNAMIC_TYPE_PUBLIC_KEY);
}
ssl->buffers.serverDH_G.buffer = NULL;
#endif
if (InitSSL_Side(ssl, WOLFSSL_CLIENT_END) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("Error initializing client side");
}
}
#endif /* OPENSSL_EXTRA || WOLFSSL_WPAS_SMALL */
int wolfSSL_get_shutdown(const WOLFSSL* ssl)
{
int isShutdown = 0;
WOLFSSL_ENTER("wolfSSL_get_shutdown");
if (ssl) {
#if defined(OPENSSL_EXTRA) || defined(WOLFSSL_WPAS_SMALL)
if (ssl->options.shutdownDone) {
/* The SSL object was possibly cleared with wolfSSL_clear after
* a successful shutdown. Simulate a response for a full
* bidirectional shutdown. */
isShutdown = WOLFSSL_SENT_SHUTDOWN | WOLFSSL_RECEIVED_SHUTDOWN;
}
else
#endif
{
/* in OpenSSL, WOLFSSL_SENT_SHUTDOWN = 1, when closeNotifySent *
* WOLFSSL_RECEIVED_SHUTDOWN = 2, from close notify or fatal err */
if (ssl->options.sentNotify)
isShutdown |= WOLFSSL_SENT_SHUTDOWN;
if (ssl->options.closeNotify||ssl->options.connReset)
isShutdown |= WOLFSSL_RECEIVED_SHUTDOWN;
}
}
WOLFSSL_LEAVE("wolfSSL_get_shutdown", isShutdown);
return isShutdown;
}
int wolfSSL_session_reused(WOLFSSL* ssl)
{
int resuming = 0;
WOLFSSL_ENTER("wolfSSL_session_reused");
if (ssl) {
#ifndef HAVE_SECURE_RENEGOTIATION
resuming = ssl->options.resuming;
#else
resuming = ssl->options.resuming || ssl->options.resumed;
#endif
}
WOLFSSL_LEAVE("wolfSSL_session_reused", resuming);
return resuming;
}
/* helper function that takes in a protocol version struct and returns string */
static const char* wolfSSL_internal_get_version(const ProtocolVersion* version)
{
WOLFSSL_ENTER("wolfSSL_get_version");
if (version == NULL) {
return "Bad arg";
}
if (version->major == SSLv3_MAJOR) {
switch (version->minor) {
case SSLv3_MINOR :
return "SSLv3";
case TLSv1_MINOR :
return "TLSv1";
case TLSv1_1_MINOR :
return "TLSv1.1";
case TLSv1_2_MINOR :
return "TLSv1.2";
case TLSv1_3_MINOR :
return "TLSv1.3";
default:
return "unknown";
}
}
#ifdef WOLFSSL_DTLS
else if (version->major == DTLS_MAJOR) {
switch (version->minor) {
case DTLS_MINOR :
return "DTLS";
case DTLSv1_2_MINOR :
return "DTLSv1.2";
case DTLSv1_3_MINOR :
return "DTLSv1.3";
default:
return "unknown";
}
}
#endif /* WOLFSSL_DTLS */
return "unknown";
}
const char* wolfSSL_get_version(const WOLFSSL* ssl)
{
if (ssl == NULL) {
WOLFSSL_MSG("Bad argument");
return "unknown";
}
return wolfSSL_internal_get_version(&ssl->version);
}
/* current library version */
const char* wolfSSL_lib_version(void)
{
return LIBWOLFSSL_VERSION_STRING;
}
#ifdef OPENSSL_EXTRA
#if defined(OPENSSL_VERSION_NUMBER) && OPENSSL_VERSION_NUMBER >= 0x10100000L
const char* wolfSSL_OpenSSL_version(int a)
{
(void)a;
return "wolfSSL " LIBWOLFSSL_VERSION_STRING;
}
#else
const char* wolfSSL_OpenSSL_version(void)
{
return "wolfSSL " LIBWOLFSSL_VERSION_STRING;
}
#endif /* WOLFSSL_QT */
#endif
/* current library version in hex */
word32 wolfSSL_lib_version_hex(void)
{
return LIBWOLFSSL_VERSION_HEX;
}
int wolfSSL_get_current_cipher_suite(WOLFSSL* ssl)
{
WOLFSSL_ENTER("wolfSSL_get_current_cipher_suite");
if (ssl)
return (ssl->options.cipherSuite0 << 8) | ssl->options.cipherSuite;
return 0;
}
WOLFSSL_CIPHER* wolfSSL_get_current_cipher(WOLFSSL* ssl)
{
WOLFSSL_ENTER("wolfSSL_get_current_cipher");
if (ssl) {
ssl->cipher.cipherSuite0 = ssl->options.cipherSuite0;
ssl->cipher.cipherSuite = ssl->options.cipherSuite;
#if defined(OPENSSL_ALL) || defined(WOLFSSL_QT)
ssl->cipher.bits = ssl->specs.key_size * 8;
#endif
return &ssl->cipher;
}
else
return NULL;
}
const char* wolfSSL_CIPHER_get_name(const WOLFSSL_CIPHER* cipher)
{
WOLFSSL_ENTER("wolfSSL_CIPHER_get_name");
if (cipher == NULL) {
return NULL;
}
#if !defined(WOLFSSL_CIPHER_INTERNALNAME) && !defined(NO_ERROR_STRINGS) && \
!defined(WOLFSSL_QT)
return GetCipherNameIana(cipher->cipherSuite0, cipher->cipherSuite);
#else
return wolfSSL_get_cipher_name_from_suite(cipher->cipherSuite0,
cipher->cipherSuite);
#endif
}
const char* wolfSSL_CIPHER_get_version(const WOLFSSL_CIPHER* cipher)
{
WOLFSSL_ENTER("wolfSSL_CIPHER_get_version");
if (cipher == NULL || cipher->ssl == NULL) {
return NULL;
}
return wolfSSL_get_version(cipher->ssl);
}
const char* wolfSSL_get_cipher(WOLFSSL* ssl)
{
WOLFSSL_ENTER("wolfSSL_get_cipher");
return wolfSSL_CIPHER_get_name(wolfSSL_get_current_cipher(ssl));
}
/* gets cipher name in the format DHE-RSA-... rather then TLS_DHE... */
const char* wolfSSL_get_cipher_name(WOLFSSL* ssl)
{
/* get access to cipher_name_idx in internal.c */
return wolfSSL_get_cipher_name_internal(ssl);
}
const char* wolfSSL_get_cipher_name_from_suite(byte cipherSuite0,
byte cipherSuite)
{
return GetCipherNameInternal(cipherSuite0, cipherSuite);
}
const char* wolfSSL_get_cipher_name_iana_from_suite(byte cipherSuite0,
byte cipherSuite)
{
return GetCipherNameIana(cipherSuite0, cipherSuite);
}
int wolfSSL_get_cipher_suite_from_name(const char* name, byte* cipherSuite0,
byte* cipherSuite, int *flags) {
if ((name == NULL) ||
(cipherSuite0 == NULL) ||
(cipherSuite == NULL) ||
(flags == NULL))
return BAD_FUNC_ARG;
return GetCipherSuiteFromName(name, cipherSuite0, cipherSuite, flags);
}
#if defined(WOLFSSL_QT) || defined(OPENSSL_ALL)
/* Creates and returns a new WOLFSSL_CIPHER stack. */
WOLFSSL_STACK* wolfSSL_sk_new_cipher(void)
{
WOLFSSL_STACK* sk;
WOLFSSL_ENTER("wolfSSL_sk_new_cipher");
sk = wolfSSL_sk_new_null();
if (sk == NULL)
return NULL;
sk->type = STACK_TYPE_CIPHER;
return sk;
}
/* return 1 on success 0 on fail */
int wolfSSL_sk_CIPHER_push(WOLF_STACK_OF(WOLFSSL_CIPHER)* sk,
WOLFSSL_CIPHER* cipher)
{
return wolfSSL_sk_push(sk, cipher);
}
#ifndef NO_WOLFSSL_STUB
WOLFSSL_CIPHER* wolfSSL_sk_CIPHER_pop(WOLF_STACK_OF(WOLFSSL_CIPHER)* sk)
{
WOLFSSL_STUB("wolfSSL_sk_CIPHER_pop");
(void)sk;
return NULL;
}
#endif /* NO_WOLFSSL_STUB */
#endif /* WOLFSSL_QT || OPENSSL_ALL */
word32 wolfSSL_CIPHER_get_id(const WOLFSSL_CIPHER* cipher)
{
word16 cipher_id = 0;
WOLFSSL_ENTER("wolfSSL_CIPHER_get_id");
if (cipher && cipher->ssl) {
cipher_id = (cipher->ssl->options.cipherSuite0 << 8) |
cipher->ssl->options.cipherSuite;
}
return cipher_id;
}
const WOLFSSL_CIPHER* wolfSSL_get_cipher_by_value(word16 value)
{
const WOLFSSL_CIPHER* cipher = NULL;
byte cipherSuite0, cipherSuite;
WOLFSSL_ENTER("wolfSSL_get_cipher_by_value");
/* extract cipher id information */
cipherSuite = (value & 0xFF);
cipherSuite0 = ((value >> 8) & 0xFF);
/* TODO: lookup by cipherSuite0 / cipherSuite */
(void)cipherSuite0;
(void)cipherSuite;
return cipher;
}
#if defined(OPENSSL_EXTRA)
/* Free the structure for WOLFSSL_CIPHER stack
*
* sk stack to free nodes in
*/
void wolfSSL_sk_CIPHER_free(WOLF_STACK_OF(WOLFSSL_CIPHER)* sk)
{
WOLFSSL_ENTER("wolfSSL_sk_CIPHER_free");
wolfSSL_sk_free(sk);
}
#endif /* OPENSSL_ALL */
#if defined(HAVE_ECC) || defined(HAVE_CURVE25519) || defined(HAVE_CURVE448) || \
!defined(NO_DH)
#ifdef HAVE_FFDHE
static const char* wolfssl_ffdhe_name(word16 group)
{
const char* str = NULL;
switch (group) {
case WOLFSSL_FFDHE_2048:
str = "FFDHE_2048";
break;
case WOLFSSL_FFDHE_3072:
str = "FFDHE_3072";
break;
case WOLFSSL_FFDHE_4096:
str = "FFDHE_4096";
break;
case WOLFSSL_FFDHE_6144:
str = "FFDHE_6144";
break;
case WOLFSSL_FFDHE_8192:
str = "FFDHE_8192";
break;
default:
break;
}
return str;
}
#endif
/* Return the name of the curve used for key exchange as a printable string.
*
* ssl The SSL/TLS object.
* returns NULL if ECDH was not used, otherwise the name as a string.
*/
const char* wolfSSL_get_curve_name(WOLFSSL* ssl)
{
const char* cName = NULL;
WOLFSSL_ENTER("wolfSSL_get_curve_name");
if (ssl == NULL)
return NULL;
#if defined(WOLFSSL_TLS13) && defined(HAVE_PQC)
/* Check for post-quantum groups. Return now because we do not want the ECC
* check to override this result in the case of a hybrid. */
if (IsAtLeastTLSv1_3(ssl->version)) {
switch (ssl->namedGroup) {
#ifdef HAVE_LIBOQS
case WOLFSSL_KYBER_LEVEL1:
return "KYBER_LEVEL1";
case WOLFSSL_KYBER_LEVEL3:
return "KYBER_LEVEL3";
case WOLFSSL_KYBER_LEVEL5:
return "KYBER_LEVEL5";
case WOLFSSL_P256_KYBER_LEVEL1:
return "P256_KYBER_LEVEL1";
case WOLFSSL_P384_KYBER_LEVEL3:
return "P384_KYBER_LEVEL3";
case WOLFSSL_P521_KYBER_LEVEL5:
return "P521_KYBER_LEVEL5";
#elif defined(HAVE_PQM4)
case WOLFSSL_KYBER_LEVEL1:
return "KYBER_LEVEL1";
#elif defined(WOLFSSL_WC_KYBER)
#ifdef WOLFSSL_KYBER512
case WOLFSSL_KYBER_LEVEL1:
return "KYBER_LEVEL1";
#endif
#ifdef WOLFSSL_KYBER768
case WOLFSSL_KYBER_LEVEL3:
return "KYBER_LEVEL3";
#endif
#ifdef WOLFSSL_KYBER1024
case WOLFSSL_KYBER_LEVEL5:
return "KYBER_LEVEL5";
#endif
#endif
}
}
#endif /* WOLFSSL_TLS13 && HAVE_PQC */
#ifdef HAVE_FFDHE
if (ssl->namedGroup != 0) {
cName = wolfssl_ffdhe_name(ssl->namedGroup);
}
#endif
#ifdef HAVE_CURVE25519
if (ssl->ecdhCurveOID == ECC_X25519_OID && cName == NULL) {
cName = "X25519";
}
#endif
#ifdef HAVE_CURVE448
if (ssl->ecdhCurveOID == ECC_X448_OID && cName == NULL) {
cName = "X448";
}
#endif
#ifdef HAVE_ECC
if (ssl->ecdhCurveOID != 0 && cName == NULL) {
cName = wc_ecc_get_name(wc_ecc_get_oid(ssl->ecdhCurveOID, NULL,
NULL));
}
#endif
return cName;
}
#endif
#ifdef OPENSSL_EXTRA
#if defined(OPENSSL_ALL) || defined(WOLFSSL_QT)
/* return authentication NID corresponding to cipher suite
* @param cipher a pointer to WOLFSSL_CIPHER
* return NID if found, NID_undef if not found
*/
int wolfSSL_CIPHER_get_auth_nid(const WOLFSSL_CIPHER* cipher)
{
static const struct authnid {
const char* alg_name;
const int nid;
} authnid_tbl[] = {
{"RSA", NID_auth_rsa},
{"PSK", NID_auth_psk},
{"SRP", NID_auth_srp},
{"ECDSA", NID_auth_ecdsa},
{"None", NID_auth_null},
{NULL, NID_undef}
};
const char* authStr;
char n[MAX_SEGMENTS][MAX_SEGMENT_SZ] = {{0}};
if (GetCipherSegment(cipher, n) == NULL) {
WOLFSSL_MSG("no suitable cipher name found");
return NID_undef;
}
authStr = GetCipherAuthStr(n);
if (authStr != NULL) {
const struct authnid* sa;
for(sa = authnid_tbl; sa->alg_name != NULL; sa++) {
if (XSTRCMP(sa->alg_name, authStr) == 0) {
return sa->nid;
}
}
}
return NID_undef;
}
/* return cipher NID corresponding to cipher suite
* @param cipher a pointer to WOLFSSL_CIPHER
* return NID if found, NID_undef if not found
*/
int wolfSSL_CIPHER_get_cipher_nid(const WOLFSSL_CIPHER* cipher)
{
static const struct ciphernid {
const char* alg_name;
const int nid;
} ciphernid_tbl[] = {
{"AESGCM(256)", NID_aes_256_gcm},
{"AESGCM(128)", NID_aes_128_gcm},
{"AESCCM(128)", NID_aes_128_ccm},
{"AES(128)", NID_aes_128_cbc},
{"AES(256)", NID_aes_256_cbc},
{"CAMELLIA(256)", NID_camellia_256_cbc},
{"CAMELLIA(128)", NID_camellia_128_cbc},
{"RC4", NID_rc4},
{"3DES", NID_des_ede3_cbc},
{"CHACHA20/POLY1305(256)", NID_chacha20_poly1305},
{"None", NID_undef},
{NULL, NID_undef}
};
const char* encStr;
char n[MAX_SEGMENTS][MAX_SEGMENT_SZ] = {{0}};
WOLFSSL_ENTER("wolfSSL_CIPHER_get_cipher_nid");
if (GetCipherSegment(cipher, n) == NULL) {
WOLFSSL_MSG("no suitable cipher name found");
return NID_undef;
}
encStr = GetCipherEncStr(n);
if (encStr != NULL) {
const struct ciphernid* c;
for(c = ciphernid_tbl; c->alg_name != NULL; c++) {
if (XSTRCMP(c->alg_name, encStr) == 0) {
return c->nid;
}
}
}
return NID_undef;
}
/* return digest NID corresponding to cipher suite
* @param cipher a pointer to WOLFSSL_CIPHER
* return NID if found, NID_undef if not found
*/
int wolfSSL_CIPHER_get_digest_nid(const WOLFSSL_CIPHER* cipher)
{
static const struct macnid {
const char* alg_name;
const int nid;
} macnid_tbl[] = {
{"SHA1", NID_sha1},
{"SHA256", NID_sha256},
{"SHA384", NID_sha384},
{NULL, NID_undef}
};
const char* name;
const char* macStr;
char n[MAX_SEGMENTS][MAX_SEGMENT_SZ] = {{0}};
(void)name;
WOLFSSL_ENTER("wolfSSL_CIPHER_get_digest_nid");
if ((name = GetCipherSegment(cipher, n)) == NULL) {
WOLFSSL_MSG("no suitable cipher name found");
return NID_undef;
}
/* in MD5 case, NID will be NID_md5 */
if (XSTRSTR(name, "MD5") != NULL) {
return NID_md5;
}
macStr = GetCipherMacStr(n);
if (macStr != NULL) {
const struct macnid* mc;
for(mc = macnid_tbl; mc->alg_name != NULL; mc++) {
if (XSTRCMP(mc->alg_name, macStr) == 0) {
return mc->nid;
}
}
}
return NID_undef;
}
/* return key exchange NID corresponding to cipher suite
* @param cipher a pointer to WOLFSSL_CIPHER
* return NID if found, NID_undef if not found
*/
int wolfSSL_CIPHER_get_kx_nid(const WOLFSSL_CIPHER* cipher)
{
static const struct kxnid {
const char* name;
const int nid;
} kxnid_table[] = {
{"ECDHEPSK", NID_kx_ecdhe_psk},
{"ECDH", NID_kx_ecdhe},
{"DHEPSK", NID_kx_dhe_psk},
{"DH", NID_kx_dhe},
{"RSAPSK", NID_kx_rsa_psk},
{"SRP", NID_kx_srp},
{"EDH", NID_kx_dhe},
{"RSA", NID_kx_rsa},
{NULL, NID_undef}
};
const char* keaStr;
char n[MAX_SEGMENTS][MAX_SEGMENT_SZ] = {{0}};
WOLFSSL_ENTER("wolfSSL_CIPHER_get_kx_nid");
if (GetCipherSegment(cipher, n) == NULL) {
WOLFSSL_MSG("no suitable cipher name found");
return NID_undef;
}
/* in TLS 1.3 case, NID will be NID_kx_any */
if (XSTRCMP(n[0], "TLS13") == 0) {
return NID_kx_any;
}
keaStr = GetCipherKeaStr(n);
if (keaStr != NULL) {
const struct kxnid* k;
for(k = kxnid_table; k->name != NULL; k++) {
if (XSTRCMP(k->name, keaStr) == 0) {
return k->nid;
}
}
}
return NID_undef;
}
/* check if cipher suite is AEAD
* @param cipher a pointer to WOLFSSL_CIPHER
* return 1 if cipher is AEAD, 0 otherwise
*/
int wolfSSL_CIPHER_is_aead(const WOLFSSL_CIPHER* cipher)
{
char n[MAX_SEGMENTS][MAX_SEGMENT_SZ] = {{0}};
WOLFSSL_ENTER("wolfSSL_CIPHER_is_aead");
if (GetCipherSegment(cipher, n) == NULL) {
WOLFSSL_MSG("no suitable cipher name found");
return NID_undef;
}
return IsCipherAEAD(n);
}
/* Creates cipher->description based on cipher->offset
* cipher->offset is set in wolfSSL_get_ciphers_compat when it is added
* to a stack of ciphers.
* @param [in] cipher: A cipher from a stack of ciphers.
* return WOLFSSL_SUCCESS if cipher->description is set, else WOLFSSL_FAILURE
*/
int wolfSSL_sk_CIPHER_description(WOLFSSL_CIPHER* cipher)
{
int strLen;
unsigned long offset;
char* dp;
const char* name;
const char *keaStr, *authStr, *encStr, *macStr, *protocol;
char n[MAX_SEGMENTS][MAX_SEGMENT_SZ] = {{0}};
int len = MAX_DESCRIPTION_SZ-1;
const CipherSuiteInfo* cipher_names;
ProtocolVersion pv;
WOLFSSL_ENTER("wolfSSL_sk_CIPHER_description");
if (cipher == NULL)
return WOLFSSL_FAILURE;
dp = cipher->description;
if (dp == NULL)
return WOLFSSL_FAILURE;
cipher_names = GetCipherNames();
offset = cipher->offset;
if (offset >= (unsigned long)GetCipherNamesSize())
return WOLFSSL_FAILURE;
pv.major = cipher_names[offset].major;
pv.minor = cipher_names[offset].minor;
protocol = wolfSSL_internal_get_version(&pv);
if ((name = GetCipherSegment(cipher, n)) == NULL) {
WOLFSSL_MSG("no suitable cipher name found");
return WOLFSSL_FAILURE;
}
/* keaStr */
keaStr = GetCipherKeaStr(n);
/* authStr */
authStr = GetCipherAuthStr(n);
/* encStr */
encStr = GetCipherEncStr(n);
if ((cipher->bits = SetCipherBits(encStr)) == WOLFSSL_FAILURE) {
WOLFSSL_MSG("Cipher Bits Not Set.");
}
/* macStr */
macStr = GetCipherMacStr(n);
/* Build up the string by copying onto the end. */
XSTRNCPY(dp, name, len);
dp[len-1] = '\0'; strLen = (int)XSTRLEN(dp);
len -= strLen; dp += strLen;
XSTRNCPY(dp, " ", len);
dp[len-1] = '\0'; strLen = (int)XSTRLEN(dp);
len -= strLen; dp += strLen;
XSTRNCPY(dp, protocol, len);
dp[len-1] = '\0'; strLen = (int)XSTRLEN(dp);
len -= strLen; dp += strLen;
XSTRNCPY(dp, " Kx=", len);
dp[len-1] = '\0'; strLen = (int)XSTRLEN(dp);
len -= strLen; dp += strLen;
XSTRNCPY(dp, keaStr, len);
dp[len-1] = '\0'; strLen = (int)XSTRLEN(dp);
len -= strLen; dp += strLen;
XSTRNCPY(dp, " Au=", len);
dp[len-1] = '\0'; strLen = (int)XSTRLEN(dp);
len -= strLen; dp += strLen;
XSTRNCPY(dp, authStr, len);
dp[len-1] = '\0'; strLen = (int)XSTRLEN(dp);
len -= strLen; dp += strLen;
XSTRNCPY(dp, " Enc=", len);
dp[len-1] = '\0'; strLen = (int)XSTRLEN(dp);
len -= strLen; dp += strLen;
XSTRNCPY(dp, encStr, len);
dp[len-1] = '\0'; strLen = (int)XSTRLEN(dp);
len -= strLen; dp += strLen;
XSTRNCPY(dp, " Mac=", len);
dp[len-1] = '\0'; strLen = (int)XSTRLEN(dp);
len -= strLen; dp += strLen;
XSTRNCPY(dp, macStr, len);
dp[len-1] = '\0';
return WOLFSSL_SUCCESS;
}
#endif /* OPENSSL_ALL || WOLFSSL_QT */
static WC_INLINE const char* wolfssl_kea_to_string(int kea)
{
const char* keaStr;
switch (kea) {
case no_kea:
keaStr = "None";
break;
#ifndef NO_RSA
case rsa_kea:
keaStr = "RSA";
break;
#endif
#ifndef NO_DH
case diffie_hellman_kea:
keaStr = "DHE";
break;
#endif
case fortezza_kea:
keaStr = "FZ";
break;
#ifndef NO_PSK
case psk_kea:
keaStr = "PSK";
break;
#ifndef NO_DH
case dhe_psk_kea:
keaStr = "DHEPSK";
break;
#endif
#ifdef HAVE_ECC
case ecdhe_psk_kea:
keaStr = "ECDHEPSK";
break;
#endif
#endif
#ifdef HAVE_ECC
case ecc_diffie_hellman_kea:
keaStr = "ECDHE";
break;
case ecc_static_diffie_hellman_kea:
keaStr = "ECDH";
break;
#endif
default:
keaStr = "unknown";
break;
}
return keaStr;
}
static WC_INLINE const char* wolfssl_sigalg_to_string(int sig_algo)
{
const char* authStr;
switch (sig_algo) {
case anonymous_sa_algo:
authStr = "None";
break;
#ifndef NO_RSA
case rsa_sa_algo:
authStr = "RSA";
break;
#ifdef WC_RSA_PSS
case rsa_pss_sa_algo:
authStr = "RSA-PSS";
break;
#endif
#endif
#ifndef NO_DSA
case dsa_sa_algo:
authStr = "DSA";
break;
#endif
#ifdef HAVE_ECC
case ecc_dsa_sa_algo:
authStr = "ECDSA";
break;
#endif
#ifdef WOLFSSL_SM2
case sm2_sa_algo:
authStr = "SM2";
break;
#endif
#ifdef HAVE_ED25519
case ed25519_sa_algo:
authStr = "Ed25519";
break;
#endif
#ifdef HAVE_ED448
case ed448_sa_algo:
authStr = "Ed448";
break;
#endif
default:
authStr = "unknown";
break;
}
return authStr;
}
static WC_INLINE const char* wolfssl_cipher_to_string(int cipher, int key_size)
{
const char* encStr;
(void)key_size;
switch (cipher) {
case wolfssl_cipher_null:
encStr = "None";
break;
#ifndef NO_RC4
case wolfssl_rc4:
encStr = "RC4(128)";
break;
#endif
#ifndef NO_DES3
case wolfssl_triple_des:
encStr = "3DES(168)";
break;
#endif
#ifndef NO_AES
case wolfssl_aes:
if (key_size == 128)
encStr = "AES(128)";
else if (key_size == 256)
encStr = "AES(256)";
else
encStr = "AES(?)";
break;
#ifdef HAVE_AESGCM
case wolfssl_aes_gcm:
if (key_size == 128)
encStr = "AESGCM(128)";
else if (key_size == 256)
encStr = "AESGCM(256)";
else
encStr = "AESGCM(?)";
break;
#endif
#ifdef HAVE_AESCCM
case wolfssl_aes_ccm:
if (key_size == 128)
encStr = "AESCCM(128)";
else if (key_size == 256)
encStr = "AESCCM(256)";
else
encStr = "AESCCM(?)";
break;
#endif
#endif
#ifdef HAVE_CHACHA
case wolfssl_chacha:
encStr = "CHACHA20/POLY1305(256)";
break;
#endif
#ifdef HAVE_ARIA
case wolfssl_aria_gcm:
if (key_size == 128)
encStr = "Aria(128)";
else if (key_size == 192)
encStr = "Aria(192)";
else if (key_size == 256)
encStr = "Aria(256)";
else
encStr = "Aria(?)";
break;
#endif
#ifdef HAVE_CAMELLIA
case wolfssl_camellia:
if (key_size == 128)
encStr = "Camellia(128)";
else if (key_size == 256)
encStr = "Camellia(256)";
else
encStr = "Camellia(?)";
break;
#endif
default:
encStr = "unknown";
break;
}
return encStr;
}
static WC_INLINE const char* wolfssl_mac_to_string(int mac)
{
const char* macStr;
switch (mac) {
case no_mac:
macStr = "None";
break;
#ifndef NO_MD5
case md5_mac:
macStr = "MD5";
break;
#endif
#ifndef NO_SHA
case sha_mac:
macStr = "SHA1";
break;
#endif
#ifdef HAVE_SHA224
case sha224_mac:
macStr = "SHA224";
break;
#endif
#ifndef NO_SHA256
case sha256_mac:
macStr = "SHA256";
break;
#endif
#ifdef HAVE_SHA384
case sha384_mac:
macStr = "SHA384";
break;
#endif
#ifdef HAVE_SHA512
case sha512_mac:
macStr = "SHA512";
break;
#endif
default:
macStr = "unknown";
break;
}
return macStr;
}
char* wolfSSL_CIPHER_description(const WOLFSSL_CIPHER* cipher, char* in,
int len)
{
char *ret = in;
const char *keaStr, *authStr, *encStr, *macStr;
size_t strLen;
WOLFSSL_ENTER("wolfSSL_CIPHER_description");
if (cipher == NULL || in == NULL)
return NULL;
#if defined(WOLFSSL_QT) || defined(OPENSSL_ALL)
/* if cipher is in the stack from wolfSSL_get_ciphers_compat then
* Return the description based on cipher_names[cipher->offset]
*/
if (cipher->in_stack == TRUE) {
wolfSSL_sk_CIPHER_description((WOLFSSL_CIPHER*)cipher);
XSTRNCPY(in,cipher->description,len);
return ret;
}
#endif
/* Get the cipher description based on the SSL session cipher */
keaStr = wolfssl_kea_to_string(cipher->ssl->specs.kea);
authStr = wolfssl_sigalg_to_string(cipher->ssl->specs.sig_algo);
encStr = wolfssl_cipher_to_string(cipher->ssl->specs.bulk_cipher_algorithm,
cipher->ssl->specs.key_size);
macStr = wolfssl_mac_to_string(cipher->ssl->specs.mac_algorithm);
/* Build up the string by copying onto the end. */
XSTRNCPY(in, wolfSSL_CIPHER_get_name(cipher), len);
in[len-1] = '\0'; strLen = XSTRLEN(in); len -= (int)strLen; in += strLen;
XSTRNCPY(in, " ", len);
in[len-1] = '\0'; strLen = XSTRLEN(in); len -= (int)strLen; in += strLen;
XSTRNCPY(in, wolfSSL_get_version(cipher->ssl), len);
in[len-1] = '\0'; strLen = XSTRLEN(in); len -= (int)strLen; in += strLen;
XSTRNCPY(in, " Kx=", len);
in[len-1] = '\0'; strLen = XSTRLEN(in); len -= (int)strLen; in += strLen;
XSTRNCPY(in, keaStr, len);
in[len-1] = '\0'; strLen = XSTRLEN(in); len -= (int)strLen; in += strLen;
XSTRNCPY(in, " Au=", len);
in[len-1] = '\0'; strLen = XSTRLEN(in); len -= (int)strLen; in += strLen;
XSTRNCPY(in, authStr, len);
in[len-1] = '\0'; strLen = XSTRLEN(in); len -= (int)strLen; in += strLen;
XSTRNCPY(in, " Enc=", len);
in[len-1] = '\0'; strLen = XSTRLEN(in); len -= (int)strLen; in += strLen;
XSTRNCPY(in, encStr, len);
in[len-1] = '\0'; strLen = XSTRLEN(in); len -= (int)strLen; in += strLen;
XSTRNCPY(in, " Mac=", len);
in[len-1] = '\0'; strLen = XSTRLEN(in); len -= (int)strLen; in += strLen;
XSTRNCPY(in, macStr, len);
in[len-1] = '\0';
return ret;
}
#ifndef NO_WOLFSSL_STUB
int wolfSSL_OCSP_parse_url(char* url, char** host, char** port, char** path,
int* ssl)
{
(void)url;
(void)host;
(void)port;
(void)path;
(void)ssl;
WOLFSSL_STUB("OCSP_parse_url");
return 0;
}
#endif
#ifndef NO_WOLFSSL_STUB
WOLFSSL_COMP_METHOD* wolfSSL_COMP_zlib(void)
{
WOLFSSL_STUB("COMP_zlib");
return 0;
}
#endif
#ifndef NO_WOLFSSL_STUB
WOLFSSL_COMP_METHOD* wolfSSL_COMP_rle(void)
{
WOLFSSL_STUB("COMP_rle");
return 0;
}
#endif
#ifndef NO_WOLFSSL_STUB
int wolfSSL_COMP_add_compression_method(int method, void* data)
{
(void)method;
(void)data;
WOLFSSL_STUB("COMP_add_compression_method");
return 0;
}
#endif
/* wolfSSL_set_dynlock_create_callback
* CRYPTO_set_dynlock_create_callback has been deprecated since openSSL 1.0.1.
* This function exists for compatibility purposes because wolfSSL satisfies
* thread safety without relying on the callback.
*/
void wolfSSL_set_dynlock_create_callback(WOLFSSL_dynlock_value* (*f)(
const char*, int))
{
WOLFSSL_STUB("CRYPTO_set_dynlock_create_callback");
(void)f;
}
/* wolfSSL_set_dynlock_lock_callback
* CRYPTO_set_dynlock_lock_callback has been deprecated since openSSL 1.0.1.
* This function exists for compatibility purposes because wolfSSL satisfies
* thread safety without relying on the callback.
*/
void wolfSSL_set_dynlock_lock_callback(
void (*f)(int, WOLFSSL_dynlock_value*, const char*, int))
{
WOLFSSL_STUB("CRYPTO_set_set_dynlock_lock_callback");
(void)f;
}
/* wolfSSL_set_dynlock_destroy_callback
* CRYPTO_set_dynlock_destroy_callback has been deprecated since openSSL 1.0.1.
* This function exists for compatibility purposes because wolfSSL satisfies
* thread safety without relying on the callback.
*/
void wolfSSL_set_dynlock_destroy_callback(
void (*f)(WOLFSSL_dynlock_value*, const char*, int))
{
WOLFSSL_STUB("CRYPTO_set_set_dynlock_destroy_callback");
(void)f;
}
#endif /* OPENSSL_EXTRA */
#ifdef OPENSSL_EXTRA
#ifndef NO_CERTS
#if !defined(NO_ASN) && !defined(NO_PWDBASED)
/* Copies unencrypted DER key buffer into "der". If "der" is null then the size
* of buffer needed is returned. If *der == NULL then it allocates a buffer.
* NOTE: This also advances the "der" pointer to be at the end of buffer.
*
* Returns size of key buffer on success
*/
int wolfSSL_i2d_PrivateKey(const WOLFSSL_EVP_PKEY* key, unsigned char** der)
{
return wolfSSL_EVP_PKEY_get_der(key, der);
}
int wolfSSL_i2d_PublicKey(const WOLFSSL_EVP_PKEY *key, unsigned char **der)
{
#if !defined(NO_RSA) || defined(HAVE_ECC)
#ifdef HAVE_ECC
unsigned char *local_der = NULL;
word32 local_derSz = 0;
unsigned char *pub_der = NULL;
ecc_key *eccKey = NULL;
word32 inOutIdx = 0;
#endif
word32 pub_derSz = 0;
int ret;
int key_type = 0;
if (key == NULL) {
return WOLFSSL_FATAL_ERROR;
}
key_type = key->type;
if ((key_type != EVP_PKEY_EC) && (key_type != EVP_PKEY_RSA)) {
return WOLFSSL_FATAL_ERROR;
}
#ifndef NO_RSA
if (key_type == EVP_PKEY_RSA) {
return wolfSSL_i2d_RSAPublicKey(key->rsa, der);
}
#endif
/* Now that RSA is taken care of, we only need to consider the ECC case. */
#ifdef HAVE_ECC
/* We need to get the DER, then convert it to a public key. But what we get
* might be a buffered private key so we need to decode it and then encode
* the public part. */
ret = wolfSSL_EVP_PKEY_get_der(key, &local_der);
if (ret <= 0) {
/* In this case, there was no buffered DER at all. This could be the
* case where the key that was passed in was generated. So now we
* have to create the local DER. */
local_derSz = (word32)wolfSSL_i2d_ECPrivateKey(key->ecc, &local_der);
if (local_derSz == 0) {
ret = WOLFSSL_FATAL_ERROR;
}
} else {
local_derSz = (word32)ret;
ret = 0;
}
if (ret == 0) {
eccKey = (ecc_key *)XMALLOC(sizeof(*eccKey), NULL, DYNAMIC_TYPE_ECC);
if (eccKey == NULL) {
WOLFSSL_MSG("Failed to allocate key buffer.");
ret = WOLFSSL_FATAL_ERROR;
}
}
if (ret == 0) {
ret = wc_ecc_init(eccKey);
}
if (ret == 0) {
ret = wc_EccPublicKeyDecode(local_der, &inOutIdx, eccKey, local_derSz);
if (ret < 0) {
/* We now try again as x.963 [point type][x][opt y]. */
ret = wc_ecc_import_x963(local_der, local_derSz, eccKey);
}
}
if (ret == 0) {
pub_derSz = (word32)wc_EccPublicKeyDerSize(eccKey, 0);
if ((int)pub_derSz <= 0) {
ret = WOLFSSL_FAILURE;
}
}
if (ret == 0) {
pub_der = (unsigned char*)XMALLOC(pub_derSz, NULL,
DYNAMIC_TYPE_PUBLIC_KEY);
if (pub_der == NULL) {
WOLFSSL_MSG("Failed to allocate output buffer.");
ret = WOLFSSL_FATAL_ERROR;
}
}
if (ret == 0) {
pub_derSz = (word32)wc_EccPublicKeyToDer(eccKey, pub_der, pub_derSz, 0);
if ((int)pub_derSz <= 0) {
ret = WOLFSSL_FATAL_ERROR;
}
}
/* This block is for actually returning the DER of the public key */
if ((ret == 0) && (der != NULL)) {
if (*der == NULL) {
*der = (unsigned char*)XMALLOC(pub_derSz, NULL,
DYNAMIC_TYPE_PUBLIC_KEY);
if (*der == NULL) {
WOLFSSL_MSG("Failed to allocate output buffer.");
ret = WOLFSSL_FATAL_ERROR;
}
if (ret == 0) {
XMEMCPY(*der, pub_der, pub_derSz);
}
}
else {
XMEMCPY(*der, pub_der, pub_derSz);
*der += pub_derSz;
}
}
XFREE(pub_der, NULL, DYNAMIC_TYPE_PUBLIC_KEY);
XFREE(local_der, NULL, DYNAMIC_TYPE_PUBLIC_KEY);
wc_ecc_free(eccKey);
XFREE(eccKey, NULL, DYNAMIC_TYPE_ECC);
#else
ret = WOLFSSL_FATAL_ERROR;
#endif /* HAVE_ECC */
if (ret == 0) {
return (int)pub_derSz;
}
return ret;
#else
return WOLFSSL_FATAL_ERROR;
#endif /* !NO_RSA || HAVE_ECC */
}
#endif /* !NO_ASN && !NO_PWDBASED */
#endif /* !NO_CERTS */
#endif /* OPENSSL_EXTRA */
#ifdef OPENSSL_EXTRA
/* Sets the DNS hostname to name.
* Hostname is cleared if name is NULL or empty. */
int wolfSSL_set1_host(WOLFSSL * ssl, const char* name)
{
if (ssl == NULL) {
return WOLFSSL_FAILURE;
}
return wolfSSL_X509_VERIFY_PARAM_set1_host(ssl->param, name, 0);
}
/******************************************************************************
* wolfSSL_CTX_set1_param - set a pointer to the SSL verification parameters
*
* RETURNS:
* WOLFSSL_SUCCESS on success, otherwise returns WOLFSSL_FAILURE
* Note: Returns WOLFSSL_SUCCESS, in case either parameter is NULL,
* same as openssl.
*/
int wolfSSL_CTX_set1_param(WOLFSSL_CTX* ctx, WOLFSSL_X509_VERIFY_PARAM *vpm)
{
if (ctx == NULL || vpm == NULL)
return WOLFSSL_SUCCESS;
return wolfSSL_X509_VERIFY_PARAM_set1(ctx->param, vpm);
}
/******************************************************************************
* wolfSSL_CTX/_get0_param - return a pointer to the SSL verification parameters
*
* RETURNS:
* returns pointer to the SSL verification parameters on success,
* otherwise returns NULL
*/
WOLFSSL_X509_VERIFY_PARAM* wolfSSL_CTX_get0_param(WOLFSSL_CTX* ctx)
{
if (ctx == NULL) {
return NULL;
}
return ctx->param;
}
WOLFSSL_X509_VERIFY_PARAM* wolfSSL_get0_param(WOLFSSL* ssl)
{
if (ssl == NULL) {
return NULL;
}
return ssl->param;
}
#endif /* OPENSSL_EXTRA */
#if defined(OPENSSL_EXTRA) || defined(WOLFSSL_WPAS_SMALL)
/* Gets an index to store SSL structure at.
*
* Returns positive index on success and negative values on failure
*/
int wolfSSL_get_ex_data_X509_STORE_CTX_idx(void)
{
WOLFSSL_ENTER("wolfSSL_get_ex_data_X509_STORE_CTX_idx");
/* store SSL at index 0 */
return 0;
}
#endif /* OPENSSL_EXTRA || WOLFSSL_WPAS_SMALL */
#ifdef OPENSSL_EXTRA
/* Sets a function callback that will send information about the state of all
* WOLFSSL objects that have been created by the WOLFSSL_CTX structure passed
* in.
*
* ctx WOLFSSL_CTX structure to set callback function in
* f callback function to use
*/
void wolfSSL_CTX_set_info_callback(WOLFSSL_CTX* ctx,
void (*f)(const WOLFSSL* ssl, int type, int val))
{
WOLFSSL_ENTER("wolfSSL_CTX_set_info_callback");
if (ctx == NULL) {
WOLFSSL_MSG("Bad function argument");
}
else {
ctx->CBIS = f;
}
}
void wolfSSL_set_info_callback(WOLFSSL* ssl,
void (*f)(const WOLFSSL* ssl, int type, int val))
{
WOLFSSL_ENTER("wolfSSL_set_info_callback");
if (ssl == NULL) {
WOLFSSL_MSG("Bad function argument");
}
else {
ssl->CBIS = f;
}
}
unsigned long wolfSSL_ERR_peek_error(void)
{
WOLFSSL_ENTER("wolfSSL_ERR_peek_error");
return wolfSSL_ERR_peek_error_line_data(NULL, NULL, NULL, NULL);
}
int wolfSSL_ERR_GET_LIB(unsigned long err)
{
unsigned long value;
value = (err & 0xFFFFFFL);
switch (value) {
case -WC_NO_ERR_TRACE(PARSE_ERROR):
return ERR_LIB_SSL;
case -WC_NO_ERR_TRACE(ASN_NO_PEM_HEADER):
case PEM_R_NO_START_LINE:
case PEM_R_PROBLEMS_GETTING_PASSWORD:
case PEM_R_BAD_PASSWORD_READ:
case PEM_R_BAD_DECRYPT:
return ERR_LIB_PEM;
case EVP_R_BAD_DECRYPT:
case EVP_R_BN_DECODE_ERROR:
case EVP_R_DECODE_ERROR:
case EVP_R_PRIVATE_KEY_DECODE_ERROR:
return ERR_LIB_EVP;
case ASN1_R_HEADER_TOO_LONG:
return ERR_LIB_ASN1;
default:
return 0;
}
}
/* This function is to find global error values that are the same through out
* all library version. With wolfSSL having only one set of error codes the
* return value is pretty straight forward. The only thing needed is all wolfSSL
* error values are typically negative.
*
* Returns the error reason
*/
int wolfSSL_ERR_GET_REASON(unsigned long err)
{
int ret = (int)err;
WOLFSSL_ENTER("wolfSSL_ERR_GET_REASON");
#if defined(OPENSSL_ALL) || defined(WOLFSSL_NGINX) || defined(WOLFSSL_HAPROXY)
/* Nginx looks for this error to know to stop parsing certificates.
* Same for HAProxy. */
if (err == ((ERR_LIB_PEM << 24) | PEM_R_NO_START_LINE) ||
((err & 0xFFFFFFL) == -ASN_NO_PEM_HEADER) ||
((err & 0xFFFL) == PEM_R_NO_START_LINE ))
return PEM_R_NO_START_LINE;
if (err == ((ERR_LIB_SSL << 24) | -SSL_R_HTTP_REQUEST))
return SSL_R_HTTP_REQUEST;
#endif
#if defined(OPENSSL_ALL) && defined(WOLFSSL_PYTHON)
if (err == ((ERR_LIB_ASN1 << 24) | ASN1_R_HEADER_TOO_LONG))
return ASN1_R_HEADER_TOO_LONG;
#endif
/* check if error value is in range of wolfSSL errors */
ret = 0 - ret; /* setting as negative value */
/* wolfCrypt range is less than MAX (-100)
wolfSSL range is MIN (-300) and lower */
if (ret < MAX_CODE_E && ret > MIN_CODE_E) {
return ret;
}
else {
WOLFSSL_MSG("Not in range of typical error values");
ret = (int)err;
}
return ret;
}
/* returns a string that describes the alert
*
* alertID the alert value to look up
*/
const char* wolfSSL_alert_type_string_long(int alertID)
{
WOLFSSL_ENTER("wolfSSL_alert_type_string_long");
return AlertTypeToString(alertID);
}
const char* wolfSSL_alert_desc_string_long(int alertID)
{
WOLFSSL_ENTER("wolfSSL_alert_desc_string_long");
return AlertTypeToString(alertID);
}
#define STATE_STRINGS_PROTO(s) \
{ \
{"SSLv3 " s, \
"SSLv3 " s, \
"SSLv3 " s}, \
{"TLSv1 " s, \
"TLSv1 " s, \
"TLSv1 " s}, \
{"TLSv1_1 " s, \
"TLSv1_1 " s, \
"TLSv1_1 " s}, \
{"TLSv1_2 " s, \
"TLSv1_2 " s, \
"TLSv1_2 " s}, \
{"TLSv1_3 " s, \
"TLSv1_3 " s, \
"TLSv1_3 " s}, \
{"DTLSv1 " s, \
"DTLSv1 " s, \
"DTLSv1 " s}, \
{"DTLSv1_2 " s, \
"DTLSv1_2 " s, \
"DTLSv1_2 " s}, \
{"DTLSv1_3 " s, \
"DTLSv1_3 " s, \
"DTLSv1_3 " s}, \
}
#define STATE_STRINGS_PROTO_RW(s) \
{ \
{"SSLv3 read " s, \
"SSLv3 write " s, \
"SSLv3 " s}, \
{"TLSv1 read " s, \
"TLSv1 write " s, \
"TLSv1 " s}, \
{"TLSv1_1 read " s, \
"TLSv1_1 write " s, \
"TLSv1_1 " s}, \
{"TLSv1_2 read " s, \
"TLSv1_2 write " s, \
"TLSv1_2 " s}, \
{"TLSv1_3 read " s, \
"TLSv1_3 write " s, \
"TLSv1_3 " s}, \
{"DTLSv1 read " s, \
"DTLSv1 write " s, \
"DTLSv1 " s}, \
{"DTLSv1_2 read " s, \
"DTLSv1_2 write " s, \
"DTLSv1_2 " s}, \
{"DTLSv1_3 read " s, \
"DTLSv1_3 write " s, \
"DTLSv1_3 " s}, \
}
/* Gets the current state of the WOLFSSL structure
*
* ssl WOLFSSL structure to get state of
*
* Returns a human readable string of the WOLFSSL structure state
*/
const char* wolfSSL_state_string_long(const WOLFSSL* ssl)
{
static const char* OUTPUT_STR[24][8][3] = {
STATE_STRINGS_PROTO("Initialization"),
STATE_STRINGS_PROTO_RW("Server Hello Request"),
STATE_STRINGS_PROTO_RW("Server Hello Verify Request"),
STATE_STRINGS_PROTO_RW("Server Hello Retry Request"),
STATE_STRINGS_PROTO_RW("Server Hello"),
STATE_STRINGS_PROTO_RW("Server Certificate Status"),
STATE_STRINGS_PROTO_RW("Server Encrypted Extensions"),
STATE_STRINGS_PROTO_RW("Server Session Ticket"),
STATE_STRINGS_PROTO_RW("Server Certificate Request"),
STATE_STRINGS_PROTO_RW("Server Cert"),
STATE_STRINGS_PROTO_RW("Server Key Exchange"),
STATE_STRINGS_PROTO_RW("Server Hello Done"),
STATE_STRINGS_PROTO_RW("Server Change CipherSpec"),
STATE_STRINGS_PROTO_RW("Server Finished"),
STATE_STRINGS_PROTO_RW("server Key Update"),
STATE_STRINGS_PROTO_RW("Client Hello"),
STATE_STRINGS_PROTO_RW("Client Key Exchange"),
STATE_STRINGS_PROTO_RW("Client Cert"),
STATE_STRINGS_PROTO_RW("Client Change CipherSpec"),
STATE_STRINGS_PROTO_RW("Client Certificate Verify"),
STATE_STRINGS_PROTO_RW("Client End Of Early Data"),
STATE_STRINGS_PROTO_RW("Client Finished"),
STATE_STRINGS_PROTO_RW("Client Key Update"),
STATE_STRINGS_PROTO("Handshake Done"),
};
enum ProtocolVer {
SSL_V3 = 0,
TLS_V1,
TLS_V1_1,
TLS_V1_2,
TLS_V1_3,
DTLS_V1,
DTLS_V1_2,
DTLS_V1_3,
UNKNOWN = 100
};
enum IOMode {
SS_READ = 0,
SS_WRITE,
SS_NEITHER
};
enum SslState {
ss_null_state = 0,
ss_server_hellorequest,
ss_server_helloverify,
ss_server_helloretryrequest,
ss_server_hello,
ss_server_certificatestatus,
ss_server_encryptedextensions,
ss_server_sessionticket,
ss_server_certrequest,
ss_server_cert,
ss_server_keyexchange,
ss_server_hellodone,
ss_server_changecipherspec,
ss_server_finished,
ss_server_keyupdate,
ss_client_hello,
ss_client_keyexchange,
ss_client_cert,
ss_client_changecipherspec,
ss_client_certverify,
ss_client_endofearlydata,
ss_client_finished,
ss_client_keyupdate,
ss_handshake_done
};
int protocol = 0;
int cbmode = 0;
int state = 0;
WOLFSSL_ENTER("wolfSSL_state_string_long");
if (ssl == NULL) {
WOLFSSL_MSG("Null argument passed in");
return NULL;
}
/* Get state of callback */
if (ssl->cbmode == SSL_CB_MODE_WRITE) {
cbmode = SS_WRITE;
}
else if (ssl->cbmode == SSL_CB_MODE_READ) {
cbmode = SS_READ;
}
else {
cbmode = SS_NEITHER;
}
/* Get protocol version */
switch (ssl->version.major) {
case SSLv3_MAJOR:
switch (ssl->version.minor) {
case SSLv3_MINOR:
protocol = SSL_V3;
break;
case TLSv1_MINOR:
protocol = TLS_V1;
break;
case TLSv1_1_MINOR:
protocol = TLS_V1_1;
break;
case TLSv1_2_MINOR:
protocol = TLS_V1_2;
break;
case TLSv1_3_MINOR:
protocol = TLS_V1_3;
break;
default:
protocol = UNKNOWN;
}
break;
case DTLS_MAJOR:
switch (ssl->version.minor) {
case DTLS_MINOR:
protocol = DTLS_V1;
break;
case DTLSv1_2_MINOR:
protocol = DTLS_V1_2;
break;
case DTLSv1_3_MINOR:
protocol = DTLS_V1_3;
break;
default:
protocol = UNKNOWN;
}
break;
default:
protocol = UNKNOWN;
}
/* accept process */
if (ssl->cbmode == SSL_CB_MODE_READ) {
state = ssl->cbtype;
switch (state) {
case hello_request:
state = ss_server_hellorequest;
break;
case client_hello:
state = ss_client_hello;
break;
case server_hello:
state = ss_server_hello;
break;
case hello_verify_request:
state = ss_server_helloverify;
break;
case session_ticket:
state = ss_server_sessionticket;
break;
case end_of_early_data:
state = ss_client_endofearlydata;
break;
case hello_retry_request:
state = ss_server_helloretryrequest;
break;
case encrypted_extensions:
state = ss_server_encryptedextensions;
break;
case certificate:
if (ssl->options.side == WOLFSSL_SERVER_END)
state = ss_client_cert;
else if (ssl->options.side == WOLFSSL_CLIENT_END)
state = ss_server_cert;
else {
WOLFSSL_MSG("Unknown State");
state = ss_null_state;
}
break;
case server_key_exchange:
state = ss_server_keyexchange;
break;
case certificate_request:
state = ss_server_certrequest;
break;
case server_hello_done:
state = ss_server_hellodone;
break;
case certificate_verify:
state = ss_client_certverify;
break;
case client_key_exchange:
state = ss_client_keyexchange;
break;
case finished:
if (ssl->options.side == WOLFSSL_SERVER_END)
state = ss_client_finished;
else if (ssl->options.side == WOLFSSL_CLIENT_END)
state = ss_server_finished;
else {
WOLFSSL_MSG("Unknown State");
state = ss_null_state;
}
break;
case certificate_status:
state = ss_server_certificatestatus;
break;
case key_update:
if (ssl->options.side == WOLFSSL_SERVER_END)
state = ss_client_keyupdate;
else if (ssl->options.side == WOLFSSL_CLIENT_END)
state = ss_server_keyupdate;
else {
WOLFSSL_MSG("Unknown State");
state = ss_null_state;
}
break;
case change_cipher_hs:
if (ssl->options.side == WOLFSSL_SERVER_END)
state = ss_client_changecipherspec;
else if (ssl->options.side == WOLFSSL_CLIENT_END)
state = ss_server_changecipherspec;
else {
WOLFSSL_MSG("Unknown State");
state = ss_null_state;
}
break;
default:
WOLFSSL_MSG("Unknown State");
state = ss_null_state;
}
}
else {
/* Send process */
if (ssl->options.side == WOLFSSL_SERVER_END)
state = ssl->options.serverState;
else
state = ssl->options.clientState;
switch (state) {
case SERVER_HELLOVERIFYREQUEST_COMPLETE:
state = ss_server_helloverify;
break;
case SERVER_HELLO_RETRY_REQUEST_COMPLETE:
state = ss_server_helloretryrequest;
break;
case SERVER_HELLO_COMPLETE:
state = ss_server_hello;
break;
case SERVER_ENCRYPTED_EXTENSIONS_COMPLETE:
state = ss_server_encryptedextensions;
break;
case SERVER_CERT_COMPLETE:
state = ss_server_cert;
break;
case SERVER_KEYEXCHANGE_COMPLETE:
state = ss_server_keyexchange;
break;
case SERVER_HELLODONE_COMPLETE:
state = ss_server_hellodone;
break;
case SERVER_CHANGECIPHERSPEC_COMPLETE:
state = ss_server_changecipherspec;
break;
case SERVER_FINISHED_COMPLETE:
state = ss_server_finished;
break;
case CLIENT_HELLO_RETRY:
case CLIENT_HELLO_COMPLETE:
state = ss_client_hello;
break;
case CLIENT_KEYEXCHANGE_COMPLETE:
state = ss_client_keyexchange;
break;
case CLIENT_CHANGECIPHERSPEC_COMPLETE:
state = ss_client_changecipherspec;
break;
case CLIENT_FINISHED_COMPLETE:
state = ss_client_finished;
break;
case HANDSHAKE_DONE:
state = ss_handshake_done;
break;
default:
WOLFSSL_MSG("Unknown State");
state = ss_null_state;
}
}
if (protocol == UNKNOWN) {
WOLFSSL_MSG("Unknown protocol");
return "";
}
else {
return OUTPUT_STR[state][protocol][cbmode];
}
}
#endif /* OPENSSL_EXTRA */
static long wolf_set_options(long old_op, long op)
{
/* if SSL_OP_ALL then turn all bug workarounds on */
if ((op & WOLFSSL_OP_ALL) == WOLFSSL_OP_ALL) {
WOLFSSL_MSG("\tSSL_OP_ALL");
}
/* by default cookie exchange is on with DTLS */
if ((op & WOLFSSL_OP_COOKIE_EXCHANGE) == WOLFSSL_OP_COOKIE_EXCHANGE) {
WOLFSSL_MSG("\tSSL_OP_COOKIE_EXCHANGE : on by default");
}
if ((op & WOLFSSL_OP_NO_SSLv2) == WOLFSSL_OP_NO_SSLv2) {
WOLFSSL_MSG("\tWOLFSSL_OP_NO_SSLv2 : wolfSSL does not support SSLv2");
}
#ifdef SSL_OP_NO_TLSv1_3
if ((op & WOLFSSL_OP_NO_TLSv1_3) == WOLFSSL_OP_NO_TLSv1_3) {
WOLFSSL_MSG("\tSSL_OP_NO_TLSv1_3");
}
#endif
if ((op & WOLFSSL_OP_NO_TLSv1_2) == WOLFSSL_OP_NO_TLSv1_2) {
WOLFSSL_MSG("\tSSL_OP_NO_TLSv1_2");
}
if ((op & WOLFSSL_OP_NO_TLSv1_1) == WOLFSSL_OP_NO_TLSv1_1) {
WOLFSSL_MSG("\tSSL_OP_NO_TLSv1_1");
}
if ((op & WOLFSSL_OP_NO_TLSv1) == WOLFSSL_OP_NO_TLSv1) {
WOLFSSL_MSG("\tSSL_OP_NO_TLSv1");
}
if ((op & WOLFSSL_OP_NO_SSLv3) == WOLFSSL_OP_NO_SSLv3) {
WOLFSSL_MSG("\tSSL_OP_NO_SSLv3");
}
if ((op & WOLFSSL_OP_CIPHER_SERVER_PREFERENCE) ==
WOLFSSL_OP_CIPHER_SERVER_PREFERENCE) {
WOLFSSL_MSG("\tWOLFSSL_OP_CIPHER_SERVER_PREFERENCE");
}
if ((op & WOLFSSL_OP_NO_COMPRESSION) == WOLFSSL_OP_NO_COMPRESSION) {
#ifdef HAVE_LIBZ
WOLFSSL_MSG("SSL_OP_NO_COMPRESSION");
#else
WOLFSSL_MSG("SSL_OP_NO_COMPRESSION: compression not compiled in");
#endif
}
return old_op | op;
}
static int FindHashSig(const Suites* suites, byte first, byte second)
{
word16 i;
if (suites == NULL || suites->hashSigAlgoSz == 0) {
WOLFSSL_MSG("Suites pointer error or suiteSz 0");
return SUITES_ERROR;
}
for (i = 0; i < suites->hashSigAlgoSz-1; i += 2) {
if (suites->hashSigAlgo[i] == first &&
suites->hashSigAlgo[i+1] == second )
return i;
}
return MATCH_SUITE_ERROR;
}
long wolfSSL_set_options(WOLFSSL* ssl, long op)
{
word16 haveRSA = 1;
word16 havePSK = 0;
int keySz = 0;
WOLFSSL_ENTER("wolfSSL_set_options");
if (ssl == NULL) {
return 0;
}
ssl->options.mask = wolf_set_options(ssl->options.mask, op);
if ((ssl->options.mask & WOLFSSL_OP_NO_TLSv1_3) == WOLFSSL_OP_NO_TLSv1_3) {
WOLFSSL_MSG("Disabling TLS 1.3");
if (ssl->version.minor == TLSv1_3_MINOR)
ssl->version.minor = TLSv1_2_MINOR;
}
if ((ssl->options.mask & WOLFSSL_OP_NO_TLSv1_2) == WOLFSSL_OP_NO_TLSv1_2) {
WOLFSSL_MSG("Disabling TLS 1.2");
if (ssl->version.minor == TLSv1_2_MINOR)
ssl->version.minor = TLSv1_1_MINOR;
}
if ((ssl->options.mask & WOLFSSL_OP_NO_TLSv1_1) == WOLFSSL_OP_NO_TLSv1_1) {
WOLFSSL_MSG("Disabling TLS 1.1");
if (ssl->version.minor == TLSv1_1_MINOR)
ssl->version.minor = TLSv1_MINOR;
}
if ((ssl->options.mask & WOLFSSL_OP_NO_TLSv1) == WOLFSSL_OP_NO_TLSv1) {
WOLFSSL_MSG("Disabling TLS 1.0");
if (ssl->version.minor == TLSv1_MINOR)
ssl->version.minor = SSLv3_MINOR;
}
if ((ssl->options.mask & WOLFSSL_OP_NO_COMPRESSION)
== WOLFSSL_OP_NO_COMPRESSION) {
#ifdef HAVE_LIBZ
ssl->options.usingCompression = 0;
#endif
}
#if defined(HAVE_SESSION_TICKET) && (defined(OPENSSL_EXTRA) \
|| defined(HAVE_WEBSERVER) || defined(WOLFSSL_WPAS_SMALL))
if ((ssl->options.mask & WOLFSSL_OP_NO_TICKET) == WOLFSSL_OP_NO_TICKET) {
ssl->options.noTicketTls12 = 1;
}
#endif
/* in the case of a version change the cipher suites should be reset */
#ifndef NO_PSK
havePSK = ssl->options.havePSK;
#endif
#ifdef NO_RSA
haveRSA = 0;
#endif
#ifndef NO_CERTS
keySz = ssl->buffers.keySz;
#endif
if (ssl->options.side != WOLFSSL_NEITHER_END) {
if (AllocateSuites(ssl) != 0)
return 0;
if (!ssl->suites->setSuites) {
InitSuites(ssl->suites, ssl->version, keySz, haveRSA,
havePSK, ssl->options.haveDH, ssl->options.haveECDSAsig,
ssl->options.haveECC, TRUE, ssl->options.haveStaticECC,
ssl->options.haveFalconSig,
ssl->options.haveDilithiumSig, ssl->options.useAnon,
TRUE, ssl->options.side);
}
else {
/* Only preserve overlapping suites */
Suites tmpSuites;
word16 in, out, haveECDSAsig = 0;
word16 haveStaticECC = ssl->options.haveStaticECC;
#ifdef NO_RSA
haveECDSAsig = 1;
haveStaticECC = 1;
#endif
XMEMSET(&tmpSuites, 0, sizeof(Suites));
/* Get all possible ciphers and sigalgs for the version. Following
* options limit the allowed ciphers so let's try to get as many as
* possible.
* - haveStaticECC turns off haveRSA
* - haveECDSAsig turns off haveRSAsig */
InitSuites(&tmpSuites, ssl->version, 0, 1, 1, 1, haveECDSAsig, 1, 1,
haveStaticECC, 1, 1, 1, 1, ssl->options.side);
for (in = 0, out = 0; in < ssl->suites->suiteSz; in += SUITE_LEN) {
if (FindSuite(&tmpSuites, ssl->suites->suites[in],
ssl->suites->suites[in+1]) >= 0) {
ssl->suites->suites[out] = ssl->suites->suites[in];
ssl->suites->suites[out+1] = ssl->suites->suites[in+1];
out += SUITE_LEN;
}
}
ssl->suites->suiteSz = out;
for (in = 0, out = 0; in < ssl->suites->hashSigAlgoSz; in += 2) {
if (FindHashSig(&tmpSuites, ssl->suites->hashSigAlgo[in],
ssl->suites->hashSigAlgo[in+1]) >= 0) {
ssl->suites->hashSigAlgo[out] =
ssl->suites->hashSigAlgo[in];
ssl->suites->hashSigAlgo[out+1] =
ssl->suites->hashSigAlgo[in+1];
out += 2;
}
}
ssl->suites->hashSigAlgoSz = out;
}
}
return ssl->options.mask;
}
long wolfSSL_get_options(const WOLFSSL* ssl)
{
WOLFSSL_ENTER("wolfSSL_get_options");
if(ssl == NULL)
return WOLFSSL_FAILURE;
return ssl->options.mask;
}
#if defined(HAVE_SECURE_RENEGOTIATION) \
|| defined(HAVE_SERVER_RENEGOTIATION_INFO)
/* clears the counter for number of renegotiations done
* returns the current count before it is cleared */
long wolfSSL_clear_num_renegotiations(WOLFSSL *s)
{
long total;
WOLFSSL_ENTER("wolfSSL_clear_num_renegotiations");
if (s == NULL)
return 0;
total = s->secure_rene_count;
s->secure_rene_count = 0;
return total;
}
/* return the number of renegotiations since wolfSSL_new */
long wolfSSL_total_renegotiations(WOLFSSL *s)
{
WOLFSSL_ENTER("wolfSSL_total_renegotiations");
return wolfSSL_num_renegotiations(s);
}
/* return the number of renegotiations since wolfSSL_new */
long wolfSSL_num_renegotiations(WOLFSSL* s)
{
if (s == NULL) {
return 0;
}
return s->secure_rene_count;
}
/* Is there a renegotiation currently in progress? */
int wolfSSL_SSL_renegotiate_pending(WOLFSSL *s)
{
return s && s->options.handShakeDone &&
s->options.handShakeState != HANDSHAKE_DONE ? 1 : 0;
}
#endif /* HAVE_SECURE_RENEGOTIATION || HAVE_SERVER_RENEGOTIATION_INFO */
#ifdef OPENSSL_EXTRA
long wolfSSL_clear_options(WOLFSSL* ssl, long opt)
{
WOLFSSL_ENTER("wolfSSL_clear_options");
if(ssl == NULL)
return WOLFSSL_FAILURE;
ssl->options.mask &= ~opt;
return ssl->options.mask;
}
#ifdef HAVE_PK_CALLBACKS
long wolfSSL_set_tlsext_debug_arg(WOLFSSL* ssl, void *arg)
{
if (ssl == NULL) {
return WOLFSSL_FAILURE;
}
ssl->loggingCtx = arg;
return WOLFSSL_SUCCESS;
}
#endif /* HAVE_PK_CALLBACKS */
/*** TBD ***/
#ifndef NO_WOLFSSL_STUB
int wolfSSL_sk_SSL_COMP_zero(WOLFSSL_STACK* st)
{
(void)st;
WOLFSSL_STUB("wolfSSL_sk_SSL_COMP_zero");
/* wolfSSL_set_options(ssl, SSL_OP_NO_COMPRESSION); */
return WOLFSSL_FAILURE;
}
#endif
#ifdef HAVE_CERTIFICATE_STATUS_REQUEST
long wolfSSL_set_tlsext_status_type(WOLFSSL *s, int type)
{
WOLFSSL_ENTER("wolfSSL_set_tlsext_status_type");
if (s == NULL){
return BAD_FUNC_ARG;
}
if (type == TLSEXT_STATUSTYPE_ocsp){
int r = TLSX_UseCertificateStatusRequest(&s->extensions, (byte)type, 0,
s, s->heap, s->devId);
return (long)r;
} else {
WOLFSSL_MSG(
"SSL_set_tlsext_status_type only supports TLSEXT_STATUSTYPE_ocsp type.");
return WOLFSSL_FAILURE;
}
}
long wolfSSL_get_tlsext_status_type(WOLFSSL *s)
{
TLSX* extension;
if (s == NULL)
return WOLFSSL_FATAL_ERROR;
extension = TLSX_Find(s->extensions, TLSX_STATUS_REQUEST);
return extension != NULL ? TLSEXT_STATUSTYPE_ocsp : WOLFSSL_FATAL_ERROR;
}
#endif /* HAVE_CERTIFICATE_STATUS_REQUEST */
#ifndef NO_WOLFSSL_STUB
long wolfSSL_get_tlsext_status_exts(WOLFSSL *s, void *arg)
{
(void)s;
(void)arg;
WOLFSSL_STUB("wolfSSL_get_tlsext_status_exts");
return WOLFSSL_FAILURE;
}
#endif
/*** TBD ***/
#ifndef NO_WOLFSSL_STUB
long wolfSSL_set_tlsext_status_exts(WOLFSSL *s, void *arg)
{
(void)s;
(void)arg;
WOLFSSL_STUB("wolfSSL_set_tlsext_status_exts");
return WOLFSSL_FAILURE;
}
#endif
/*** TBD ***/
#ifndef NO_WOLFSSL_STUB
long wolfSSL_get_tlsext_status_ids(WOLFSSL *s, void *arg)
{
(void)s;
(void)arg;
WOLFSSL_STUB("wolfSSL_get_tlsext_status_ids");
return WOLFSSL_FAILURE;
}
#endif
/*** TBD ***/
#ifndef NO_WOLFSSL_STUB
long wolfSSL_set_tlsext_status_ids(WOLFSSL *s, void *arg)
{
(void)s;
(void)arg;
WOLFSSL_STUB("wolfSSL_set_tlsext_status_ids");
return WOLFSSL_FAILURE;
}
#endif
#ifndef NO_WOLFSSL_STUB
/*** TBD ***/
WOLFSSL_EVP_PKEY *wolfSSL_get_privatekey(const WOLFSSL *ssl)
{
(void)ssl;
WOLFSSL_STUB("SSL_get_privatekey");
return NULL;
}
#endif
#ifndef NO_WOLFSSL_STUB
/*** TBD ***/
void SSL_CTX_set_tmp_dh_callback(WOLFSSL_CTX *ctx,
WOLFSSL_DH *(*dh) (WOLFSSL *ssl, int is_export, int keylength))
{
(void)ctx;
(void)dh;
WOLFSSL_STUB("SSL_CTX_set_tmp_dh_callback");
}
#endif
#ifndef NO_WOLFSSL_STUB
/*** TBD ***/
WOLF_STACK_OF(SSL_COMP) *SSL_COMP_get_compression_methods(void)
{
WOLFSSL_STUB("SSL_COMP_get_compression_methods");
return NULL;
}
#endif
int wolfSSL_sk_SSL_CIPHER_num(const WOLF_STACK_OF(WOLFSSL_CIPHER)* p)
{
WOLFSSL_ENTER("wolfSSL_sk_SSL_CIPHER_num");
if (p == NULL) {
return WOLFSSL_FATAL_ERROR;
}
return (int)p->num;
}
WOLFSSL_CIPHER* wolfSSL_sk_SSL_CIPHER_value(WOLFSSL_STACK* sk, int i)
{
WOLFSSL_ENTER("wolfSSL_sk_SSL_CIPHER_value");
return (WOLFSSL_CIPHER*)wolfSSL_sk_value(sk, i);
}
#if !defined(NETOS)
void ERR_load_SSL_strings(void)
{
}
#endif
#ifdef HAVE_OCSP
long wolfSSL_get_tlsext_status_ocsp_resp(WOLFSSL *s, unsigned char **resp)
{
if (s == NULL || resp == NULL)
return 0;
*resp = s->ocspResp;
return s->ocspRespSz;
}
long wolfSSL_set_tlsext_status_ocsp_resp(WOLFSSL *s, unsigned char *resp,
int len)
{
if (s == NULL)
return WOLFSSL_FAILURE;
s->ocspResp = resp;
s->ocspRespSz = len;
return WOLFSSL_SUCCESS;
}
#endif /* HAVE_OCSP */
#ifdef HAVE_MAX_FRAGMENT
#ifndef NO_WOLFSSL_CLIENT
/**
* Set max fragment tls extension
* @param c a pointer to WOLFSSL_CTX object
* @param mode maximum fragment length mode
* @return 1 on success, otherwise 0 or negative error code
*/
int wolfSSL_CTX_set_tlsext_max_fragment_length(WOLFSSL_CTX *c,
unsigned char mode)
{
if (c == NULL || (mode < WOLFSSL_MFL_2_9 || mode > WOLFSSL_MFL_2_12 ))
return BAD_FUNC_ARG;
return wolfSSL_CTX_UseMaxFragment(c, mode);
}
/**
* Set max fragment tls extension
* @param c a pointer to WOLFSSL object
* @param mode maximum fragment length mode
* @return 1 on success, otherwise 0 or negative error code
*/
int wolfSSL_set_tlsext_max_fragment_length(WOLFSSL *s, unsigned char mode)
{
if (s == NULL || (mode < WOLFSSL_MFL_2_9 || mode > WOLFSSL_MFL_2_12 ))
return BAD_FUNC_ARG;
return wolfSSL_UseMaxFragment(s, mode);
}
#endif /* NO_WOLFSSL_CLIENT */
#endif /* HAVE_MAX_FRAGMENT */
#endif /* OPENSSL_EXTRA */
#ifdef WOLFSSL_HAVE_TLS_UNIQUE
size_t wolfSSL_get_finished(const WOLFSSL *ssl, void *buf, size_t count)
{
byte len = 0;
WOLFSSL_ENTER("wolfSSL_get_finished");
if (!ssl || !buf || count < TLS_FINISHED_SZ) {
WOLFSSL_MSG("Bad parameter");
return WOLFSSL_FAILURE;
}
if (ssl->options.side == WOLFSSL_SERVER_END) {
len = ssl->serverFinished_len;
XMEMCPY(buf, ssl->serverFinished, len);
}
else {
len = ssl->clientFinished_len;
XMEMCPY(buf, ssl->clientFinished, len);
}
return len;
}
size_t wolfSSL_get_peer_finished(const WOLFSSL *ssl, void *buf, size_t count)
{
byte len = 0;
WOLFSSL_ENTER("wolfSSL_get_peer_finished");
if (!ssl || !buf || count < TLS_FINISHED_SZ) {
WOLFSSL_MSG("Bad parameter");
return WOLFSSL_FAILURE;
}
if (ssl->options.side == WOLFSSL_CLIENT_END) {
len = ssl->serverFinished_len;
XMEMCPY(buf, ssl->serverFinished, len);
}
else {
len = ssl->clientFinished_len;
XMEMCPY(buf, ssl->clientFinished, len);
}
return len;
}
#endif /* WOLFSSL_HAVE_TLS_UNIQUE */
#if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL) || \
defined(OPENSSL_ALL)
long wolfSSL_get_verify_result(const WOLFSSL *ssl)
{
if (ssl == NULL) {
return WOLFSSL_FAILURE;
}
return ssl->peerVerifyRet;
}
#endif
#ifdef OPENSSL_EXTRA
#ifndef NO_WOLFSSL_STUB
/* shows the number of accepts attempted by CTX in it's lifetime */
long wolfSSL_CTX_sess_accept(WOLFSSL_CTX* ctx)
{
WOLFSSL_STUB("wolfSSL_CTX_sess_accept");
(void)ctx;
return 0;
}
#endif
#ifndef NO_WOLFSSL_STUB
/* shows the number of connects attempted CTX in it's lifetime */
long wolfSSL_CTX_sess_connect(WOLFSSL_CTX* ctx)
{
WOLFSSL_STUB("wolfSSL_CTX_sess_connect");
(void)ctx;
return 0;
}
#endif
#ifndef NO_WOLFSSL_STUB
/* shows the number of accepts completed by CTX in it's lifetime */
long wolfSSL_CTX_sess_accept_good(WOLFSSL_CTX* ctx)
{
WOLFSSL_STUB("wolfSSL_CTX_sess_accept_good");
(void)ctx;
return 0;
}
#endif
#ifndef NO_WOLFSSL_STUB
/* shows the number of connects completed by CTX in it's lifetime */
long wolfSSL_CTX_sess_connect_good(WOLFSSL_CTX* ctx)
{
WOLFSSL_STUB("wolfSSL_CTX_sess_connect_good");
(void)ctx;
return 0;
}
#endif
#ifndef NO_WOLFSSL_STUB
/* shows the number of renegotiation accepts attempted by CTX */
long wolfSSL_CTX_sess_accept_renegotiate(WOLFSSL_CTX* ctx)
{
WOLFSSL_STUB("wolfSSL_CTX_sess_accept_renegotiate");
(void)ctx;
return 0;
}
#endif
#ifndef NO_WOLFSSL_STUB
/* shows the number of renegotiation accepts attempted by CTX */
long wolfSSL_CTX_sess_connect_renegotiate(WOLFSSL_CTX* ctx)
{
WOLFSSL_STUB("wolfSSL_CTX_sess_connect_renegotiate");
(void)ctx;
return 0;
}
#endif
#ifndef NO_WOLFSSL_STUB
long wolfSSL_CTX_sess_hits(WOLFSSL_CTX* ctx)
{
WOLFSSL_STUB("wolfSSL_CTX_sess_hits");
(void)ctx;
return 0;
}
#endif
#ifndef NO_WOLFSSL_STUB
long wolfSSL_CTX_sess_cb_hits(WOLFSSL_CTX* ctx)
{
WOLFSSL_STUB("wolfSSL_CTX_sess_cb_hits");
(void)ctx;
return 0;
}
#endif
#ifndef NO_WOLFSSL_STUB
long wolfSSL_CTX_sess_cache_full(WOLFSSL_CTX* ctx)
{
WOLFSSL_STUB("wolfSSL_CTX_sess_cache_full");
(void)ctx;
return 0;
}
#endif
#ifndef NO_WOLFSSL_STUB
long wolfSSL_CTX_sess_misses(WOLFSSL_CTX* ctx)
{
WOLFSSL_STUB("wolfSSL_CTX_sess_misses");
(void)ctx;
return 0;
}
#endif
#ifndef NO_WOLFSSL_STUB
long wolfSSL_CTX_sess_timeouts(WOLFSSL_CTX* ctx)
{
WOLFSSL_STUB("wolfSSL_CTX_sess_timeouts");
(void)ctx;
return 0;
}
#endif
#ifndef NO_CERTS
long wolfSSL_CTX_set_tlsext_status_arg(WOLFSSL_CTX* ctx, void* arg)
{
if (ctx == NULL || ctx->cm == NULL) {
return WOLFSSL_FAILURE;
}
ctx->cm->ocspIOCtx = arg;
return WOLFSSL_SUCCESS;
}
#endif /* !NO_CERTS */
int wolfSSL_get_read_ahead(const WOLFSSL* ssl)
{
if (ssl == NULL) {
return WOLFSSL_FAILURE;
}
return ssl->readAhead;
}
int wolfSSL_set_read_ahead(WOLFSSL* ssl, int v)
{
if (ssl == NULL) {
return WOLFSSL_FAILURE;
}
ssl->readAhead = (byte)v;
return WOLFSSL_SUCCESS;
}
int wolfSSL_CTX_get_read_ahead(WOLFSSL_CTX* ctx)
{
if (ctx == NULL) {
return WOLFSSL_FAILURE;
}
return ctx->readAhead;
}
int wolfSSL_CTX_set_read_ahead(WOLFSSL_CTX* ctx, int v)
{
if (ctx == NULL) {
return WOLFSSL_FAILURE;
}
ctx->readAhead = (byte)v;
return WOLFSSL_SUCCESS;
}
long wolfSSL_CTX_set_tlsext_opaque_prf_input_callback_arg(WOLFSSL_CTX* ctx,
void* arg)
{
if (ctx == NULL) {
return WOLFSSL_FAILURE;
}
ctx->userPRFArg = arg;
return WOLFSSL_SUCCESS;
}
#endif /* OPENSSL_EXTRA */
#if defined(OPENSSL_EXTRA) || defined(WOLFSSL_WPAS_SMALL)
int wolfSSL_sk_num(const WOLFSSL_STACK* sk)
{
WOLFSSL_ENTER("wolfSSL_sk_num");
if (sk == NULL)
return 0;
return (int)sk->num;
}
void* wolfSSL_sk_value(const WOLFSSL_STACK* sk, int i)
{
WOLFSSL_ENTER("wolfSSL_sk_value");
for (; sk != NULL && i > 0; i--)
sk = sk->next;
if (sk == NULL)
return NULL;
switch (sk->type) {
case STACK_TYPE_X509:
return (void*)sk->data.x509;
case STACK_TYPE_GEN_NAME:
return (void*)sk->data.gn;
case STACK_TYPE_BIO:
return (void*)sk->data.bio;
case STACK_TYPE_OBJ:
return (void*)sk->data.obj;
case STACK_TYPE_STRING:
return (void*)sk->data.string;
case STACK_TYPE_CIPHER:
return (void*)&sk->data.cipher;
case STACK_TYPE_ACCESS_DESCRIPTION:
return (void*)sk->data.access;
case STACK_TYPE_X509_EXT:
return (void*)sk->data.ext;
case STACK_TYPE_X509_REQ_ATTR:
return (void*)sk->data.generic;
case STACK_TYPE_NULL:
return (void*)sk->data.generic;
case STACK_TYPE_X509_NAME:
return (void*)sk->data.name;
case STACK_TYPE_X509_NAME_ENTRY:
return (void*)sk->data.name_entry;
case STACK_TYPE_CONF_VALUE:
#ifdef OPENSSL_EXTRA
return (void*)sk->data.conf;
#else
return NULL;
#endif
case STACK_TYPE_X509_INFO:
return (void*)sk->data.info;
case STACK_TYPE_BY_DIR_entry:
return (void*)sk->data.dir_entry;
case STACK_TYPE_BY_DIR_hash:
return (void*)sk->data.dir_hash;
case STACK_TYPE_X509_OBJ:
return (void*)sk->data.x509_obj;
case STACK_TYPE_DIST_POINT:
return (void*)sk->data.dp;
case STACK_TYPE_X509_CRL:
return (void*)sk->data.crl;
default:
return (void*)sk->data.generic;
}
}
/* copies over data of "in" to "out" */
static void wolfSSL_CIPHER_copy(WOLFSSL_CIPHER* in, WOLFSSL_CIPHER* out)
{
if (in == NULL || out == NULL)
return;
*out = *in;
}
WOLFSSL_STACK* wolfSSL_sk_dup(WOLFSSL_STACK* sk)
{
WOLFSSL_STACK* ret = NULL;
WOLFSSL_STACK* last = NULL;
WOLFSSL_ENTER("wolfSSL_sk_dup");
while (sk) {
WOLFSSL_STACK* cur = wolfSSL_sk_new_node(sk->heap);
if (!cur) {
WOLFSSL_MSG("wolfSSL_sk_new_node error");
goto error;
}
if (!ret) {
/* Set first node */
ret = cur;
}
if (last) {
last->next = cur;
}
XMEMCPY(cur, sk, sizeof(WOLFSSL_STACK));
/* We will allocate new memory for this */
XMEMSET(&cur->data, 0, sizeof(cur->data));
cur->next = NULL;
switch (sk->type) {
case STACK_TYPE_X509:
if (!sk->data.x509)
break;
cur->data.x509 = wolfSSL_X509_dup(sk->data.x509);
if (!cur->data.x509) {
WOLFSSL_MSG("wolfSSL_X509_dup error");
goto error;
}
break;
case STACK_TYPE_CIPHER:
wolfSSL_CIPHER_copy(&sk->data.cipher, &cur->data.cipher);
break;
case STACK_TYPE_GEN_NAME:
if (!sk->data.gn)
break;
cur->data.gn = wolfSSL_GENERAL_NAME_dup(sk->data.gn);
if (!cur->data.gn) {
WOLFSSL_MSG("wolfSSL_GENERAL_NAME_new error");
goto error;
}
break;
case STACK_TYPE_OBJ:
if (!sk->data.obj)
break;
cur->data.obj = wolfSSL_ASN1_OBJECT_dup(sk->data.obj);
if (!cur->data.obj) {
WOLFSSL_MSG("wolfSSL_ASN1_OBJECT_dup error");
goto error;
}
break;
case STACK_TYPE_BIO:
case STACK_TYPE_STRING:
case STACK_TYPE_ACCESS_DESCRIPTION:
case STACK_TYPE_X509_EXT:
case STACK_TYPE_X509_REQ_ATTR:
case STACK_TYPE_NULL:
case STACK_TYPE_X509_NAME:
case STACK_TYPE_X509_NAME_ENTRY:
case STACK_TYPE_CONF_VALUE:
case STACK_TYPE_X509_INFO:
case STACK_TYPE_BY_DIR_entry:
case STACK_TYPE_BY_DIR_hash:
case STACK_TYPE_X509_OBJ:
case STACK_TYPE_DIST_POINT:
case STACK_TYPE_X509_CRL:
default:
WOLFSSL_MSG("Unsupported stack type");
goto error;
}
sk = sk->next;
last = cur;
}
return ret;
error:
if (ret) {
wolfSSL_sk_GENERAL_NAME_free(ret);
}
return NULL;
}
WOLFSSL_STACK* wolfSSL_shallow_sk_dup(WOLFSSL_STACK* sk)
{
WOLFSSL_STACK* ret = NULL;
WOLFSSL_STACK** prev = &ret;
WOLFSSL_ENTER("wolfSSL_shallow_sk_dup");
for (; sk != NULL; sk = sk->next) {
WOLFSSL_STACK* cur = wolfSSL_sk_new_node(sk->heap);
if (!cur) {
WOLFSSL_MSG("wolfSSL_sk_new_node error");
goto error;
}
XMEMCPY(cur, sk, sizeof(WOLFSSL_STACK));
cur->next = NULL;
*prev = cur;
prev = &cur->next;
}
return ret;
error:
if (ret) {
wolfSSL_sk_free(ret);
}
return NULL;
}
/* Free the just the stack structure */
void wolfSSL_sk_free(WOLFSSL_STACK* sk)
{
WOLFSSL_ENTER("wolfSSL_sk_free");
while (sk != NULL) {
WOLFSSL_STACK* next = sk->next;
XFREE(sk, NULL, DYNAMIC_TYPE_OPENSSL);
sk = next;
}
}
/* Frees each node in the stack and frees the stack.
*/
void wolfSSL_sk_GENERIC_pop_free(WOLFSSL_STACK* sk,
void (*f) (void*))
{
WOLFSSL_ENTER("wolfSSL_sk_GENERIC_pop_free");
wolfSSL_sk_pop_free(sk, (wolfSSL_sk_freefunc)f);
}
/* return 1 on success 0 on fail */
int wolfSSL_sk_GENERIC_push(WOLFSSL_STACK* sk, void* generic)
{
WOLFSSL_ENTER("wolfSSL_sk_GENERIC_push");
return wolfSSL_sk_push(sk, generic);
}
void wolfSSL_sk_GENERIC_free(WOLFSSL_STACK* sk)
{
wolfSSL_sk_free(sk);
}
/* Pop off data from the stack. Checks that the type matches the stack type.
*
* @param [in, out] sk Stack of objects.
* @param [in] type Type of stack.
* @return Object on success.
* @return NULL when stack is NULL or no nodes left in stack.
*/
void* wolfssl_sk_pop_type(WOLFSSL_STACK* sk, WOLF_STACK_TYPE type)
{
WOLFSSL_STACK* node;
void* data = NULL;
/* Check we have a stack passed in of the right type. */
if ((sk != NULL) && (sk->type == type)) {
/* Get the next node to become the new first node. */
node = sk->next;
/* Get the ASN.1 OBJECT_ID object in the first node. */
data = sk->data.generic;
/* Check whether there is a next node. */
if (node != NULL) {
/* Move content out of next node into current node. */
sk->data.obj = node->data.obj;
sk->next = node->next;
/* Dispose of node. */
XFREE(node, NULL, DYNAMIC_TYPE_ASN1);
}
else {
/* No more nodes - clear out data. */
sk->data.obj = NULL;
}
/* Decrement count as long as we thought we had nodes. */
if (sk->num > 0) {
sk->num -= 1;
}
}
return data;
}
/* Free all nodes in a stack including the pushed objects */
void wolfSSL_sk_pop_free(WOLF_STACK_OF(WOLFSSL_ASN1_OBJECT)* sk,
wolfSSL_sk_freefunc func)
{
WOLFSSL_ENTER("wolfSSL_sk_pop_free");
if (sk == NULL) {
/* pop_free can be called with NULL, do not print bad argument */
return;
}
#if defined(WOLFSSL_QT)
/* In Qt v15.5, it calls OPENSSL_sk_free(xxx, OPENSSL_sk_free).
* By using OPENSSL_sk_free for free causes access violation.
* Therefore, switching free func to wolfSSL_ACCESS_DESCRIPTION_free
* is needed even the func isn't NULL.
*/
if (sk->type == STACK_TYPE_ACCESS_DESCRIPTION) {
func = (wolfSSL_sk_freefunc)wolfSSL_ACCESS_DESCRIPTION_free;
}
#endif
if (func == NULL) {
switch(sk->type) {
case STACK_TYPE_ACCESS_DESCRIPTION:
#if defined(OPENSSL_ALL)
func = (wolfSSL_sk_freefunc)wolfSSL_ACCESS_DESCRIPTION_free;
#endif
break;
case STACK_TYPE_X509:
func = (wolfSSL_sk_freefunc)wolfSSL_X509_free;
break;
case STACK_TYPE_X509_OBJ:
#ifdef OPENSSL_ALL
func = (wolfSSL_sk_freefunc)wolfSSL_X509_OBJECT_free;
#endif
break;
case STACK_TYPE_OBJ:
func = (wolfSSL_sk_freefunc)wolfSSL_ASN1_OBJECT_free;
break;
case STACK_TYPE_DIST_POINT:
#ifdef OPENSSL_EXTRA
func = (wolfSSL_sk_freefunc)wolfSSL_DIST_POINT_free;
#endif
break;
case STACK_TYPE_GEN_NAME:
func = (wolfSSL_sk_freefunc)wolfSSL_GENERAL_NAME_free;
break;
case STACK_TYPE_STRING:
#if defined(WOLFSSL_NGINX) || defined(WOLFSSL_HAPROXY) || \
defined(OPENSSL_EXTRA) || defined(OPENSSL_ALL)
func = (wolfSSL_sk_freefunc)wolfSSL_WOLFSSL_STRING_free;
#endif
break;
case STACK_TYPE_X509_NAME:
#if (defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)) \
&& !defined(WOLFCRYPT_ONLY)
func = (wolfSSL_sk_freefunc)wolfSSL_X509_NAME_free;
#endif
break;
case STACK_TYPE_X509_NAME_ENTRY:
#if (defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)) \
&& !defined(WOLFCRYPT_ONLY)
func = (wolfSSL_sk_freefunc)wolfSSL_X509_NAME_ENTRY_free;
#endif
break;
case STACK_TYPE_X509_EXT:
#if defined(OPENSSL_ALL) || defined(OPENSSL_EXTRA)
func = (wolfSSL_sk_freefunc)wolfSSL_X509_EXTENSION_free;
#endif
break;
case STACK_TYPE_X509_REQ_ATTR:
#if defined(OPENSSL_ALL) && \
(defined(WOLFSSL_CERT_GEN) || defined(WOLFSSL_CERT_REQ))
func = (wolfSSL_sk_freefunc)wolfSSL_X509_ATTRIBUTE_free;
#endif
break;
case STACK_TYPE_CONF_VALUE:
#if defined(OPENSSL_ALL)
func = (wolfSSL_sk_freefunc)wolfSSL_X509V3_conf_free;
#endif
break;
case STACK_TYPE_X509_INFO:
#if defined(OPENSSL_ALL)
func = (wolfSSL_sk_freefunc)wolfSSL_X509_INFO_free;
#endif
break;
case STACK_TYPE_BIO:
#if !defined(NO_BIO) && defined(OPENSSL_EXTRA)
func = (wolfSSL_sk_freefunc)wolfSSL_BIO_vfree;
#endif
break;
case STACK_TYPE_BY_DIR_entry:
#if defined(OPENSSL_ALL) && !defined(NO_FILESYSTEM) && !defined(NO_WOLFSSL_DIR)
func = (wolfSSL_sk_freefunc)wolfSSL_BY_DIR_entry_free;
#endif
break;
case STACK_TYPE_BY_DIR_hash:
#if defined(OPENSSL_ALL) && !defined(NO_FILESYSTEM) && !defined(NO_WOLFSSL_DIR)
func = (wolfSSL_sk_freefunc)wolfSSL_BY_DIR_HASH_free;
#endif
break;
case STACK_TYPE_X509_CRL:
#if defined(HAVE_CRL) && (defined(OPENSSL_EXTRA) || defined(WOLFSSL_WPAS_SMALL))
func = (wolfSSL_sk_freefunc)wolfSSL_X509_CRL_free;
#endif
break;
case STACK_TYPE_CIPHER:
case STACK_TYPE_NULL:
default:
break;
}
}
while (sk != NULL) {
WOLFSSL_STACK* next = sk->next;
if (func != NULL) {
if (sk->type != STACK_TYPE_CIPHER)
func(sk->data.generic);
}
XFREE(sk, NULL, DYNAMIC_TYPE_OPENSSL);
sk = next;
}
}
/* Creates a new stack of the requested type.
*
* @param [in] type Type of stack.
* @return Empty stack on success.
* @return NULL when dynamic memory allocation fails.
*/
WOLFSSL_STACK* wolfssl_sk_new_type(WOLF_STACK_TYPE type)
{
WOLFSSL_STACK* sk;
/* Allocate a new stack - first node. */
sk = (WOLFSSL_STACK*)XMALLOC(sizeof(WOLFSSL_STACK), NULL,
DYNAMIC_TYPE_OPENSSL);
if (sk == NULL) {
WOLFSSL_MSG("WOLFSSL_STACK memory error");
}
else {
/* Clear node and set type. */
XMEMSET(sk, 0, sizeof(WOLFSSL_STACK));
sk->type = type;
}
return sk;
}
/* Creates and returns a new null stack. */
WOLFSSL_STACK* wolfSSL_sk_new_null(void)
{
WOLFSSL_ENTER("wolfSSL_sk_new_null");
return wolfssl_sk_new_type(STACK_TYPE_NULL);
}
int wolfSSL_sk_SSL_COMP_num(WOLF_STACK_OF(WOLFSSL_COMP)* sk)
{
if (sk == NULL)
return 0;
return (int)sk->num;
}
#endif /* OPENSSL_EXTRA || WOLFSSL_WPAS_SMALL */
#ifdef OPENSSL_EXTRA
#if defined(HAVE_EX_DATA) && !defined(NO_FILESYSTEM)
int wolfSSL_cmp_peer_cert_to_file(WOLFSSL* ssl, const char *fname)
{
int ret = WOLFSSL_FATAL_ERROR;
WOLFSSL_ENTER("wolfSSL_cmp_peer_cert_to_file");
if (ssl != NULL && fname != NULL)
{
#ifdef WOLFSSL_SMALL_STACK
byte staticBuffer[1]; /* force heap usage */
#else
byte staticBuffer[FILE_BUFFER_SIZE];
#endif
byte* myBuffer = staticBuffer;
int dynamic = 0;
XFILE file;
long sz = 0;
WOLFSSL_CTX* ctx = ssl->ctx;
WOLFSSL_X509* peer_cert = &ssl->peerCert;
DerBuffer* fileDer = NULL;
file = XFOPEN(fname, "rb");
if (file == XBADFILE)
return WOLFSSL_BAD_FILE;
if (XFSEEK(file, 0, XSEEK_END) != 0) {
XFCLOSE(file);
return WOLFSSL_BAD_FILE;
}
sz = XFTELL(file);
if (XFSEEK(file, 0, XSEEK_SET) != 0) {
XFCLOSE(file);
return WOLFSSL_BAD_FILE;
}
if (sz > MAX_WOLFSSL_FILE_SIZE || sz < 0) {
WOLFSSL_MSG("cmp_peer_cert_to_file size error");
XFCLOSE(file);
return WOLFSSL_BAD_FILE;
}
if (sz > (long)sizeof(staticBuffer)) {
WOLFSSL_MSG("Getting dynamic buffer");
myBuffer = (byte*)XMALLOC(sz, ctx->heap, DYNAMIC_TYPE_FILE);
dynamic = 1;
}
if ((myBuffer != NULL) &&
(sz > 0) &&
(XFREAD(myBuffer, 1, (size_t)sz, file) == (size_t)sz) &&
(PemToDer(myBuffer, (long)sz, CERT_TYPE,
&fileDer, ctx->heap, NULL, NULL) == 0) &&
(fileDer->length != 0) &&
(fileDer->length == peer_cert->derCert->length) &&
(XMEMCMP(peer_cert->derCert->buffer, fileDer->buffer,
fileDer->length) == 0))
{
ret = 0;
}
FreeDer(&fileDer);
if (dynamic)
XFREE(myBuffer, ctx->heap, DYNAMIC_TYPE_FILE);
XFCLOSE(file);
}
return ret;
}
#endif
#endif /* OPENSSL_EXTRA */
#if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)
const WOLFSSL_ObjectInfo wolfssl_object_info[] = {
#ifndef NO_CERTS
/* oidCertExtType */
{ NID_basic_constraints, BASIC_CA_OID, oidCertExtType, "basicConstraints",
"X509v3 Basic Constraints"},
{ NID_subject_alt_name, ALT_NAMES_OID, oidCertExtType, "subjectAltName",
"X509v3 Subject Alternative Name"},
{ NID_crl_distribution_points, CRL_DIST_OID, oidCertExtType,
"crlDistributionPoints", "X509v3 CRL Distribution Points"},
{ NID_info_access, AUTH_INFO_OID, oidCertExtType, "authorityInfoAccess",
"Authority Information Access"},
{ NID_authority_key_identifier, AUTH_KEY_OID, oidCertExtType,
"authorityKeyIdentifier", "X509v3 Authority Key Identifier"},
{ NID_subject_key_identifier, SUBJ_KEY_OID, oidCertExtType,
"subjectKeyIdentifier", "X509v3 Subject Key Identifier"},
{ NID_key_usage, KEY_USAGE_OID, oidCertExtType, "keyUsage",
"X509v3 Key Usage"},
{ NID_inhibit_any_policy, INHIBIT_ANY_OID, oidCertExtType,
"inhibitAnyPolicy", "X509v3 Inhibit Any Policy"},
{ NID_ext_key_usage, EXT_KEY_USAGE_OID, oidCertExtType,
"extendedKeyUsage", "X509v3 Extended Key Usage"},
{ NID_name_constraints, NAME_CONS_OID, oidCertExtType,
"nameConstraints", "X509v3 Name Constraints"},
{ NID_certificate_policies, CERT_POLICY_OID, oidCertExtType,
"certificatePolicies", "X509v3 Certificate Policies"},
/* oidCertAuthInfoType */
{ NID_ad_OCSP, AIA_OCSP_OID, oidCertAuthInfoType, "OCSP",
"OCSP"},
{ NID_ad_ca_issuers, AIA_CA_ISSUER_OID, oidCertAuthInfoType,
"caIssuers", "CA Issuers"},
/* oidCertPolicyType */
{ NID_any_policy, CP_ANY_OID, oidCertPolicyType, "anyPolicy",
"X509v3 Any Policy"},
/* oidCertAltNameType */
{ NID_hw_name_oid, HW_NAME_OID, oidCertAltNameType, "Hardware name",""},
/* oidCertKeyUseType */
{ NID_anyExtendedKeyUsage, EKU_ANY_OID, oidCertKeyUseType,
"anyExtendedKeyUsage", "Any Extended Key Usage"},
{ EKU_SERVER_AUTH_OID, EKU_SERVER_AUTH_OID, oidCertKeyUseType,
"serverAuth", "TLS Web Server Authentication"},
{ EKU_CLIENT_AUTH_OID, EKU_CLIENT_AUTH_OID, oidCertKeyUseType,
"clientAuth", "TLS Web Client Authentication"},
{ EKU_OCSP_SIGN_OID, EKU_OCSP_SIGN_OID, oidCertKeyUseType,
"OCSPSigning", "OCSP Signing"},
/* oidCertNameType */
{ NID_commonName, NID_commonName, oidCertNameType, "CN", "commonName"},
#if !defined(WOLFSSL_CERT_REQ)
{ NID_surname, NID_surname, oidCertNameType, "SN", "surname"},
#endif
{ NID_serialNumber, NID_serialNumber, oidCertNameType, "serialNumber",
"serialNumber"},
{ NID_userId, NID_userId, oidCertNameType, "UID", "userid"},
{ NID_countryName, NID_countryName, oidCertNameType, "C", "countryName"},
{ NID_localityName, NID_localityName, oidCertNameType, "L", "localityName"},
{ NID_stateOrProvinceName, NID_stateOrProvinceName, oidCertNameType, "ST",
"stateOrProvinceName"},
{ NID_streetAddress, NID_streetAddress, oidCertNameType, "street",
"streetAddress"},
{ NID_organizationName, NID_organizationName, oidCertNameType, "O",
"organizationName"},
{ NID_organizationalUnitName, NID_organizationalUnitName, oidCertNameType,
"OU", "organizationalUnitName"},
{ NID_emailAddress, NID_emailAddress, oidCertNameType, "emailAddress",
"emailAddress"},
{ NID_domainComponent, NID_domainComponent, oidCertNameType, "DC",
"domainComponent"},
{ NID_favouriteDrink, NID_favouriteDrink, oidCertNameType, "favouriteDrink",
"favouriteDrink"},
{ NID_businessCategory, NID_businessCategory, oidCertNameType,
"businessCategory", "businessCategory"},
{ NID_jurisdictionCountryName, NID_jurisdictionCountryName, oidCertNameType,
"jurisdictionC", "jurisdictionCountryName"},
{ NID_jurisdictionStateOrProvinceName, NID_jurisdictionStateOrProvinceName,
oidCertNameType, "jurisdictionST", "jurisdictionStateOrProvinceName"},
{ NID_postalCode, NID_postalCode, oidCertNameType, "postalCode",
"postalCode"},
{ NID_userId, NID_userId, oidCertNameType, "UID", "userId"},
#if defined(WOLFSSL_CERT_REQ) || defined(WOLFSSL_CERT_NAME_ALL)
{ NID_pkcs9_challengePassword, CHALLENGE_PASSWORD_OID,
oidCsrAttrType, "challengePassword", "challengePassword"},
{ NID_pkcs9_contentType, PKCS9_CONTENT_TYPE_OID,
oidCsrAttrType, "contentType", "contentType" },
{ NID_pkcs9_unstructuredName, UNSTRUCTURED_NAME_OID,
oidCsrAttrType, "unstructuredName", "unstructuredName" },
{ NID_name, NAME_OID, oidCsrAttrType, "name", "name" },
{ NID_surname, SURNAME_OID,
oidCsrAttrType, "surname", "surname" },
{ NID_givenName, GIVEN_NAME_OID,
oidCsrAttrType, "givenName", "givenName" },
{ NID_initials, INITIALS_OID,
oidCsrAttrType, "initials", "initials" },
{ NID_dnQualifier, DNQUALIFIER_OID,
oidCsrAttrType, "dnQualifer", "dnQualifier" },
#endif
#endif
#ifdef OPENSSL_EXTRA /* OPENSSL_EXTRA_X509_SMALL only needs the above */
/* oidHashType */
#ifdef WOLFSSL_MD2
{ NID_md2, MD2h, oidHashType, "MD2", "md2"},
#endif
#ifdef WOLFSSL_MD5
{ NID_md5, MD5h, oidHashType, "MD5", "md5"},
#endif
#ifndef NO_SHA
{ NID_sha1, SHAh, oidHashType, "SHA1", "sha1"},
#endif
#ifdef WOLFSSL_SHA224
{ NID_sha224, SHA224h, oidHashType, "SHA224", "sha224"},
#endif
#ifndef NO_SHA256
{ NID_sha256, SHA256h, oidHashType, "SHA256", "sha256"},
#endif
#ifdef WOLFSSL_SHA384
{ NID_sha384, SHA384h, oidHashType, "SHA384", "sha384"},
#endif
#ifdef WOLFSSL_SHA512
{ NID_sha512, SHA512h, oidHashType, "SHA512", "sha512"},
#endif
#ifdef WOLFSSL_SHA3
#ifndef WOLFSSL_NOSHA3_224
{ NID_sha3_224, SHA3_224h, oidHashType, "SHA3-224", "sha3-224"},
#endif
#ifndef WOLFSSL_NOSHA3_256
{ NID_sha3_256, SHA3_256h, oidHashType, "SHA3-256", "sha3-256"},
#endif
#ifndef WOLFSSL_NOSHA3_384
{ NID_sha3_384, SHA3_384h, oidHashType, "SHA3-384", "sha3-384"},
#endif
#ifndef WOLFSSL_NOSHA3_512
{ NID_sha3_512, SHA3_512h, oidHashType, "SHA3-512", "sha3-512"},
#endif
#endif /* WOLFSSL_SHA3 */
#ifdef WOLFSSL_SM3
{ NID_sm3, SM3h, oidHashType, "SM3", "sm3"},
#endif
/* oidSigType */
#ifndef NO_DSA
#ifndef NO_SHA
{ NID_dsaWithSHA1, CTC_SHAwDSA, oidSigType, "DSA-SHA1", "dsaWithSHA1"},
{ NID_dsa_with_SHA256, CTC_SHA256wDSA, oidSigType, "dsa_with_SHA256",
"dsa_with_SHA256"},
#endif
#endif /* NO_DSA */
#ifndef NO_RSA
#ifdef WOLFSSL_MD2
{ NID_md2WithRSAEncryption, CTC_MD2wRSA, oidSigType, "RSA-MD2",
"md2WithRSAEncryption"},
#endif
#ifndef NO_MD5
{ NID_md5WithRSAEncryption, CTC_MD5wRSA, oidSigType, "RSA-MD5",
"md5WithRSAEncryption"},
#endif
#ifndef NO_SHA
{ NID_sha1WithRSAEncryption, CTC_SHAwRSA, oidSigType, "RSA-SHA1",
"sha1WithRSAEncryption"},
#endif
#ifdef WOLFSSL_SHA224
{ NID_sha224WithRSAEncryption, CTC_SHA224wRSA, oidSigType, "RSA-SHA224",
"sha224WithRSAEncryption"},
#endif
#ifndef NO_SHA256
{ NID_sha256WithRSAEncryption, CTC_SHA256wRSA, oidSigType, "RSA-SHA256",
"sha256WithRSAEncryption"},
#endif
#ifdef WOLFSSL_SHA384
{ NID_sha384WithRSAEncryption, CTC_SHA384wRSA, oidSigType, "RSA-SHA384",
"sha384WithRSAEncryption"},
#endif
#ifdef WOLFSSL_SHA512
{ NID_sha512WithRSAEncryption, CTC_SHA512wRSA, oidSigType, "RSA-SHA512",
"sha512WithRSAEncryption"},
#endif
#ifdef WOLFSSL_SHA3
#ifndef WOLFSSL_NOSHA3_224
{ NID_RSA_SHA3_224, CTC_SHA3_224wRSA, oidSigType, "RSA-SHA3-224",
"sha3-224WithRSAEncryption"},
#endif
#ifndef WOLFSSL_NOSHA3_256
{ NID_RSA_SHA3_256, CTC_SHA3_256wRSA, oidSigType, "RSA-SHA3-256",
"sha3-256WithRSAEncryption"},
#endif
#ifndef WOLFSSL_NOSHA3_384
{ NID_RSA_SHA3_384, CTC_SHA3_384wRSA, oidSigType, "RSA-SHA3-384",
"sha3-384WithRSAEncryption"},
#endif
#ifndef WOLFSSL_NOSHA3_512
{ NID_RSA_SHA3_512, CTC_SHA3_512wRSA, oidSigType, "RSA-SHA3-512",
"sha3-512WithRSAEncryption"},
#endif
#endif
#ifdef WC_RSA_PSS
{ NID_rsassaPss, CTC_RSASSAPSS, oidSigType, "RSASSA-PSS", "rsassaPss" },
#endif
#endif /* NO_RSA */
#ifdef HAVE_ECC
#ifndef NO_SHA
{ NID_ecdsa_with_SHA1, CTC_SHAwECDSA, oidSigType, "ecdsa-with-SHA1",
"shaWithECDSA"},
#endif
#ifdef WOLFSSL_SHA224
{ NID_ecdsa_with_SHA224, CTC_SHA224wECDSA, oidSigType,
"ecdsa-with-SHA224","sha224WithECDSA"},
#endif
#ifndef NO_SHA256
{ NID_ecdsa_with_SHA256, CTC_SHA256wECDSA, oidSigType,
"ecdsa-with-SHA256","sha256WithECDSA"},
#endif
#ifdef WOLFSSL_SHA384
{ NID_ecdsa_with_SHA384, CTC_SHA384wECDSA, oidSigType,
"ecdsa-with-SHA384","sha384WithECDSA"},
#endif
#ifdef WOLFSSL_SHA512
{ NID_ecdsa_with_SHA512, CTC_SHA512wECDSA, oidSigType,
"ecdsa-with-SHA512","sha512WithECDSA"},
#endif
#ifdef WOLFSSL_SHA3
#ifndef WOLFSSL_NOSHA3_224
{ NID_ecdsa_with_SHA3_224, CTC_SHA3_224wECDSA, oidSigType,
"id-ecdsa-with-SHA3-224", "ecdsa_with_SHA3-224"},
#endif
#ifndef WOLFSSL_NOSHA3_256
{ NID_ecdsa_with_SHA3_256, CTC_SHA3_256wECDSA, oidSigType,
"id-ecdsa-with-SHA3-256", "ecdsa_with_SHA3-256"},
#endif
#ifndef WOLFSSL_NOSHA3_384
{ NID_ecdsa_with_SHA3_384, CTC_SHA3_384wECDSA, oidSigType,
"id-ecdsa-with-SHA3-384", "ecdsa_with_SHA3-384"},
#endif
#ifndef WOLFSSL_NOSHA3_512
{ NID_ecdsa_with_SHA3_512, CTC_SHA3_512wECDSA, oidSigType,
"id-ecdsa-with-SHA3-512", "ecdsa_with_SHA3-512"},
#endif
#endif
#endif /* HAVE_ECC */
/* oidKeyType */
#ifndef NO_DSA
{ NID_dsa, DSAk, oidKeyType, "DSA", "dsaEncryption"},
#endif /* NO_DSA */
#ifndef NO_RSA
{ NID_rsaEncryption, RSAk, oidKeyType, "rsaEncryption",
"rsaEncryption"},
#ifdef WC_RSA_PSS
{ NID_rsassaPss, RSAPSSk, oidKeyType, "RSASSA-PSS", "rsassaPss"},
#endif
#endif /* NO_RSA */
#ifdef HAVE_ECC
{ NID_X9_62_id_ecPublicKey, ECDSAk, oidKeyType, "id-ecPublicKey",
"id-ecPublicKey"},
#endif /* HAVE_ECC */
#ifndef NO_DH
{ NID_dhKeyAgreement, DHk, oidKeyType, "dhKeyAgreement",
"dhKeyAgreement"},
#endif
#ifdef HAVE_ED448
{ NID_ED448, ED448k, oidKeyType, "ED448", "ED448"},
#endif
#ifdef HAVE_ED25519
{ NID_ED25519, ED25519k, oidKeyType, "ED25519", "ED25519"},
#endif
#ifdef HAVE_PQC
#ifdef HAVE_FALCON
{ CTC_FALCON_LEVEL1, FALCON_LEVEL1k, oidKeyType, "Falcon Level 1",
"Falcon Level 1"},
{ CTC_FALCON_LEVEL5, FALCON_LEVEL5k, oidKeyType, "Falcon Level 5",
"Falcon Level 5"},
#endif /* HAVE_FALCON */
#ifdef HAVE_DILITHIUM
{ CTC_DILITHIUM_LEVEL2, DILITHIUM_LEVEL2k, oidKeyType,
"Dilithium Level 2", "Dilithium Level 2"},
{ CTC_DILITHIUM_LEVEL3, DILITHIUM_LEVEL3k, oidKeyType,
"Dilithium Level 3", "Dilithium Level 3"},
{ CTC_DILITHIUM_LEVEL5, DILITHIUM_LEVEL5k, oidKeyType,
"Dilithium Level 5", "Dilithium Level 5"},
#endif /* HAVE_DILITHIUM */
#endif /* HAVE_PQC */
/* oidCurveType */
#ifdef HAVE_ECC
{ NID_X9_62_prime192v1, ECC_SECP192R1_OID, oidCurveType, "prime192v1",
"prime192v1"},
{ NID_X9_62_prime192v2, ECC_PRIME192V2_OID, oidCurveType, "prime192v2",
"prime192v2"},
{ NID_X9_62_prime192v3, ECC_PRIME192V3_OID, oidCurveType, "prime192v3",
"prime192v3"},
{ NID_X9_62_prime239v1, ECC_PRIME239V1_OID, oidCurveType, "prime239v1",
"prime239v1"},
{ NID_X9_62_prime239v2, ECC_PRIME239V2_OID, oidCurveType, "prime239v2",
"prime239v2"},
{ NID_X9_62_prime239v3, ECC_PRIME239V3_OID, oidCurveType, "prime239v3",
"prime239v3"},
{ NID_X9_62_prime256v1, ECC_SECP256R1_OID, oidCurveType, "prime256v1",
"prime256v1"},
{ NID_secp112r1, ECC_SECP112R1_OID, oidCurveType, "secp112r1",
"secp112r1"},
{ NID_secp112r2, ECC_SECP112R2_OID, oidCurveType, "secp112r2",
"secp112r2"},
{ NID_secp128r1, ECC_SECP128R1_OID, oidCurveType, "secp128r1",
"secp128r1"},
{ NID_secp128r2, ECC_SECP128R2_OID, oidCurveType, "secp128r2",
"secp128r2"},
{ NID_secp160r1, ECC_SECP160R1_OID, oidCurveType, "secp160r1",
"secp160r1"},
{ NID_secp160r2, ECC_SECP160R2_OID, oidCurveType, "secp160r2",
"secp160r2"},
{ NID_secp224r1, ECC_SECP224R1_OID, oidCurveType, "secp224r1",
"secp224r1"},
{ NID_secp384r1, ECC_SECP384R1_OID, oidCurveType, "secp384r1",
"secp384r1"},
{ NID_secp521r1, ECC_SECP521R1_OID, oidCurveType, "secp521r1",
"secp521r1"},
{ NID_secp160k1, ECC_SECP160K1_OID, oidCurveType, "secp160k1",
"secp160k1"},
{ NID_secp192k1, ECC_SECP192K1_OID, oidCurveType, "secp192k1",
"secp192k1"},
{ NID_secp224k1, ECC_SECP224K1_OID, oidCurveType, "secp224k1",
"secp224k1"},
{ NID_secp256k1, ECC_SECP256K1_OID, oidCurveType, "secp256k1",
"secp256k1"},
{ NID_brainpoolP160r1, ECC_BRAINPOOLP160R1_OID, oidCurveType,
"brainpoolP160r1", "brainpoolP160r1"},
{ NID_brainpoolP192r1, ECC_BRAINPOOLP192R1_OID, oidCurveType,
"brainpoolP192r1", "brainpoolP192r1"},
{ NID_brainpoolP224r1, ECC_BRAINPOOLP224R1_OID, oidCurveType,
"brainpoolP224r1", "brainpoolP224r1"},
{ NID_brainpoolP256r1, ECC_BRAINPOOLP256R1_OID, oidCurveType,
"brainpoolP256r1", "brainpoolP256r1"},
{ NID_brainpoolP320r1, ECC_BRAINPOOLP320R1_OID, oidCurveType,
"brainpoolP320r1", "brainpoolP320r1"},
{ NID_brainpoolP384r1, ECC_BRAINPOOLP384R1_OID, oidCurveType,
"brainpoolP384r1", "brainpoolP384r1"},
{ NID_brainpoolP512r1, ECC_BRAINPOOLP512R1_OID, oidCurveType,
"brainpoolP512r1", "brainpoolP512r1"},
#ifdef WOLFSSL_SM2
{ NID_sm2, ECC_SM2P256V1_OID, oidCurveType, "sm2", "sm2"},
#endif
#endif /* HAVE_ECC */
/* oidBlkType */
#ifdef WOLFSSL_AES_128
{ AES128CBCb, AES128CBCb, oidBlkType, "AES-128-CBC", "aes-128-cbc"},
#endif
#ifdef WOLFSSL_AES_192
{ AES192CBCb, AES192CBCb, oidBlkType, "AES-192-CBC", "aes-192-cbc"},
#endif
#ifdef WOLFSSL_AES_256
{ AES256CBCb, AES256CBCb, oidBlkType, "AES-256-CBC", "aes-256-cbc"},
#endif
#ifndef NO_DES3
{ NID_des, DESb, oidBlkType, "DES-CBC", "des-cbc"},
{ NID_des3, DES3b, oidBlkType, "DES-EDE3-CBC", "des-ede3-cbc"},
#endif /* !NO_DES3 */
#if defined(HAVE_CHACHA) && defined(HAVE_POLY1305)
{ NID_chacha20_poly1305, NID_chacha20_poly1305, oidBlkType,
"ChaCha20-Poly1305", "chacha20-poly1305"},
#endif
/* oidOcspType */
#ifdef HAVE_OCSP
{ NID_id_pkix_OCSP_basic, OCSP_BASIC_OID, oidOcspType,
"basicOCSPResponse", "Basic OCSP Response"},
{ OCSP_NONCE_OID, OCSP_NONCE_OID, oidOcspType, "Nonce", "OCSP Nonce"},
#endif /* HAVE_OCSP */
#ifndef NO_PWDBASED
/* oidKdfType */
{ PBKDF2_OID, PBKDF2_OID, oidKdfType, "PBKDFv2", "PBKDF2"},
/* oidPBEType */
{ PBE_SHA1_RC4_128, PBE_SHA1_RC4_128, oidPBEType,
"PBE-SHA1-RC4-128", "pbeWithSHA1And128BitRC4"},
{ PBE_SHA1_DES, PBE_SHA1_DES, oidPBEType, "PBE-SHA1-DES",
"pbeWithSHA1AndDES-CBC"},
{ PBE_SHA1_DES3, PBE_SHA1_DES3, oidPBEType, "PBE-SHA1-3DES",
"pbeWithSHA1And3-KeyTripleDES-CBC"},
#endif
/* oidKeyWrapType */
#ifdef WOLFSSL_AES_128
{ AES128_WRAP, AES128_WRAP, oidKeyWrapType, "AES-128 wrap",
"aes128-wrap"},
#endif
#ifdef WOLFSSL_AES_192
{ AES192_WRAP, AES192_WRAP, oidKeyWrapType, "AES-192 wrap",
"aes192-wrap"},
#endif
#ifdef WOLFSSL_AES_256
{ AES256_WRAP, AES256_WRAP, oidKeyWrapType, "AES-256 wrap",
"aes256-wrap"},
#endif
#ifndef NO_PKCS7
#ifndef NO_DH
/* oidCmsKeyAgreeType */
#ifndef NO_SHA
{ dhSinglePass_stdDH_sha1kdf_scheme, dhSinglePass_stdDH_sha1kdf_scheme,
oidCmsKeyAgreeType, "dhSinglePass-stdDH-sha1kdf-scheme",
"dhSinglePass-stdDH-sha1kdf-scheme"},
#endif
#ifdef WOLFSSL_SHA224
{ dhSinglePass_stdDH_sha224kdf_scheme,
dhSinglePass_stdDH_sha224kdf_scheme, oidCmsKeyAgreeType,
"dhSinglePass-stdDH-sha224kdf-scheme",
"dhSinglePass-stdDH-sha224kdf-scheme"},
#endif
#ifndef NO_SHA256
{ dhSinglePass_stdDH_sha256kdf_scheme,
dhSinglePass_stdDH_sha256kdf_scheme, oidCmsKeyAgreeType,
"dhSinglePass-stdDH-sha256kdf-scheme",
"dhSinglePass-stdDH-sha256kdf-scheme"},
#endif
#ifdef WOLFSSL_SHA384
{ dhSinglePass_stdDH_sha384kdf_scheme,
dhSinglePass_stdDH_sha384kdf_scheme, oidCmsKeyAgreeType,
"dhSinglePass-stdDH-sha384kdf-scheme",
"dhSinglePass-stdDH-sha384kdf-scheme"},
#endif
#ifdef WOLFSSL_SHA512
{ dhSinglePass_stdDH_sha512kdf_scheme,
dhSinglePass_stdDH_sha512kdf_scheme, oidCmsKeyAgreeType,
"dhSinglePass-stdDH-sha512kdf-scheme",
"dhSinglePass-stdDH-sha512kdf-scheme"},
#endif
#endif
#endif
#if defined(WOLFSSL_APACHE_HTTPD)
/* "1.3.6.1.5.5.7.8.7" */
{ NID_id_on_dnsSRV, NID_id_on_dnsSRV, oidCertNameType,
WOLFSSL_SN_DNS_SRV, WOLFSSL_LN_DNS_SRV },
/* "1.3.6.1.4.1.311.20.2.3" */
{ NID_ms_upn, WOLFSSL_MS_UPN_SUM, oidCertExtType, WOLFSSL_SN_MS_UPN,
WOLFSSL_LN_MS_UPN },
/* "1.3.6.1.5.5.7.1.24" */
{ NID_tlsfeature, WOLFSSL_TLS_FEATURE_SUM, oidTlsExtType,
WOLFSSL_SN_TLS_FEATURE, WOLFSSL_LN_TLS_FEATURE },
#endif
#endif /* OPENSSL_EXTRA */
};
#define WOLFSSL_OBJECT_INFO_SZ \
(sizeof(wolfssl_object_info) / sizeof(*wolfssl_object_info))
const size_t wolfssl_object_info_sz = WOLFSSL_OBJECT_INFO_SZ;
#endif
#if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)
/* Free the dynamically allocated data.
*
* p Pointer to dynamically allocated memory.
*/
void wolfSSL_OPENSSL_free(void* p)
{
WOLFSSL_MSG("wolfSSL_OPENSSL_free");
XFREE(p, NULL, DYNAMIC_TYPE_OPENSSL);
}
#endif /* OPENSSL_EXTRA || OPENSSL_EXTRA_X509_SMALL */
#ifdef OPENSSL_EXTRA
void *wolfSSL_OPENSSL_malloc(size_t a)
{
return (void *)XMALLOC(a, NULL, DYNAMIC_TYPE_OPENSSL);
}
int wolfSSL_OPENSSL_hexchar2int(unsigned char c)
{
/* 'char' is unsigned on some platforms. */
return (int)(signed char)HexCharToByte((char)c);
}
unsigned char *wolfSSL_OPENSSL_hexstr2buf(const char *str, long *len)
{
unsigned char* targetBuf;
int srcDigitHigh = 0;
int srcDigitLow = 0;
size_t srcLen;
size_t srcIdx = 0;
long targetIdx = 0;
srcLen = XSTRLEN(str);
targetBuf = (unsigned char*)XMALLOC(srcLen / 2, NULL, DYNAMIC_TYPE_OPENSSL);
if (targetBuf == NULL) {
return NULL;
}
while (srcIdx < srcLen) {
if (str[srcIdx] == ':') {
srcIdx++;
continue;
}
srcDigitHigh = wolfSSL_OPENSSL_hexchar2int((unsigned char)str[srcIdx++]);
srcDigitLow = wolfSSL_OPENSSL_hexchar2int((unsigned char)str[srcIdx++]);
if (srcDigitHigh < 0 || srcDigitLow < 0) {
WOLFSSL_MSG("Invalid hex character.");
XFREE(targetBuf, NULL, DYNAMIC_TYPE_OPENSSL);
return NULL;
}
targetBuf[targetIdx++] = (unsigned char)((srcDigitHigh << 4) |
srcDigitLow );
}
if (len != NULL)
*len = targetIdx;
return targetBuf;
}
int wolfSSL_OPENSSL_init_ssl(word64 opts, const OPENSSL_INIT_SETTINGS *settings)
{
(void)opts;
(void)settings;
return wolfSSL_library_init();
}
int wolfSSL_OPENSSL_init_crypto(word64 opts,
const OPENSSL_INIT_SETTINGS* settings)
{
(void)opts;
(void)settings;
return wolfSSL_library_init();
}
/* Colon separated list of <public key>+<digest> algorithms.
* Replaces list in context.
*/
int wolfSSL_CTX_set1_sigalgs_list(WOLFSSL_CTX* ctx, const char* list)
{
WOLFSSL_MSG("wolfSSL_CTX_set1_sigalg_list");
if (ctx == NULL || list == NULL) {
WOLFSSL_MSG("Bad function arguments");
return WOLFSSL_FAILURE;
}
if (AllocateCtxSuites(ctx) != 0)
return WOLFSSL_FAILURE;
return SetSuitesHashSigAlgo(ctx->suites, list);
}
/* Colon separated list of <public key>+<digest> algorithms.
* Replaces list in SSL.
*/
int wolfSSL_set1_sigalgs_list(WOLFSSL* ssl, const char* list)
{
WOLFSSL_MSG("wolfSSL_set1_sigalg_list");
if (ssl == NULL || list == NULL) {
WOLFSSL_MSG("Bad function arguments");
return WOLFSSL_FAILURE;
}
if (AllocateSuites(ssl) != 0)
return WOLFSSL_FAILURE;
return SetSuitesHashSigAlgo(ssl->suites, list);
}
static int HashToNid(byte hashAlgo, int* nid)
{
int ret = WOLFSSL_SUCCESS;
/* Cast for compiler to check everything is implemented */
switch ((enum wc_MACAlgorithm)hashAlgo) {
case no_mac:
case rmd_mac:
*nid = NID_undef;
break;
case md5_mac:
*nid = NID_md5;
break;
case sha_mac:
*nid = NID_sha1;
break;
case sha224_mac:
*nid = NID_sha224;
break;
case sha256_mac:
*nid = NID_sha256;
break;
case sha384_mac:
*nid = NID_sha384;
break;
case sha512_mac:
*nid = NID_sha512;
break;
case blake2b_mac:
*nid = NID_blake2b512;
break;
case sm3_mac:
*nid = NID_sm3;
break;
default:
ret = WOLFSSL_FAILURE;
break;
}
return ret;
}
static int SaToNid(byte sa, int* nid)
{
int ret = WOLFSSL_SUCCESS;
/* Cast for compiler to check everything is implemented */
switch ((enum SignatureAlgorithm)sa) {
case anonymous_sa_algo:
*nid = NID_undef;
break;
case rsa_sa_algo:
*nid = NID_rsaEncryption;
break;
case dsa_sa_algo:
*nid = NID_dsa;
break;
case ecc_dsa_sa_algo:
*nid = NID_X9_62_id_ecPublicKey;
break;
case rsa_pss_sa_algo:
*nid = NID_rsassaPss;
break;
case ed25519_sa_algo:
#ifdef HAVE_ED25519
*nid = NID_ED25519;
#else
ret = WOLFSSL_FAILURE;
#endif
break;
case rsa_pss_pss_algo:
*nid = NID_rsassaPss;
break;
case ed448_sa_algo:
#ifdef HAVE_ED448
*nid = NID_ED448;
#else
ret = WOLFSSL_FAILURE;
#endif
break;
case falcon_level1_sa_algo:
*nid = CTC_FALCON_LEVEL1;
break;
case falcon_level5_sa_algo:
*nid = CTC_FALCON_LEVEL5;
break;
case dilithium_level2_sa_algo:
*nid = CTC_DILITHIUM_LEVEL2;
break;
case dilithium_level3_sa_algo:
*nid = CTC_DILITHIUM_LEVEL3;
break;
case dilithium_level5_sa_algo:
*nid = CTC_DILITHIUM_LEVEL5;
break;
case sm2_sa_algo:
*nid = NID_sm2;
break;
case invalid_sa_algo:
default:
ret = WOLFSSL_FAILURE;
break;
}
return ret;
}
/* This API returns the hash selected. */
int wolfSSL_get_signature_nid(WOLFSSL *ssl, int* nid)
{
WOLFSSL_MSG("wolfSSL_get_signature_nid");
if (ssl == NULL || nid == NULL) {
WOLFSSL_MSG("Bad function arguments");
return WOLFSSL_FAILURE;
}
return HashToNid(ssl->options.hashAlgo, nid);
}
/* This API returns the signature selected. */
int wolfSSL_get_signature_type_nid(const WOLFSSL* ssl, int* nid)
{
WOLFSSL_MSG("wolfSSL_get_signature_type_nid");
if (ssl == NULL || nid == NULL) {
WOLFSSL_MSG("Bad function arguments");
return WOLFSSL_FAILURE;
}
return SaToNid(ssl->options.sigAlgo, nid);
}
int wolfSSL_get_peer_signature_nid(WOLFSSL* ssl, int* nid)
{
WOLFSSL_MSG("wolfSSL_get_peer_signature_nid");
if (ssl == NULL || nid == NULL) {
WOLFSSL_MSG("Bad function arguments");
return WOLFSSL_FAILURE;
}
return HashToNid(ssl->options.peerHashAlgo, nid);
}
int wolfSSL_get_peer_signature_type_nid(const WOLFSSL* ssl, int* nid)
{
WOLFSSL_MSG("wolfSSL_get_peer_signature_type_nid");
if (ssl == NULL || nid == NULL) {
WOLFSSL_MSG("Bad function arguments");
return WOLFSSL_FAILURE;
}
return SaToNid(ssl->options.peerSigAlgo, nid);
}
#ifdef HAVE_ECC
#if defined(WOLFSSL_TLS13) && defined(HAVE_SUPPORTED_CURVES)
int wolfSSL_CTX_set1_groups_list(WOLFSSL_CTX *ctx, const char *list)
{
if (!ctx || !list) {
return WOLFSSL_FAILURE;
}
return set_curves_list(NULL, ctx, list, 0);
}
int wolfSSL_set1_groups_list(WOLFSSL *ssl, const char *list)
{
if (!ssl || !list) {
return WOLFSSL_FAILURE;
}
return set_curves_list(ssl, NULL, list, 0);
}
#endif /* WOLFSSL_TLS13 */
#endif /* HAVE_ECC */
#endif /* OPENSSL_EXTRA */
#ifdef WOLFSSL_ALT_CERT_CHAINS
int wolfSSL_is_peer_alt_cert_chain(const WOLFSSL* ssl)
{
int isUsing = 0;
if (ssl)
isUsing = ssl->options.usingAltCertChain;
return isUsing;
}
#endif /* WOLFSSL_ALT_CERT_CHAINS */
#ifdef SESSION_CERTS
#ifdef WOLFSSL_ALT_CERT_CHAINS
/* Get peer's alternate certificate chain */
WOLFSSL_X509_CHAIN* wolfSSL_get_peer_alt_chain(WOLFSSL* ssl)
{
WOLFSSL_ENTER("wolfSSL_get_peer_alt_chain");
if (ssl)
return &ssl->session->altChain;
return 0;
}
#endif /* WOLFSSL_ALT_CERT_CHAINS */
/* Get peer's certificate chain */
WOLFSSL_X509_CHAIN* wolfSSL_get_peer_chain(WOLFSSL* ssl)
{
WOLFSSL_ENTER("wolfSSL_get_peer_chain");
if (ssl)
return &ssl->session->chain;
return 0;
}
/* Get peer's certificate chain total count */
int wolfSSL_get_chain_count(WOLFSSL_X509_CHAIN* chain)
{
WOLFSSL_ENTER("wolfSSL_get_chain_count");
if (chain)
return chain->count;
return 0;
}
/* Get peer's ASN.1 DER certificate at index (idx) length in bytes */
int wolfSSL_get_chain_length(WOLFSSL_X509_CHAIN* chain, int idx)
{
WOLFSSL_ENTER("wolfSSL_get_chain_length");
if (chain)
return chain->certs[idx].length;
return 0;
}
/* Get peer's ASN.1 DER certificate at index (idx) */
byte* wolfSSL_get_chain_cert(WOLFSSL_X509_CHAIN* chain, int idx)
{
WOLFSSL_ENTER("wolfSSL_get_chain_cert");
if (chain)
return chain->certs[idx].buffer;
return 0;
}
/* Get peer's wolfSSL X509 certificate at index (idx) */
WOLFSSL_X509* wolfSSL_get_chain_X509(WOLFSSL_X509_CHAIN* chain, int idx)
{
int ret = 0;
WOLFSSL_X509* x509 = NULL;
#ifdef WOLFSSL_SMALL_STACK
DecodedCert* cert = NULL;
#else
DecodedCert cert[1];
#endif
WOLFSSL_ENTER("wolfSSL_get_chain_X509");
if (chain != NULL && idx < MAX_CHAIN_DEPTH) {
#ifdef WOLFSSL_SMALL_STACK
cert = (DecodedCert*)XMALLOC(sizeof(DecodedCert), NULL,
DYNAMIC_TYPE_DCERT);
if (cert != NULL)
#endif
{
InitDecodedCert(cert, chain->certs[idx].buffer,
chain->certs[idx].length, NULL);
if ((ret = ParseCertRelative(cert, CERT_TYPE, 0, NULL)) != 0) {
WOLFSSL_MSG("Failed to parse cert");
}
else {
x509 = (WOLFSSL_X509*)XMALLOC(sizeof(WOLFSSL_X509), NULL,
DYNAMIC_TYPE_X509);
if (x509 == NULL) {
WOLFSSL_MSG("Failed alloc X509");
}
else {
InitX509(x509, 1, NULL);
if ((ret = CopyDecodedToX509(x509, cert)) != 0) {
WOLFSSL_MSG("Failed to copy decoded");
wolfSSL_X509_free(x509);
x509 = NULL;
}
}
}
FreeDecodedCert(cert);
#ifdef WOLFSSL_SMALL_STACK
XFREE(cert, NULL, DYNAMIC_TYPE_DCERT);
#endif
}
}
(void)ret;
return x509;
}
/* Get peer's PEM certificate at index (idx), output to buffer if inLen big
enough else return error (-1). If buffer is NULL only calculate
outLen. Output length is in *outLen WOLFSSL_SUCCESS on ok */
int wolfSSL_get_chain_cert_pem(WOLFSSL_X509_CHAIN* chain, int idx,
unsigned char* buf, int inLen, int* outLen)
{
#if defined(WOLFSSL_PEM_TO_DER) || defined(WOLFSSL_DER_TO_PEM)
const char* header = NULL;
const char* footer = NULL;
int headerLen;
int footerLen;
int i;
int err;
word32 szNeeded = 0;
WOLFSSL_ENTER("wolfSSL_get_chain_cert_pem");
if (!chain || !outLen || idx < 0 || idx >= wolfSSL_get_chain_count(chain))
return BAD_FUNC_ARG;
err = wc_PemGetHeaderFooter(CERT_TYPE, &header, &footer);
if (err != 0)
return err;
headerLen = (int)XSTRLEN(header);
footerLen = (int)XSTRLEN(footer);
/* Null output buffer return size needed in outLen */
if(!buf) {
if(Base64_Encode(chain->certs[idx].buffer, chain->certs[idx].length,
NULL, &szNeeded) != WC_NO_ERR_TRACE(LENGTH_ONLY_E))
return WOLFSSL_FAILURE;
*outLen = szNeeded + headerLen + footerLen;
return LENGTH_ONLY_E;
}
/* don't even try if inLen too short */
if (inLen < headerLen + footerLen + chain->certs[idx].length)
return BAD_FUNC_ARG;
/* header */
if (XMEMCPY(buf, header, headerLen) == NULL)
return WOLFSSL_FATAL_ERROR;
i = headerLen;
/* body */
*outLen = inLen; /* input to Base64_Encode */
if ( (err = Base64_Encode(chain->certs[idx].buffer,
chain->certs[idx].length, buf + i, (word32*)outLen)) < 0)
return err;
i += *outLen;
/* footer */
if ( (i + footerLen) > inLen)
return BAD_FUNC_ARG;
if (XMEMCPY(buf + i, footer, footerLen) == NULL)
return WOLFSSL_FATAL_ERROR;
*outLen += headerLen + footerLen;
return WOLFSSL_SUCCESS;
#else
(void)chain;
(void)idx;
(void)buf;
(void)inLen;
(void)outLen;
return WOLFSSL_FAILURE;
#endif /* WOLFSSL_PEM_TO_DER || WOLFSSL_DER_TO_PEM */
}
#endif /* SESSION_CERTS */
#ifdef HAVE_FUZZER
void wolfSSL_SetFuzzerCb(WOLFSSL* ssl, CallbackFuzzer cbf, void* fCtx)
{
if (ssl) {
ssl->fuzzerCb = cbf;
ssl->fuzzerCtx = fCtx;
}
}
#endif
#ifndef NO_CERTS
#ifdef HAVE_PK_CALLBACKS
#ifdef HAVE_ECC
void wolfSSL_CTX_SetEccKeyGenCb(WOLFSSL_CTX* ctx, CallbackEccKeyGen cb)
{
if (ctx)
ctx->EccKeyGenCb = cb;
}
void wolfSSL_SetEccKeyGenCtx(WOLFSSL* ssl, void *ctx)
{
if (ssl)
ssl->EccKeyGenCtx = ctx;
}
void* wolfSSL_GetEccKeyGenCtx(WOLFSSL* ssl)
{
if (ssl)
return ssl->EccKeyGenCtx;
return NULL;
}
void wolfSSL_CTX_SetEccSignCtx(WOLFSSL_CTX* ctx, void *userCtx)
{
if (ctx)
ctx->EccSignCtx = userCtx;
}
void* wolfSSL_CTX_GetEccSignCtx(WOLFSSL_CTX* ctx)
{
if (ctx)
return ctx->EccSignCtx;
return NULL;
}
WOLFSSL_ABI
void wolfSSL_CTX_SetEccSignCb(WOLFSSL_CTX* ctx, CallbackEccSign cb)
{
if (ctx)
ctx->EccSignCb = cb;
}
void wolfSSL_SetEccSignCtx(WOLFSSL* ssl, void *ctx)
{
if (ssl)
ssl->EccSignCtx = ctx;
}
void* wolfSSL_GetEccSignCtx(WOLFSSL* ssl)
{
if (ssl)
return ssl->EccSignCtx;
return NULL;
}
void wolfSSL_CTX_SetEccVerifyCb(WOLFSSL_CTX* ctx, CallbackEccVerify cb)
{
if (ctx)
ctx->EccVerifyCb = cb;
}
void wolfSSL_SetEccVerifyCtx(WOLFSSL* ssl, void *ctx)
{
if (ssl)
ssl->EccVerifyCtx = ctx;
}
void* wolfSSL_GetEccVerifyCtx(WOLFSSL* ssl)
{
if (ssl)
return ssl->EccVerifyCtx;
return NULL;
}
void wolfSSL_CTX_SetEccSharedSecretCb(WOLFSSL_CTX* ctx,
CallbackEccSharedSecret cb)
{
if (ctx)
ctx->EccSharedSecretCb = cb;
}
void wolfSSL_SetEccSharedSecretCtx(WOLFSSL* ssl, void *ctx)
{
if (ssl)
ssl->EccSharedSecretCtx = ctx;
}
void* wolfSSL_GetEccSharedSecretCtx(WOLFSSL* ssl)
{
if (ssl)
return ssl->EccSharedSecretCtx;
return NULL;
}
#endif /* HAVE_ECC */
#ifdef HAVE_ED25519
void wolfSSL_CTX_SetEd25519SignCb(WOLFSSL_CTX* ctx, CallbackEd25519Sign cb)
{
if (ctx)
ctx->Ed25519SignCb = cb;
}
void wolfSSL_SetEd25519SignCtx(WOLFSSL* ssl, void *ctx)
{
if (ssl)
ssl->Ed25519SignCtx = ctx;
}
void* wolfSSL_GetEd25519SignCtx(WOLFSSL* ssl)
{
if (ssl)
return ssl->Ed25519SignCtx;
return NULL;
}
void wolfSSL_CTX_SetEd25519VerifyCb(WOLFSSL_CTX* ctx, CallbackEd25519Verify cb)
{
if (ctx)
ctx->Ed25519VerifyCb = cb;
}
void wolfSSL_SetEd25519VerifyCtx(WOLFSSL* ssl, void *ctx)
{
if (ssl)
ssl->Ed25519VerifyCtx = ctx;
}
void* wolfSSL_GetEd25519VerifyCtx(WOLFSSL* ssl)
{
if (ssl)
return ssl->Ed25519VerifyCtx;
return NULL;
}
#endif /* HAVE_ED25519 */
#ifdef HAVE_CURVE25519
void wolfSSL_CTX_SetX25519KeyGenCb(WOLFSSL_CTX* ctx,
CallbackX25519KeyGen cb)
{
if (ctx)
ctx->X25519KeyGenCb = cb;
}
void wolfSSL_SetX25519KeyGenCtx(WOLFSSL* ssl, void *ctx)
{
if (ssl)
ssl->X25519KeyGenCtx = ctx;
}
void* wolfSSL_GetX25519KeyGenCtx(WOLFSSL* ssl)
{
if (ssl)
return ssl->X25519KeyGenCtx;
return NULL;
}
void wolfSSL_CTX_SetX25519SharedSecretCb(WOLFSSL_CTX* ctx,
CallbackX25519SharedSecret cb)
{
if (ctx)
ctx->X25519SharedSecretCb = cb;
}
void wolfSSL_SetX25519SharedSecretCtx(WOLFSSL* ssl, void *ctx)
{
if (ssl)
ssl->X25519SharedSecretCtx = ctx;
}
void* wolfSSL_GetX25519SharedSecretCtx(WOLFSSL* ssl)
{
if (ssl)
return ssl->X25519SharedSecretCtx;
return NULL;
}
#endif /* HAVE_CURVE25519 */
#ifdef HAVE_ED448
void wolfSSL_CTX_SetEd448SignCb(WOLFSSL_CTX* ctx, CallbackEd448Sign cb)
{
if (ctx)
ctx->Ed448SignCb = cb;
}
void wolfSSL_SetEd448SignCtx(WOLFSSL* ssl, void *ctx)
{
if (ssl)
ssl->Ed448SignCtx = ctx;
}
void* wolfSSL_GetEd448SignCtx(WOLFSSL* ssl)
{
if (ssl)
return ssl->Ed448SignCtx;
return NULL;
}
void wolfSSL_CTX_SetEd448VerifyCb(WOLFSSL_CTX* ctx, CallbackEd448Verify cb)
{
if (ctx)
ctx->Ed448VerifyCb = cb;
}
void wolfSSL_SetEd448VerifyCtx(WOLFSSL* ssl, void *ctx)
{
if (ssl)
ssl->Ed448VerifyCtx = ctx;
}
void* wolfSSL_GetEd448VerifyCtx(WOLFSSL* ssl)
{
if (ssl)
return ssl->Ed448VerifyCtx;
return NULL;
}
#endif /* HAVE_ED448 */
#ifdef HAVE_CURVE448
void wolfSSL_CTX_SetX448KeyGenCb(WOLFSSL_CTX* ctx,
CallbackX448KeyGen cb)
{
if (ctx)
ctx->X448KeyGenCb = cb;
}
void wolfSSL_SetX448KeyGenCtx(WOLFSSL* ssl, void *ctx)
{
if (ssl)
ssl->X448KeyGenCtx = ctx;
}
void* wolfSSL_GetX448KeyGenCtx(WOLFSSL* ssl)
{
if (ssl)
return ssl->X448KeyGenCtx;
return NULL;
}
void wolfSSL_CTX_SetX448SharedSecretCb(WOLFSSL_CTX* ctx,
CallbackX448SharedSecret cb)
{
if (ctx)
ctx->X448SharedSecretCb = cb;
}
void wolfSSL_SetX448SharedSecretCtx(WOLFSSL* ssl, void *ctx)
{
if (ssl)
ssl->X448SharedSecretCtx = ctx;
}
void* wolfSSL_GetX448SharedSecretCtx(WOLFSSL* ssl)
{
if (ssl)
return ssl->X448SharedSecretCtx;
return NULL;
}
#endif /* HAVE_CURVE448 */
#ifndef NO_RSA
void wolfSSL_CTX_SetRsaSignCb(WOLFSSL_CTX* ctx, CallbackRsaSign cb)
{
if (ctx)
ctx->RsaSignCb = cb;
}
void wolfSSL_CTX_SetRsaSignCheckCb(WOLFSSL_CTX* ctx, CallbackRsaVerify cb)
{
if (ctx)
ctx->RsaSignCheckCb = cb;
}
void wolfSSL_SetRsaSignCtx(WOLFSSL* ssl, void *ctx)
{
if (ssl)
ssl->RsaSignCtx = ctx;
}
void* wolfSSL_GetRsaSignCtx(WOLFSSL* ssl)
{
if (ssl)
return ssl->RsaSignCtx;
return NULL;
}
void wolfSSL_CTX_SetRsaVerifyCb(WOLFSSL_CTX* ctx, CallbackRsaVerify cb)
{
if (ctx)
ctx->RsaVerifyCb = cb;
}
void wolfSSL_SetRsaVerifyCtx(WOLFSSL* ssl, void *ctx)
{
if (ssl)
ssl->RsaVerifyCtx = ctx;
}
void* wolfSSL_GetRsaVerifyCtx(WOLFSSL* ssl)
{
if (ssl)
return ssl->RsaVerifyCtx;
return NULL;
}
#ifdef WC_RSA_PSS
void wolfSSL_CTX_SetRsaPssSignCb(WOLFSSL_CTX* ctx, CallbackRsaPssSign cb)
{
if (ctx)
ctx->RsaPssSignCb = cb;
}
void wolfSSL_CTX_SetRsaPssSignCheckCb(WOLFSSL_CTX* ctx,
CallbackRsaPssVerify cb)
{
if (ctx)
ctx->RsaPssSignCheckCb = cb;
}
void wolfSSL_SetRsaPssSignCtx(WOLFSSL* ssl, void *ctx)
{
if (ssl)
ssl->RsaPssSignCtx = ctx;
}
void* wolfSSL_GetRsaPssSignCtx(WOLFSSL* ssl)
{
if (ssl)
return ssl->RsaPssSignCtx;
return NULL;
}
void wolfSSL_CTX_SetRsaPssVerifyCb(WOLFSSL_CTX* ctx, CallbackRsaPssVerify cb)
{
if (ctx)
ctx->RsaPssVerifyCb = cb;
}
void wolfSSL_SetRsaPssVerifyCtx(WOLFSSL* ssl, void *ctx)
{
if (ssl)
ssl->RsaPssVerifyCtx = ctx;
}
void* wolfSSL_GetRsaPssVerifyCtx(WOLFSSL* ssl)
{
if (ssl)
return ssl->RsaPssVerifyCtx;
return NULL;
}
#endif /* WC_RSA_PSS */
void wolfSSL_CTX_SetRsaEncCb(WOLFSSL_CTX* ctx, CallbackRsaEnc cb)
{
if (ctx)
ctx->RsaEncCb = cb;
}
void wolfSSL_SetRsaEncCtx(WOLFSSL* ssl, void *ctx)
{
if (ssl)
ssl->RsaEncCtx = ctx;
}
void* wolfSSL_GetRsaEncCtx(WOLFSSL* ssl)
{
if (ssl)
return ssl->RsaEncCtx;
return NULL;
}
void wolfSSL_CTX_SetRsaDecCb(WOLFSSL_CTX* ctx, CallbackRsaDec cb)
{
if (ctx)
ctx->RsaDecCb = cb;
}
void wolfSSL_SetRsaDecCtx(WOLFSSL* ssl, void *ctx)
{
if (ssl)
ssl->RsaDecCtx = ctx;
}
void* wolfSSL_GetRsaDecCtx(WOLFSSL* ssl)
{
if (ssl)
return ssl->RsaDecCtx;
return NULL;
}
#endif /* NO_RSA */
/* callback for premaster secret generation */
void wolfSSL_CTX_SetGenPreMasterCb(WOLFSSL_CTX* ctx, CallbackGenPreMaster cb)
{
if (ctx)
ctx->GenPreMasterCb = cb;
}
/* Set premaster secret generation callback context */
void wolfSSL_SetGenPreMasterCtx(WOLFSSL* ssl, void *ctx)
{
if (ssl)
ssl->GenPreMasterCtx = ctx;
}
/* Get premaster secret generation callback context */
void* wolfSSL_GetGenPreMasterCtx(WOLFSSL* ssl)
{
if (ssl)
return ssl->GenPreMasterCtx;
return NULL;
}
/* callback for master secret generation */
void wolfSSL_CTX_SetGenMasterSecretCb(WOLFSSL_CTX* ctx,
CallbackGenMasterSecret cb)
{
if (ctx)
ctx->GenMasterCb = cb;
}
/* Set master secret generation callback context */
void wolfSSL_SetGenMasterSecretCtx(WOLFSSL* ssl, void *ctx)
{
if (ssl)
ssl->GenMasterCtx = ctx;
}
/* Get master secret generation callback context */
void* wolfSSL_GetGenMasterSecretCtx(WOLFSSL* ssl)
{
if (ssl)
return ssl->GenMasterCtx;
return NULL;
}
/* callback for session key generation */
void wolfSSL_CTX_SetGenSessionKeyCb(WOLFSSL_CTX* ctx, CallbackGenSessionKey cb)
{
if (ctx)
ctx->GenSessionKeyCb = cb;
}
/* Set session key generation callback context */
void wolfSSL_SetGenSessionKeyCtx(WOLFSSL* ssl, void *ctx)
{
if (ssl)
ssl->GenSessionKeyCtx = ctx;
}
/* Get session key generation callback context */
void* wolfSSL_GetGenSessionKeyCtx(WOLFSSL* ssl)
{
if (ssl)
return ssl->GenSessionKeyCtx;
return NULL;
}
/* callback for setting encryption keys */
void wolfSSL_CTX_SetEncryptKeysCb(WOLFSSL_CTX* ctx, CallbackEncryptKeys cb)
{
if (ctx)
ctx->EncryptKeysCb = cb;
}
/* Set encryption keys callback context */
void wolfSSL_SetEncryptKeysCtx(WOLFSSL* ssl, void *ctx)
{
if (ssl)
ssl->EncryptKeysCtx = ctx;
}
/* Get encryption keys callback context */
void* wolfSSL_GetEncryptKeysCtx(WOLFSSL* ssl)
{
if (ssl)
return ssl->EncryptKeysCtx;
return NULL;
}
/* callback for Tls finished */
/* the callback can be used to build TLS Finished message if enabled */
void wolfSSL_CTX_SetTlsFinishedCb(WOLFSSL_CTX* ctx, CallbackTlsFinished cb)
{
if (ctx)
ctx->TlsFinishedCb = cb;
}
/* Set Tls finished callback context */
void wolfSSL_SetTlsFinishedCtx(WOLFSSL* ssl, void *ctx)
{
if (ssl)
ssl->TlsFinishedCtx = ctx;
}
/* Get Tls finished callback context */
void* wolfSSL_GetTlsFinishedCtx(WOLFSSL* ssl)
{
if (ssl)
return ssl->TlsFinishedCtx;
return NULL;
}
#if !defined(WOLFSSL_NO_TLS12) && !defined(WOLFSSL_AEAD_ONLY)
/* callback for verify data */
void wolfSSL_CTX_SetVerifyMacCb(WOLFSSL_CTX* ctx, CallbackVerifyMac cb)
{
if (ctx)
ctx->VerifyMacCb = cb;
}
/* Set set keys callback context */
void wolfSSL_SetVerifyMacCtx(WOLFSSL* ssl, void *ctx)
{
if (ssl)
ssl->VerifyMacCtx = ctx;
}
/* Get set keys callback context */
void* wolfSSL_GetVerifyMacCtx(WOLFSSL* ssl)
{
if (ssl)
return ssl->VerifyMacCtx;
return NULL;
}
#endif /* !WOLFSSL_NO_TLS12 && !WOLFSSL_AEAD_ONLY */
void wolfSSL_CTX_SetHKDFExpandLabelCb(WOLFSSL_CTX* ctx,
CallbackHKDFExpandLabel cb)
{
if (ctx)
ctx->HKDFExpandLabelCb = cb;
}
#ifdef WOLFSSL_PUBLIC_ASN
void wolfSSL_CTX_SetProcessPeerCertCb(WOLFSSL_CTX* ctx,
CallbackProcessPeerCert cb)
{
if (ctx)
ctx->ProcessPeerCertCb = cb;
}
#endif /* WOLFSSL_PUBLIC_ASN */
void wolfSSL_CTX_SetProcessServerSigKexCb(WOLFSSL_CTX* ctx,
CallbackProcessServerSigKex cb)
{
if (ctx)
ctx->ProcessServerSigKexCb = cb;
}
void wolfSSL_CTX_SetPerformTlsRecordProcessingCb(WOLFSSL_CTX* ctx,
CallbackPerformTlsRecordProcessing cb)
{
if (ctx)
ctx->PerformTlsRecordProcessingCb = cb;
}
#endif /* HAVE_PK_CALLBACKS */
#endif /* NO_CERTS */
#if defined(HAVE_PK_CALLBACKS) && !defined(NO_DH)
void wolfSSL_CTX_SetDhGenerateKeyPair(WOLFSSL_CTX* ctx,
CallbackDhGenerateKeyPair cb) {
if (ctx)
ctx->DhGenerateKeyPairCb = cb;
}
void wolfSSL_CTX_SetDhAgreeCb(WOLFSSL_CTX* ctx, CallbackDhAgree cb)
{
if (ctx)
ctx->DhAgreeCb = cb;
}
void wolfSSL_SetDhAgreeCtx(WOLFSSL* ssl, void *ctx)
{
if (ssl)
ssl->DhAgreeCtx = ctx;
}
void* wolfSSL_GetDhAgreeCtx(WOLFSSL* ssl)
{
if (ssl)
return ssl->DhAgreeCtx;
return NULL;
}
#endif /* HAVE_PK_CALLBACKS && !NO_DH */
#if defined(HAVE_PK_CALLBACKS) && defined(HAVE_HKDF)
void wolfSSL_CTX_SetHKDFExtractCb(WOLFSSL_CTX* ctx, CallbackHKDFExtract cb)
{
if (ctx)
ctx->HkdfExtractCb = cb;
}
void wolfSSL_SetHKDFExtractCtx(WOLFSSL* ssl, void *ctx)
{
if (ssl)
ssl->HkdfExtractCtx = ctx;
}
void* wolfSSL_GetHKDFExtractCtx(WOLFSSL* ssl)
{
if (ssl)
return ssl->HkdfExtractCtx;
return NULL;
}
#endif /* HAVE_PK_CALLBACKS && HAVE_HKDF */
#ifdef WOLFSSL_HAVE_WOLFSCEP
/* Used by autoconf to see if wolfSCEP is available */
void wolfSSL_wolfSCEP(void) {}
#endif
#ifdef WOLFSSL_HAVE_CERT_SERVICE
/* Used by autoconf to see if cert service is available */
void wolfSSL_cert_service(void) {}
#endif
#if (defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)) && \
!defined(WOLFCRYPT_ONLY)
/* NID variables are dependent on compatibility header files currently
*
* returns a pointer to a new WOLFSSL_ASN1_OBJECT struct on success and NULL
* on fail
*/
WOLFSSL_ASN1_OBJECT* wolfSSL_OBJ_nid2obj(int id)
{
return wolfSSL_OBJ_nid2obj_ex(id, NULL);
}
WOLFSSL_LOCAL WOLFSSL_ASN1_OBJECT* wolfSSL_OBJ_nid2obj_ex(int id,
WOLFSSL_ASN1_OBJECT* arg_obj)
{
word32 oidSz = 0;
int nid = 0;
const byte* oid;
word32 type = 0;
WOLFSSL_ASN1_OBJECT* obj = arg_obj;
byte objBuf[MAX_OID_SZ + MAX_LENGTH_SZ + 1]; /* +1 for object tag */
word32 objSz = 0;
const char* sName = NULL;
int i;
#ifdef WOLFSSL_DEBUG_OPENSSL
WOLFSSL_ENTER("wolfSSL_OBJ_nid2obj");
#endif
for (i = 0; i < (int)WOLFSSL_OBJECT_INFO_SZ; i++) {
if (wolfssl_object_info[i].nid == id) {
nid = id;
id = wolfssl_object_info[i].id;
sName = wolfssl_object_info[i].sName;
type = wolfssl_object_info[i].type;
break;
}
}
if (i == (int)WOLFSSL_OBJECT_INFO_SZ) {
WOLFSSL_MSG("NID not in table");
#ifdef WOLFSSL_QT
sName = NULL;
type = (word32)id;
#else
return NULL;
#endif
}
#ifdef HAVE_ECC
if (type == 0 && wc_ecc_get_oid((word32)id, &oid, &oidSz) > 0) {
type = oidCurveType;
}
#endif /* HAVE_ECC */
if (sName != NULL) {
if (XSTRLEN(sName) > WOLFSSL_MAX_SNAME - 1) {
WOLFSSL_MSG("Attempted short name is too large");
return NULL;
}
}
oid = OidFromId((word32)id, type, &oidSz);
/* set object ID to buffer */
if (obj == NULL){
obj = wolfSSL_ASN1_OBJECT_new();
if (obj == NULL) {
WOLFSSL_MSG("Issue creating WOLFSSL_ASN1_OBJECT struct");
return NULL;
}
}
obj->nid = nid;
obj->type = id;
obj->grp = (int)type;
obj->sName[0] = '\0';
if (sName != NULL) {
XMEMCPY(obj->sName, (char*)sName, XSTRLEN((char*)sName));
}
objBuf[0] = ASN_OBJECT_ID; objSz++;
objSz += SetLength(oidSz, objBuf + 1);
if (oidSz) {
XMEMCPY(objBuf + objSz, oid, oidSz);
objSz += oidSz;
}
if (obj->objSz == 0 || objSz != obj->objSz) {
obj->objSz = objSz;
if(((obj->dynamic & WOLFSSL_ASN1_DYNAMIC_DATA) != 0) ||
(obj->obj == NULL)) {
if (obj->obj != NULL)
XFREE((byte*)obj->obj, NULL, DYNAMIC_TYPE_ASN1);
obj->obj = (byte*)XMALLOC(obj->objSz, NULL, DYNAMIC_TYPE_ASN1);
if (obj->obj == NULL) {
wolfSSL_ASN1_OBJECT_free(obj);
return NULL;
}
obj->dynamic |= WOLFSSL_ASN1_DYNAMIC_DATA;
}
else {
obj->dynamic &= ~WOLFSSL_ASN1_DYNAMIC_DATA;
}
}
XMEMCPY((byte*)obj->obj, objBuf, obj->objSz);
(void)type;
return obj;
}
static const char* oid_translate_num_to_str(const char* oid)
{
const struct oid_dict {
const char* num;
const char* desc;
} oid_dict[] = {
{ "2.5.29.37.0", "Any Extended Key Usage" },
{ "1.3.6.1.5.5.7.3.1", "TLS Web Server Authentication" },
{ "1.3.6.1.5.5.7.3.2", "TLS Web Client Authentication" },
{ "1.3.6.1.5.5.7.3.3", "Code Signing" },
{ "1.3.6.1.5.5.7.3.4", "E-mail Protection" },
{ "1.3.6.1.5.5.7.3.8", "Time Stamping" },
{ "1.3.6.1.5.5.7.3.9", "OCSP Signing" },
{ NULL, NULL }
};
const struct oid_dict* idx;
for (idx = oid_dict; idx->num != NULL; idx++) {
if (!XSTRCMP(oid, idx->num)) {
return idx->desc;
}
}
return NULL;
}
static int wolfssl_obj2txt_numeric(char *buf, int bufLen,
const WOLFSSL_ASN1_OBJECT *a)
{
int bufSz;
int length;
word32 idx = 0;
byte tag;
if (GetASNTag(a->obj, &idx, &tag, a->objSz) != 0) {
return WOLFSSL_FAILURE;
}
if (tag != ASN_OBJECT_ID) {
WOLFSSL_MSG("Bad ASN1 Object");
return WOLFSSL_FAILURE;
}
if (GetLength((const byte*)a->obj, &idx, &length,
a->objSz) < 0 || length < 0) {
return ASN_PARSE_E;
}
if (bufLen < MAX_OID_STRING_SZ) {
bufSz = bufLen - 1;
}
else {
bufSz = MAX_OID_STRING_SZ;
}
if ((bufSz = DecodePolicyOID(buf, (word32)bufSz, a->obj + idx,
(word32)length)) <= 0) {
WOLFSSL_MSG("Error decoding OID");
return WOLFSSL_FAILURE;
}
buf[bufSz] = '\0';
return bufSz;
}
/* If no_name is one then use numerical form, otherwise short name.
*
* Returns the buffer size on success, WOLFSSL_FAILURE on error
*/
int wolfSSL_OBJ_obj2txt(char *buf, int bufLen, const WOLFSSL_ASN1_OBJECT *a,
int no_name)
{
int bufSz;
const char* desc;
const char* name;
WOLFSSL_ENTER("wolfSSL_OBJ_obj2txt");
if (buf == NULL || bufLen <= 1 || a == NULL) {
WOLFSSL_MSG("Bad input argument");
return WOLFSSL_FAILURE;
}
if (no_name == 1) {
return wolfssl_obj2txt_numeric(buf, bufLen, a);
}
/* return long name unless using x509small, then return short name */
#if defined(OPENSSL_EXTRA_X509_SMALL) && !defined(OPENSSL_EXTRA)
name = a->sName;
#else
name = wolfSSL_OBJ_nid2ln(wolfSSL_OBJ_obj2nid(a));
#endif
if (name == NULL) {
WOLFSSL_MSG("Name not found");
bufSz = 0;
}
else if (XSTRLEN(name) + 1 < (word32)bufLen - 1) {
bufSz = (int)XSTRLEN(name);
}
else {
bufSz = bufLen - 1;
}
if (bufSz) {
XMEMCPY(buf, name, bufSz);
}
else if (a->type == GEN_DNS || a->type == GEN_EMAIL ||
a->type == GEN_URI) {
bufSz = (int)XSTRLEN((const char*)a->obj);
XMEMCPY(buf, a->obj, min((word32)bufSz, (word32)bufLen));
}
else if ((bufSz = wolfssl_obj2txt_numeric(buf, bufLen, a)) > 0) {
if ((desc = oid_translate_num_to_str(buf))) {
bufSz = (int)XSTRLEN(desc);
bufSz = (int)min((word32)bufSz,(word32) bufLen - 1);
XMEMCPY(buf, desc, bufSz);
}
}
else {
bufSz = 0;
}
buf[bufSz] = '\0';
return bufSz;
}
#endif /* OPENSSL_EXTRA || OPENSSL_EXTRA_X509_SMALL */
#if defined(OPENSSL_EXTRA) || defined(HAVE_LIGHTY) || \
defined(WOLFSSL_MYSQL_COMPATIBLE) || defined(HAVE_STUNNEL) || \
defined(WOLFSSL_NGINX) || defined(HAVE_POCO_LIB) || \
defined(WOLFSSL_HAPROXY) || defined(WOLFSSL_WPAS_SMALL)
/* Returns the long name that corresponds with an ASN1_OBJECT nid value.
* n : NID value of ASN1_OBJECT to search */
const char* wolfSSL_OBJ_nid2ln(int n)
{
const WOLFSSL_ObjectInfo *obj_info = wolfssl_object_info;
size_t i;
WOLFSSL_ENTER("wolfSSL_OBJ_nid2ln");
for (i = 0; i < WOLFSSL_OBJECT_INFO_SZ; i++, obj_info++) {
if (obj_info->nid == n) {
return obj_info->lName;
}
}
WOLFSSL_MSG("NID not found in table");
return NULL;
}
#endif /* OPENSSL_EXTRA, HAVE_LIGHTY, WOLFSSL_MYSQL_COMPATIBLE, HAVE_STUNNEL,
WOLFSSL_NGINX, HAVE_POCO_LIB, WOLFSSL_HAPROXY, WOLFSSL_WPAS_SMALL */
#if defined(OPENSSL_EXTRA) || defined(HAVE_LIGHTY) || \
defined(WOLFSSL_MYSQL_COMPATIBLE) || defined(HAVE_STUNNEL) || \
defined(WOLFSSL_NGINX) || defined(HAVE_POCO_LIB) || \
defined(WOLFSSL_HAPROXY)
/* Return the corresponding short name for the nid <n>.
* or NULL if short name can't be found.
*/
const char * wolfSSL_OBJ_nid2sn(int n) {
const WOLFSSL_ObjectInfo *obj_info = wolfssl_object_info;
size_t i;
WOLFSSL_ENTER("wolfSSL_OBJ_nid2sn");
if (n == NID_md5) {
/* NID_surname == NID_md5 and NID_surname comes before NID_md5 in
* wolfssl_object_info. As a result, the loop below will incorrectly
* return "SN" instead of "MD5." NID_surname isn't the true OpenSSL
* NID, but other functions rely on this table and modifying it to
* conform with OpenSSL's NIDs isn't trivial. */
return "MD5";
}
for (i = 0; i < WOLFSSL_OBJECT_INFO_SZ; i++, obj_info++) {
if (obj_info->nid == n) {
return obj_info->sName;
}
}
WOLFSSL_MSG_EX("SN not found (nid:%d)",n);
return NULL;
}
#if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)
int wolfSSL_OBJ_sn2nid(const char *sn) {
WOLFSSL_ENTER("wolfSSL_OBJ_sn2nid");
if (sn == NULL)
return NID_undef;
return wc_OBJ_sn2nid(sn);
}
#endif
size_t wolfSSL_OBJ_length(const WOLFSSL_ASN1_OBJECT* o)
{
size_t ret = 0;
int err = 0;
word32 idx = 0;
int len = 0;
WOLFSSL_ENTER("wolfSSL_OBJ_length");
if (o == NULL || o->obj == NULL) {
WOLFSSL_MSG("Bad argument.");
err = 1;
}
if (err == 0 && GetASNObjectId(o->obj, &idx, &len, o->objSz)) {
WOLFSSL_MSG("Error parsing ASN.1 header.");
err = 1;
}
if (err == 0) {
ret = (size_t)len;
}
WOLFSSL_LEAVE("wolfSSL_OBJ_length", (int)ret);
return ret;
}
const unsigned char* wolfSSL_OBJ_get0_data(const WOLFSSL_ASN1_OBJECT* o)
{
const unsigned char* ret = NULL;
int err = 0;
word32 idx = 0;
int len = 0;
WOLFSSL_ENTER("wolfSSL_OBJ_get0_data");
if (o == NULL || o->obj == NULL) {
WOLFSSL_MSG("Bad argument.");
err = 1;
}
if (err == 0 && GetASNObjectId(o->obj, &idx, &len, o->objSz)) {
WOLFSSL_MSG("Error parsing ASN.1 header.");
err = 1;
}
if (err == 0) {
ret = o->obj + idx;
}
return ret;
}
/* Gets the NID value that corresponds with the ASN1 object.
*
* o ASN1 object to get NID of
*
* Return NID on success and a negative value on failure
*/
int wolfSSL_OBJ_obj2nid(const WOLFSSL_ASN1_OBJECT *o)
{
word32 oid = 0;
word32 idx = 0;
int ret;
#ifdef WOLFSSL_DEBUG_OPENSSL
WOLFSSL_ENTER("wolfSSL_OBJ_obj2nid");
#endif
if (o == NULL) {
return -1;
}
#ifdef WOLFSSL_QT
if (o->grp == oidCertExtType) {
/* If nid is an unknown extension, return NID_undef */
if (wolfSSL_OBJ_nid2sn(o->nid) == NULL)
return NID_undef;
}
#endif
if (o->nid > 0)
return o->nid;
if ((ret = GetObjectId(o->obj, &idx, &oid, o->grp, o->objSz)) < 0) {
if (ret == WC_NO_ERR_TRACE(ASN_OBJECT_ID_E)) {
/* Put ASN object tag in front and try again */
int len = SetObjectId(o->objSz, NULL) + o->objSz;
byte* buf = (byte*)XMALLOC(len, NULL, DYNAMIC_TYPE_TMP_BUFFER);
if (!buf) {
WOLFSSL_MSG("malloc error");
return -1;
}
idx = SetObjectId(o->objSz, buf);
XMEMCPY(buf + idx, o->obj, o->objSz);
idx = 0;
ret = GetObjectId(buf, &idx, &oid, o->grp, len);
XFREE(buf, NULL, DYNAMIC_TYPE_TMP_BUFFER);
if (ret < 0) {
WOLFSSL_MSG("Issue getting OID of object");
return -1;
}
}
else {
WOLFSSL_MSG("Issue getting OID of object");
return -1;
}
}
return oid2nid(oid, o->grp);
}
/* Return the corresponding NID for the long name <ln>
* or NID_undef if NID can't be found.
*/
int wolfSSL_OBJ_ln2nid(const char *ln)
{
const WOLFSSL_ObjectInfo *obj_info = wolfssl_object_info;
size_t lnlen;
WOLFSSL_ENTER("wolfSSL_OBJ_ln2nid");
if (ln && (lnlen = XSTRLEN(ln)) > 0) {
/* Accept input like "/commonName=" */
if (ln[0] == '/') {
ln++;
lnlen--;
}
if (lnlen) {
size_t i;
if (ln[lnlen-1] == '=') {
lnlen--;
}
for (i = 0; i < WOLFSSL_OBJECT_INFO_SZ; i++, obj_info++) {
if (lnlen == XSTRLEN(obj_info->lName) &&
XSTRNCMP(ln, obj_info->lName, lnlen) == 0) {
return obj_info->nid;
}
}
}
}
return NID_undef;
}
/* compares two objects, return 0 if equal */
int wolfSSL_OBJ_cmp(const WOLFSSL_ASN1_OBJECT* a,
const WOLFSSL_ASN1_OBJECT* b)
{
WOLFSSL_ENTER("wolfSSL_OBJ_cmp");
if (a && b && a->obj && b->obj) {
if (a->objSz == b->objSz) {
return XMEMCMP(a->obj, b->obj, a->objSz);
}
else if (a->type == EXT_KEY_USAGE_OID ||
b->type == EXT_KEY_USAGE_OID) {
/* Special case for EXT_KEY_USAGE_OID so that
* cmp will be treated as a substring search */
/* Used in libest to check for id-kp-cmcRA in
* EXT_KEY_USAGE extension */
unsigned int idx;
const byte* s; /* shorter */
unsigned int sLen;
const byte* l; /* longer */
unsigned int lLen;
if (a->objSz > b->objSz) {
s = b->obj; sLen = b->objSz;
l = a->obj; lLen = a->objSz;
}
else {
s = a->obj; sLen = a->objSz;
l = b->obj; lLen = b->objSz;
}
for (idx = 0; idx <= lLen - sLen; idx++) {
if (XMEMCMP(l + idx, s, sLen) == 0) {
/* Found substring */
return 0;
}
}
}
}
return WOLFSSL_FATAL_ERROR;
}
#endif /* OPENSSL_EXTRA, HAVE_LIGHTY, WOLFSSL_MYSQL_COMPATIBLE, HAVE_STUNNEL,
WOLFSSL_NGINX, HAVE_POCO_LIB, WOLFSSL_HAPROXY */
#if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL) || \
defined(HAVE_LIGHTY) || defined(WOLFSSL_MYSQL_COMPATIBLE) || \
defined(HAVE_STUNNEL) || defined(WOLFSSL_NGINX) || \
defined(HAVE_POCO_LIB) || defined(WOLFSSL_HAPROXY)
/* Gets the NID value that is related to the OID string passed in. Example
* string would be "2.5.29.14" for subject key ID.
*
* returns NID value on success and NID_undef on error
*/
int wolfSSL_OBJ_txt2nid(const char* s)
{
unsigned int i;
#ifdef WOLFSSL_CERT_EXT
int ret;
unsigned int sum = 0;
unsigned int outSz = MAX_OID_SZ;
unsigned char out[MAX_OID_SZ];
#endif
WOLFSSL_ENTER("wolfSSL_OBJ_txt2nid");
if (s == NULL) {
return NID_undef;
}
#ifdef WOLFSSL_CERT_EXT
ret = EncodePolicyOID(out, &outSz, s, NULL);
if (ret == 0) {
/* sum OID */
for (i = 0; i < outSz; i++) {
sum += out[i];
}
}
#endif /* WOLFSSL_CERT_EXT */
/* get the group that the OID's sum is in
* @TODO possible conflict with multiples */
for (i = 0; i < WOLFSSL_OBJECT_INFO_SZ; i++) {
int len;
#ifdef WOLFSSL_CERT_EXT
if (ret == 0) {
if (wolfssl_object_info[i].id == (int)sum) {
return wolfssl_object_info[i].nid;
}
}
#endif
/* try as a short name */
len = (int)XSTRLEN(s);
if ((int)XSTRLEN(wolfssl_object_info[i].sName) == len &&
XSTRNCMP(wolfssl_object_info[i].sName, s, len) == 0) {
return wolfssl_object_info[i].nid;
}
/* try as a long name */
if ((int)XSTRLEN(wolfssl_object_info[i].lName) == len &&
XSTRNCMP(wolfssl_object_info[i].lName, s, len) == 0) {
return wolfssl_object_info[i].nid;
}
}
return NID_undef;
}
#endif
#if defined(OPENSSL_EXTRA) || defined(HAVE_LIGHTY) || \
defined(WOLFSSL_MYSQL_COMPATIBLE) || defined(HAVE_STUNNEL) || \
defined(WOLFSSL_NGINX) || defined(HAVE_POCO_LIB) || \
defined(WOLFSSL_HAPROXY)
/* Creates new ASN1_OBJECT from short name, long name, or text
* representation of oid. If no_name is 0, then short name, long name, and
* numerical value of oid are interpreted. If no_name is 1, then only the
* numerical value of the oid is interpreted.
*
* Returns pointer to ASN1_OBJECT on success, or NULL on error.
*/
#if defined(WOLFSSL_CERT_EXT) && defined(WOLFSSL_CERT_GEN)
WOLFSSL_ASN1_OBJECT* wolfSSL_OBJ_txt2obj(const char* s, int no_name)
{
int i, ret;
int nid = NID_undef;
unsigned int outSz = MAX_OID_SZ;
unsigned char out[MAX_OID_SZ];
WOLFSSL_ASN1_OBJECT* obj;
WOLFSSL_ENTER("wolfSSL_OBJ_txt2obj");
if (s == NULL)
return NULL;
/* If s is numerical value, try to sum oid */
ret = EncodePolicyOID(out, &outSz, s, NULL);
if (ret == 0 && outSz > 0) {
/* If numerical encode succeeded then just
* create object from that because sums are
* not unique and can cause confusion. */
obj = wolfSSL_ASN1_OBJECT_new();
if (obj == NULL) {
WOLFSSL_MSG("Issue creating WOLFSSL_ASN1_OBJECT struct");
return NULL;
}
obj->dynamic |= WOLFSSL_ASN1_DYNAMIC;
obj->obj = (byte*)XMALLOC(1 + MAX_LENGTH_SZ + outSz, NULL,
DYNAMIC_TYPE_ASN1);
if (obj->obj == NULL) {
wolfSSL_ASN1_OBJECT_free(obj);
return NULL;
}
obj->dynamic |= WOLFSSL_ASN1_DYNAMIC_DATA;
i = SetObjectId((int)outSz, (byte*)obj->obj);
XMEMCPY((byte*)obj->obj + i, out, outSz);
obj->objSz = i + outSz;
return obj;
}
/* TODO: update short names in wolfssl_object_info and check OID sums
are correct */
for (i = 0; i < (int)WOLFSSL_OBJECT_INFO_SZ; i++) {
/* Short name, long name, and numerical value are interpreted */
if (no_name == 0 &&
((XSTRCMP(s, wolfssl_object_info[i].sName) == 0) ||
(XSTRCMP(s, wolfssl_object_info[i].lName) == 0)))
{
nid = wolfssl_object_info[i].nid;
}
}
if (nid != NID_undef)
return wolfSSL_OBJ_nid2obj(nid);
return NULL;
}
#endif
/* compatibility function. Its intended use is to remove OID's from an
* internal table that have been added with OBJ_create. wolfSSL manages its
* own internal OID values and does not currently support OBJ_create. */
void wolfSSL_OBJ_cleanup(void)
{
WOLFSSL_ENTER("wolfSSL_OBJ_cleanup");
}
#ifndef NO_WOLFSSL_STUB
int wolfSSL_OBJ_create(const char *oid, const char *sn, const char *ln)
{
(void)oid;
(void)sn;
(void)ln;
WOLFSSL_STUB("wolfSSL_OBJ_create");
return WOLFSSL_FAILURE;
}
#endif
void wolfSSL_set_verify_depth(WOLFSSL *ssl, int depth)
{
#if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)
WOLFSSL_ENTER("wolfSSL_set_verify_depth");
ssl->options.verifyDepth = (byte)depth;
#endif
}
#endif /* OPENSSL_ALL || HAVE_LIGHTY || WOLFSSL_MYSQL_COMPATIBLE ||
HAVE_STUNNEL || WOLFSSL_NGINX || HAVE_POCO_LIB || WOLFSSL_HAPROXY */
#ifdef OPENSSL_EXTRA
/* wolfSSL uses negative values for error states. This function returns an
* unsigned type so the value returned is the absolute value of the error.
*/
unsigned long wolfSSL_ERR_peek_last_error_line(const char **file, int *line)
{
WOLFSSL_ENTER("wolfSSL_ERR_peek_last_error");
(void)line;
(void)file;
#ifdef WOLFSSL_HAVE_ERROR_QUEUE
{
int ret;
if ((ret = wc_PeekErrorNode(-1, file, NULL, line)) < 0) {
WOLFSSL_MSG("Issue peeking at error node in queue");
return 0;
}
#if defined(OPENSSL_ALL) || defined(WOLFSSL_NGINX) \
|| defined(WOLFSSL_HAPROXY)
if (ret == -ASN_NO_PEM_HEADER)
return (ERR_LIB_PEM << 24) | PEM_R_NO_START_LINE;
#endif
#if defined(OPENSSL_ALL) && defined(WOLFSSL_PYTHON)
if (ret == ASN1_R_HEADER_TOO_LONG) {
return (ERR_LIB_ASN1 << 24) | ASN1_R_HEADER_TOO_LONG;
}
#endif
return (unsigned long)ret;
}
#else
return (unsigned long)(0 - NOT_COMPILED_IN);
#endif
}
#endif /* OPENSSL_EXTRA */
#if defined(HAVE_EX_DATA) && \
(defined(OPENSSL_ALL) || defined(WOLFSSL_NGINX) || \
defined(WOLFSSL_HAPROXY) || defined(OPENSSL_EXTRA) || \
defined(HAVE_LIGHTY)) || defined(HAVE_EX_DATA) || \
defined(WOLFSSL_WPAS_SMALL)
CRYPTO_EX_cb_ctx* crypto_ex_cb_ctx_session = NULL;
static int crypto_ex_cb_new(CRYPTO_EX_cb_ctx** dst, long ctx_l, void* ctx_ptr,
WOLFSSL_CRYPTO_EX_new* new_func, WOLFSSL_CRYPTO_EX_dup* dup_func,
WOLFSSL_CRYPTO_EX_free* free_func)
{
CRYPTO_EX_cb_ctx* new_ctx = (CRYPTO_EX_cb_ctx*)XMALLOC(
sizeof(CRYPTO_EX_cb_ctx), NULL, DYNAMIC_TYPE_OPENSSL);
if (new_ctx == NULL)
return -1;
new_ctx->ctx_l = ctx_l;
new_ctx->ctx_ptr = ctx_ptr;
new_ctx->new_func = new_func;
new_ctx->free_func = free_func;
new_ctx->dup_func = dup_func;
new_ctx->next = NULL;
/* Push to end of list */
while (*dst != NULL)
dst = &(*dst)->next;
*dst = new_ctx;
return 0;
}
void crypto_ex_cb_free(CRYPTO_EX_cb_ctx* cb_ctx)
{
while (cb_ctx != NULL) {
CRYPTO_EX_cb_ctx* next = cb_ctx->next;
XFREE(cb_ctx, NULL, DYNAMIC_TYPE_OPENSSL);
cb_ctx = next;
}
}
void crypto_ex_cb_setup_new_data(void *new_obj, CRYPTO_EX_cb_ctx* cb_ctx,
WOLFSSL_CRYPTO_EX_DATA* ex_data)
{
int idx = 0;
for (; cb_ctx != NULL; idx++, cb_ctx = cb_ctx->next) {
if (cb_ctx->new_func != NULL)
cb_ctx->new_func(new_obj, NULL, ex_data, idx, cb_ctx->ctx_l,
cb_ctx->ctx_ptr);
}
}
int crypto_ex_cb_dup_data(const WOLFSSL_CRYPTO_EX_DATA *in,
WOLFSSL_CRYPTO_EX_DATA *out, CRYPTO_EX_cb_ctx* cb_ctx)
{
int idx = 0;
for (; cb_ctx != NULL; idx++, cb_ctx = cb_ctx->next) {
if (cb_ctx->dup_func != NULL) {
void* ptr = wolfSSL_CRYPTO_get_ex_data(in, idx);
if (!cb_ctx->dup_func(out, in,
&ptr, idx,
cb_ctx->ctx_l, cb_ctx->ctx_ptr)) {
return WOLFSSL_FAILURE;
}
wolfSSL_CRYPTO_set_ex_data(out, idx, ptr);
}
}
return WOLFSSL_SUCCESS;
}
void crypto_ex_cb_free_data(void *obj, CRYPTO_EX_cb_ctx* cb_ctx,
WOLFSSL_CRYPTO_EX_DATA* ex_data)
{
int idx = 0;
for (; cb_ctx != NULL; idx++, cb_ctx = cb_ctx->next) {
if (cb_ctx->free_func != NULL)
cb_ctx->free_func(obj, NULL, ex_data, idx, cb_ctx->ctx_l,
cb_ctx->ctx_ptr);
}
}
/**
* get_ex_new_index is a helper function for the following
* xx_get_ex_new_index functions:
* - wolfSSL_CRYPTO_get_ex_new_index
* - wolfSSL_CTX_get_ex_new_index
* - wolfSSL_get_ex_new_index
* Issues a unique index number for the specified class-index.
* Returns an index number greater or equal to zero on success,
* -1 on failure.
*/
int wolfssl_get_ex_new_index(int class_index, long ctx_l, void* ctx_ptr,
WOLFSSL_CRYPTO_EX_new* new_func, WOLFSSL_CRYPTO_EX_dup* dup_func,
WOLFSSL_CRYPTO_EX_free* free_func)
{
/* index counter for each class index*/
static int ctx_idx = 0;
static int ssl_idx = 0;
static int ssl_session_idx = 0;
static int x509_idx = 0;
int idx = -1;
switch(class_index) {
case WOLF_CRYPTO_EX_INDEX_SSL:
WOLFSSL_CRYPTO_EX_DATA_IGNORE_PARAMS(ctx_l, ctx_ptr, new_func,
dup_func, free_func);
idx = ssl_idx++;
break;
case WOLF_CRYPTO_EX_INDEX_SSL_CTX:
WOLFSSL_CRYPTO_EX_DATA_IGNORE_PARAMS(ctx_l, ctx_ptr, new_func,
dup_func, free_func);
idx = ctx_idx++;
break;
case WOLF_CRYPTO_EX_INDEX_X509:
WOLFSSL_CRYPTO_EX_DATA_IGNORE_PARAMS(ctx_l, ctx_ptr, new_func,
dup_func, free_func);
idx = x509_idx++;
break;
case WOLF_CRYPTO_EX_INDEX_SSL_SESSION:
if (crypto_ex_cb_new(&crypto_ex_cb_ctx_session, ctx_l, ctx_ptr,
new_func, dup_func, free_func) != 0)
return -1;
idx = ssl_session_idx++;
break;
/* following class indexes are not supoprted */
case WOLF_CRYPTO_EX_INDEX_X509_STORE:
case WOLF_CRYPTO_EX_INDEX_X509_STORE_CTX:
case WOLF_CRYPTO_EX_INDEX_DH:
case WOLF_CRYPTO_EX_INDEX_DSA:
case WOLF_CRYPTO_EX_INDEX_EC_KEY:
case WOLF_CRYPTO_EX_INDEX_RSA:
case WOLF_CRYPTO_EX_INDEX_ENGINE:
case WOLF_CRYPTO_EX_INDEX_UI:
case WOLF_CRYPTO_EX_INDEX_BIO:
case WOLF_CRYPTO_EX_INDEX_APP:
case WOLF_CRYPTO_EX_INDEX_UI_METHOD:
case WOLF_CRYPTO_EX_INDEX_DRBG:
default:
break;
}
if (idx >= MAX_EX_DATA)
return -1;
return idx;
}
#endif /* HAVE_EX_DATA || WOLFSSL_WPAS_SMALL */
#if defined(HAVE_EX_DATA) || defined(WOLFSSL_WPAS_SMALL)
void* wolfSSL_CTX_get_ex_data(const WOLFSSL_CTX* ctx, int idx)
{
WOLFSSL_ENTER("wolfSSL_CTX_get_ex_data");
#ifdef HAVE_EX_DATA
if(ctx != NULL) {
return wolfSSL_CRYPTO_get_ex_data(&ctx->ex_data, idx);
}
#else
(void)ctx;
(void)idx;
#endif
return NULL;
}
int wolfSSL_CTX_get_ex_new_index(long idx, void* arg,
WOLFSSL_CRYPTO_EX_new* new_func,
WOLFSSL_CRYPTO_EX_dup* dup_func,
WOLFSSL_CRYPTO_EX_free* free_func)
{
WOLFSSL_ENTER("wolfSSL_CTX_get_ex_new_index");
return wolfssl_get_ex_new_index(WOLF_CRYPTO_EX_INDEX_SSL_CTX, idx, arg,
new_func, dup_func, free_func);
}
/* Return the index that can be used for the WOLFSSL structure to store
* application data.
*
*/
int wolfSSL_get_ex_new_index(long argValue, void* arg,
WOLFSSL_CRYPTO_EX_new* cb1, WOLFSSL_CRYPTO_EX_dup* cb2,
WOLFSSL_CRYPTO_EX_free* cb3)
{
WOLFSSL_ENTER("wolfSSL_get_ex_new_index");
return wolfssl_get_ex_new_index(WOLF_CRYPTO_EX_INDEX_SSL, argValue, arg,
cb1, cb2, cb3);
}
int wolfSSL_CTX_set_ex_data(WOLFSSL_CTX* ctx, int idx, void* data)
{
WOLFSSL_ENTER("wolfSSL_CTX_set_ex_data");
#ifdef HAVE_EX_DATA
if (ctx != NULL)
{
return wolfSSL_CRYPTO_set_ex_data(&ctx->ex_data, idx, data);
}
#else
(void)ctx;
(void)idx;
(void)data;
#endif
return WOLFSSL_FAILURE;
}
#ifdef HAVE_EX_DATA_CLEANUP_HOOKS
int wolfSSL_CTX_set_ex_data_with_cleanup(
WOLFSSL_CTX* ctx,
int idx,
void* data,
wolfSSL_ex_data_cleanup_routine_t cleanup_routine)
{
WOLFSSL_ENTER("wolfSSL_CTX_set_ex_data_with_cleanup");
if (ctx != NULL)
{
return wolfSSL_CRYPTO_set_ex_data_with_cleanup(&ctx->ex_data, idx, data,
cleanup_routine);
}
return WOLFSSL_FAILURE;
}
#endif /* HAVE_EX_DATA_CLEANUP_HOOKS */
#endif /* defined(HAVE_EX_DATA) || defined(WOLFSSL_WPAS_SMALL) */
#if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)
/* Returns char* to app data stored in ex[0].
*
* ssl WOLFSSL structure to get app data from
*/
void* wolfSSL_get_app_data(const WOLFSSL *ssl)
{
/* checkout exdata stuff... */
WOLFSSL_ENTER("wolfSSL_get_app_data");
return wolfSSL_get_ex_data(ssl, 0);
}
/* Set ex array 0 to have app data
*
* ssl WOLFSSL struct to set app data in
* arg data to be stored
*
* Returns WOLFSSL_SUCCESS on success and WOLFSSL_FAILURE on failure
*/
int wolfSSL_set_app_data(WOLFSSL *ssl, void* arg) {
WOLFSSL_ENTER("wolfSSL_set_app_data");
return wolfSSL_set_ex_data(ssl, 0, arg);
}
#endif /* OPENSSL_EXTRA || OPENSSL_EXTRA_X509_SMALL */
#if defined(HAVE_EX_DATA) || defined(OPENSSL_EXTRA) || \
defined(OPENSSL_EXTRA_X509_SMALL) || defined(WOLFSSL_WPAS_SMALL)
int wolfSSL_set_ex_data(WOLFSSL* ssl, int idx, void* data)
{
WOLFSSL_ENTER("wolfSSL_set_ex_data");
#ifdef HAVE_EX_DATA
if (ssl != NULL)
{
return wolfSSL_CRYPTO_set_ex_data(&ssl->ex_data, idx, data);
}
#else
WOLFSSL_MSG("HAVE_EX_DATA macro is not defined");
(void)ssl;
(void)idx;
(void)data;
#endif
return WOLFSSL_FAILURE;
}
#ifdef HAVE_EX_DATA_CLEANUP_HOOKS
int wolfSSL_set_ex_data_with_cleanup(
WOLFSSL* ssl,
int idx,
void* data,
wolfSSL_ex_data_cleanup_routine_t cleanup_routine)
{
WOLFSSL_ENTER("wolfSSL_set_ex_data_with_cleanup");
if (ssl != NULL)
{
return wolfSSL_CRYPTO_set_ex_data_with_cleanup(&ssl->ex_data, idx, data,
cleanup_routine);
}
return WOLFSSL_FAILURE;
}
#endif /* HAVE_EX_DATA_CLEANUP_HOOKS */
void* wolfSSL_get_ex_data(const WOLFSSL* ssl, int idx)
{
WOLFSSL_ENTER("wolfSSL_get_ex_data");
#ifdef HAVE_EX_DATA
if (ssl != NULL) {
return wolfSSL_CRYPTO_get_ex_data(&ssl->ex_data, idx);
}
#else
WOLFSSL_MSG("HAVE_EX_DATA macro is not defined");
(void)ssl;
(void)idx;
#endif
return 0;
}
#endif /* OPENSSL_EXTRA || OPENSSL_EXTRA_X509_SMALL || WOLFSSL_WPAS_SMALL */
#if defined(HAVE_LIGHTY) || defined(HAVE_STUNNEL) \
|| defined(WOLFSSL_MYSQL_COMPATIBLE) || defined(OPENSSL_EXTRA)
/* returns the enum value associated with handshake state
*
* ssl the WOLFSSL structure to get state of
*/
int wolfSSL_get_state(const WOLFSSL* ssl)
{
WOLFSSL_ENTER("wolfSSL_get_state");
if (ssl == NULL) {
WOLFSSL_MSG("Null argument passed in");
return WOLFSSL_FAILURE;
}
return ssl->options.handShakeState;
}
#endif /* HAVE_LIGHTY || HAVE_STUNNEL || WOLFSSL_MYSQL_COMPATIBLE */
#ifdef OPENSSL_EXTRA
void wolfSSL_certs_clear(WOLFSSL* ssl)
{
WOLFSSL_ENTER("wolfSSL_certs_clear");
if (ssl == NULL)
return;
/* ctx still owns certificate, certChain, key, dh, and cm */
if (ssl->buffers.weOwnCert)
FreeDer(&ssl->buffers.certificate);
ssl->buffers.certificate = NULL;
if (ssl->buffers.weOwnCertChain)
FreeDer(&ssl->buffers.certChain);
ssl->buffers.certChain = NULL;
#ifdef WOLFSSL_TLS13
ssl->buffers.certChainCnt = 0;
#endif
if (ssl->buffers.weOwnKey) {
FreeDer(&ssl->buffers.key);
#ifdef WOLFSSL_BLIND_PRIVATE_KEY
FreeDer(&ssl->buffers.keyMask);
#endif
}
ssl->buffers.key = NULL;
#ifdef WOLFSSL_BLIND_PRIVATE_KEY
ssl->buffers.keyMask = NULL;
#endif
ssl->buffers.keyType = 0;
ssl->buffers.keyId = 0;
ssl->buffers.keyLabel = 0;
ssl->buffers.keySz = 0;
ssl->buffers.keyDevId = 0;
#ifdef WOLFSSL_DUAL_ALG_CERTS
if (ssl->buffers.weOwnAltKey) {
FreeDer(&ssl->buffers.altKey);
#ifdef WOLFSSL_BLIND_PRIVATE_KEY
FreeDer(&ssl->buffers.altKeyMask);
#endif
}
ssl->buffers.altKey = NULL;
#ifdef WOLFSSL_BLIND_PRIVATE_KEY
ssl->buffers.altKeyMask = NULL;
#endif
#endif /* WOLFSSL_DUAL_ALG_CERTS */
}
#endif
#if defined(OPENSSL_ALL) || defined(WOLFSSL_ASIO) || defined(WOLFSSL_HAPROXY) \
|| defined(WOLFSSL_NGINX) || defined(WOLFSSL_QT)
long wolfSSL_ctrl(WOLFSSL* ssl, int cmd, long opt, void* pt)
{
WOLFSSL_ENTER("wolfSSL_ctrl");
if (ssl == NULL)
return BAD_FUNC_ARG;
switch (cmd) {
#if defined(WOLFSSL_NGINX) || defined(WOLFSSL_QT) || \
defined(OPENSSL_ALL)
#ifdef HAVE_SNI
case SSL_CTRL_SET_TLSEXT_HOSTNAME:
WOLFSSL_MSG("Entering Case: SSL_CTRL_SET_TLSEXT_HOSTNAME.");
if (pt == NULL) {
WOLFSSL_MSG("Passed in NULL Host Name.");
break;
}
return wolfSSL_set_tlsext_host_name(ssl, (const char*) pt);
#endif /* HAVE_SNI */
#endif /* WOLFSSL_NGINX || WOLFSSL_QT || OPENSSL_ALL */
default:
WOLFSSL_MSG("Case not implemented.");
}
(void)opt;
(void)pt;
return WOLFSSL_FAILURE;
}
long wolfSSL_CTX_ctrl(WOLFSSL_CTX* ctx, int cmd, long opt, void* pt)
{
#if defined(OPENSSL_EXTRA) || defined(HAVE_WEBSERVER)
long ctrl_opt;
#endif
long ret = WOLFSSL_SUCCESS;
WOLFSSL_ENTER("wolfSSL_CTX_ctrl");
if (ctx == NULL)
return WOLFSSL_FAILURE;
switch (cmd) {
case SSL_CTRL_CHAIN:
#ifdef SESSION_CERTS
{
/*
* We don't care about opt here because a copy of the certificate is
* stored anyway so increasing the reference counter is not necessary.
* Just check to make sure that it is set to one of the correct values.
*/
WOLF_STACK_OF(WOLFSSL_X509)* sk = (WOLF_STACK_OF(WOLFSSL_X509)*) pt;
WOLFSSL_X509* x509;
int i;
if (opt != 0 && opt != 1) {
ret = WOLFSSL_FAILURE;
break;
}
/* Clear certificate chain */
FreeDer(&ctx->certChain);
if (sk) {
for (i = 0; i < wolfSSL_sk_X509_num(sk); i++) {
x509 = wolfSSL_sk_X509_value(sk, i);
/* Prevent wolfSSL_CTX_add_extra_chain_cert from freeing cert */
if (wolfSSL_X509_up_ref(x509) != 1) {
WOLFSSL_MSG("Error increasing reference count");
continue;
}
if (wolfSSL_CTX_add_extra_chain_cert(ctx, x509) !=
WOLFSSL_SUCCESS) {
WOLFSSL_MSG("Error adding certificate to context");
/* Decrease reference count on failure */
wolfSSL_X509_free(x509);
}
}
}
/* Free previous chain */
wolfSSL_sk_X509_pop_free(ctx->x509Chain, NULL);
ctx->x509Chain = sk;
if (sk && opt == 1) {
/* up all refs when opt == 1 */
for (i = 0; i < wolfSSL_sk_X509_num(sk); i++) {
x509 = wolfSSL_sk_X509_value(sk, i);
if (wolfSSL_X509_up_ref(x509) != 1) {
WOLFSSL_MSG("Error increasing reference count");
continue;
}
}
}
}
#else
WOLFSSL_MSG("Session certificates not compiled in");
ret = WOLFSSL_FAILURE;
#endif
break;
#if defined(OPENSSL_EXTRA) || defined(HAVE_WEBSERVER)
case SSL_CTRL_OPTIONS:
WOLFSSL_MSG("Entering Case: SSL_CTRL_OPTIONS.");
ctrl_opt = wolfSSL_CTX_set_options(ctx, opt);
#ifdef WOLFSSL_QT
/* Set whether to use client or server cipher preference */
if ((ctrl_opt & WOLFSSL_OP_CIPHER_SERVER_PREFERENCE)
== WOLFSSL_OP_CIPHER_SERVER_PREFERENCE) {
WOLFSSL_MSG("Using Server's Cipher Preference.");
ctx->useClientOrder = FALSE;
} else {
WOLFSSL_MSG("Using Client's Cipher Preference.");
ctx->useClientOrder = TRUE;
}
#endif /* WOLFSSL_QT */
return ctrl_opt;
#endif /* OPENSSL_EXTRA || HAVE_WEBSERVER */
case SSL_CTRL_EXTRA_CHAIN_CERT:
WOLFSSL_MSG("Entering Case: SSL_CTRL_EXTRA_CHAIN_CERT.");
if (pt == NULL) {
WOLFSSL_MSG("Passed in x509 pointer NULL.");
ret = WOLFSSL_FAILURE;
break;
}
return wolfSSL_CTX_add_extra_chain_cert(ctx, (WOLFSSL_X509*)pt);
#ifndef NO_DH
case SSL_CTRL_SET_TMP_DH:
WOLFSSL_MSG("Entering Case: SSL_CTRL_SET_TMP_DH.");
if (pt == NULL) {
WOLFSSL_MSG("Passed in DH pointer NULL.");
ret = WOLFSSL_FAILURE;
break;
}
return wolfSSL_CTX_set_tmp_dh(ctx, (WOLFSSL_DH*)pt);
#endif
#ifdef HAVE_ECC
case SSL_CTRL_SET_TMP_ECDH:
WOLFSSL_MSG("Entering Case: SSL_CTRL_SET_TMP_ECDH.");
if (pt == NULL) {
WOLFSSL_MSG("Passed in ECDH pointer NULL.");
ret = WOLFSSL_FAILURE;
break;
}
return wolfSSL_SSL_CTX_set_tmp_ecdh(ctx, (WOLFSSL_EC_KEY*)pt);
#endif
case SSL_CTRL_MODE:
wolfSSL_CTX_set_mode(ctx,opt);
break;
case SSL_CTRL_SET_MIN_PROTO_VERSION:
WOLFSSL_MSG("set min proto version");
return wolfSSL_CTX_set_min_proto_version(ctx, (int)opt);
case SSL_CTRL_SET_MAX_PROTO_VERSION:
WOLFSSL_MSG("set max proto version");
return wolfSSL_CTX_set_max_proto_version(ctx, (int)opt);
case SSL_CTRL_GET_MIN_PROTO_VERSION:
WOLFSSL_MSG("get min proto version");
return wolfSSL_CTX_get_min_proto_version(ctx);
case SSL_CTRL_GET_MAX_PROTO_VERSION:
WOLFSSL_MSG("get max proto version");
return wolfSSL_CTX_get_max_proto_version(ctx);
default:
WOLFSSL_MSG("CTX_ctrl cmd not implemented");
ret = WOLFSSL_FAILURE;
break;
}
(void)ctx;
(void)cmd;
(void)opt;
(void)pt;
WOLFSSL_LEAVE("wolfSSL_CTX_ctrl", (int)ret);
return ret;
}
#ifndef NO_WOLFSSL_STUB
long wolfSSL_CTX_callback_ctrl(WOLFSSL_CTX* ctx, int cmd, void (*fp)(void))
{
(void) ctx;
(void) cmd;
(void) fp;
WOLFSSL_STUB("wolfSSL_CTX_callback_ctrl");
return WOLFSSL_FAILURE;
}
#endif /* NO_WOLFSSL_STUB */
#ifndef NO_WOLFSSL_STUB
long wolfSSL_CTX_clear_extra_chain_certs(WOLFSSL_CTX* ctx)
{
return wolfSSL_CTX_ctrl(ctx, SSL_CTRL_CLEAR_EXTRA_CHAIN_CERTS, 0L, NULL);
}
#endif
/* Returns the verifyCallback from the ssl structure if successful.
Returns NULL otherwise. */
VerifyCallback wolfSSL_get_verify_callback(WOLFSSL* ssl)
{
WOLFSSL_ENTER("wolfSSL_get_verify_callback");
if (ssl) {
return ssl->verifyCallback;
}
return NULL;
}
#ifndef NO_BIO
/* Converts EVP_PKEY data from a bio buffer to a WOLFSSL_EVP_PKEY structure.
Returns pointer to private EVP_PKEY struct upon success, NULL if there
is a failure.*/
WOLFSSL_EVP_PKEY* wolfSSL_d2i_PrivateKey_bio(WOLFSSL_BIO* bio,
WOLFSSL_EVP_PKEY** out)
{
unsigned char* mem = NULL;
int memSz = 0;
WOLFSSL_EVP_PKEY* key = NULL;
unsigned char* extraBioMem = NULL;
WOLFSSL_ENTER("wolfSSL_d2i_PrivateKey_bio");
if (bio == NULL) {
return NULL;
}
(void)out;
memSz = wolfSSL_BIO_get_len(bio);
if (memSz <= 0) {
WOLFSSL_MSG("wolfSSL_BIO_get_len() failure");
return NULL;
}
mem = (unsigned char*)XMALLOC(memSz, bio->heap, DYNAMIC_TYPE_TMP_BUFFER);
if (mem == NULL) {
WOLFSSL_MSG("Malloc failure");
return NULL;
}
if (wolfSSL_BIO_read(bio, (unsigned char*)mem, memSz) == memSz) {
int extraBioMemSz;
int derLength;
/* Determines key type and returns the new private EVP_PKEY object */
if ((key = wolfSSL_d2i_PrivateKey_EVP(NULL, &mem, (long)memSz)) ==
NULL) {
WOLFSSL_MSG("wolfSSL_d2i_PrivateKey_EVP() failure");
XFREE(mem, bio->heap, DYNAMIC_TYPE_TMP_BUFFER);
return NULL;
}
/* Write extra data back into bio object if necessary. */
derLength = key->pkey_sz;
extraBioMemSz = (memSz - derLength);
if (extraBioMemSz > 0) {
int i;
int j = 0;
extraBioMem = (unsigned char *)XMALLOC(extraBioMemSz, NULL,
DYNAMIC_TYPE_TMP_BUFFER);
if (extraBioMem == NULL) {
WOLFSSL_MSG("Malloc failure");
XFREE((unsigned char*)extraBioMem, bio->heap,
DYNAMIC_TYPE_TMP_BUFFER);
XFREE(mem, bio->heap, DYNAMIC_TYPE_TMP_BUFFER);
return NULL;
}
for (i = derLength; i < memSz; i++) {
*(extraBioMem + j) = *(mem + i);
j++;
}
wolfSSL_BIO_write(bio, extraBioMem, extraBioMemSz);
if (wolfSSL_BIO_get_len(bio) <= 0) {
WOLFSSL_MSG("Failed to write memory to bio");
XFREE((unsigned char*)extraBioMem, bio->heap,
DYNAMIC_TYPE_TMP_BUFFER);
XFREE(mem, bio->heap, DYNAMIC_TYPE_TMP_BUFFER);
return NULL;
}
XFREE((unsigned char*)extraBioMem, bio->heap,
DYNAMIC_TYPE_TMP_BUFFER);
}
if (out != NULL) {
*out = key;
}
}
XFREE(mem, bio->heap, DYNAMIC_TYPE_TMP_BUFFER);
return key;
}
#endif /* !NO_BIO */
#endif /* OPENSSL_ALL || WOLFSSL_ASIO || WOLFSSL_HAPROXY || WOLFSSL_QT */
#if defined(OPENSSL_ALL) || defined(WOLFSSL_ASIO) || \
defined(WOLFSSL_HAPROXY) || defined(WOLFSSL_NGINX) || \
defined(WOLFSSL_QT) || defined(WOLFSSL_WPAS_SMALL)
/* Converts a DER encoded private key to a WOLFSSL_EVP_PKEY structure.
* returns a pointer to a new WOLFSSL_EVP_PKEY structure on success and NULL
* on fail */
WOLFSSL_EVP_PKEY* wolfSSL_d2i_PrivateKey_EVP(WOLFSSL_EVP_PKEY** out,
unsigned char** in, long inSz)
{
WOLFSSL_ENTER("wolfSSL_d2i_PrivateKey_EVP");
return d2iGenericKey(out, (const unsigned char**)in, inSz, 1);
}
#endif /* OPENSSL_ALL || WOLFSSL_ASIO || WOLFSSL_HAPROXY || WOLFSSL_QT ||
* WOLFSSL_WPAS_SMALL*/
/* stunnel compatibility functions*/
#if defined(OPENSSL_ALL) || (defined(OPENSSL_EXTRA) && \
(defined(HAVE_STUNNEL) || defined(WOLFSSL_NGINX) || \
defined(HAVE_LIGHTY) || defined(WOLFSSL_HAPROXY) || \
defined(WOLFSSL_OPENSSH)))
void wolfSSL_ERR_remove_thread_state(void* pid)
{
(void) pid;
return;
}
#ifndef NO_FILESYSTEM
/***TBD ***/
void wolfSSL_print_all_errors_fp(XFILE fp)
{
(void)fp;
}
#endif /* !NO_FILESYSTEM */
#endif /* OPENSSL_ALL || OPENSSL_EXTRA || HAVE_STUNNEL || WOLFSSL_NGINX ||
HAVE_LIGHTY || WOLFSSL_HAPROXY || WOLFSSL_OPENSSH */
/* Note: This is a huge section of API's - through
* wolfSSL_X509_OBJECT_get0_X509_CRL */
#if defined(OPENSSL_ALL) || (defined(OPENSSL_EXTRA) && \
(defined(HAVE_STUNNEL) || defined(WOLFSSL_NGINX) || \
defined(HAVE_LIGHTY) || defined(WOLFSSL_HAPROXY) || \
defined(WOLFSSL_OPENSSH) || defined(HAVE_SBLIM_SFCB)))
#if defined(USE_WOLFSSL_MEMORY) && !defined(WOLFSSL_DEBUG_MEMORY) && \
!defined(WOLFSSL_STATIC_MEMORY)
static wolfSSL_OSSL_Malloc_cb ossl_malloc = NULL;
static wolfSSL_OSSL_Free_cb ossl_free = NULL;
static wolfSSL_OSSL_Realloc_cb ossl_realloc = NULL;
static void* OSSL_Malloc(size_t size)
{
if (ossl_malloc != NULL)
return ossl_malloc(size, NULL, 0);
else
return NULL;
}
static void OSSL_Free(void *ptr)
{
if (ossl_free != NULL)
ossl_free(ptr, NULL, 0);
}
static void* OSSL_Realloc(void *ptr, size_t size)
{
if (ossl_realloc != NULL)
return ossl_realloc(ptr, size, NULL, 0);
else
return NULL;
}
#endif /* USE_WOLFSSL_MEMORY && !WOLFSSL_DEBUG_MEMORY &&
* !WOLFSSL_STATIC_MEMORY */
int wolfSSL_CRYPTO_set_mem_functions(
wolfSSL_OSSL_Malloc_cb m,
wolfSSL_OSSL_Realloc_cb r,
wolfSSL_OSSL_Free_cb f)
{
#if defined(USE_WOLFSSL_MEMORY) && !defined(WOLFSSL_STATIC_MEMORY)
#ifdef WOLFSSL_DEBUG_MEMORY
WOLFSSL_MSG("mem functions will receive function name instead of "
"file name");
if (wolfSSL_SetAllocators((wolfSSL_Malloc_cb)m, (wolfSSL_Free_cb)f,
(wolfSSL_Realloc_cb)r) == 0)
return WOLFSSL_SUCCESS;
#else
WOLFSSL_MSG("wolfSSL was compiled without WOLFSSL_DEBUG_MEMORY mem "
"functions will receive a NULL file name and 0 for the "
"line number.");
if (wolfSSL_SetAllocators((wolfSSL_Malloc_cb)OSSL_Malloc,
(wolfSSL_Free_cb)OSSL_Free, (wolfSSL_Realloc_cb)OSSL_Realloc) == 0) {
ossl_malloc = m;
ossl_free = f;
ossl_realloc = r;
return WOLFSSL_SUCCESS;
}
#endif
else
return WOLFSSL_FAILURE;
#else
(void)m;
(void)r;
(void)f;
WOLFSSL_MSG("wolfSSL allocator callback functions not compiled in");
return WOLFSSL_FAILURE;
#endif
}
int wolfSSL_ERR_load_ERR_strings(void)
{
return WOLFSSL_SUCCESS;
}
void wolfSSL_ERR_load_crypto_strings(void)
{
WOLFSSL_ENTER("wolfSSL_ERR_load_crypto_strings");
/* Do nothing */
return;
}
int wolfSSL_FIPS_mode(void)
{
#ifdef HAVE_FIPS
return 1;
#else
return 0;
#endif
}
int wolfSSL_FIPS_mode_set(int r)
{
#ifdef HAVE_FIPS
if (r == 0) {
WOLFSSL_MSG("Cannot disable FIPS at runtime.");
return WOLFSSL_FAILURE;
}
return WOLFSSL_SUCCESS;
#else
if (r == 0) {
return WOLFSSL_SUCCESS;
}
WOLFSSL_MSG("Cannot enable FIPS. This isn't the wolfSSL FIPS code.");
return WOLFSSL_FAILURE;
#endif
}
int wolfSSL_CIPHER_get_bits(const WOLFSSL_CIPHER *c, int *alg_bits)
{
int ret = WOLFSSL_FAILURE;
WOLFSSL_ENTER("wolfSSL_CIPHER_get_bits");
#if defined(WOLFSSL_QT) || defined(OPENSSL_ALL)
(void)alg_bits;
if (c!= NULL)
ret = c->bits;
#else
if (c != NULL && c->ssl != NULL) {
ret = 8 * c->ssl->specs.key_size;
if (alg_bits != NULL) {
*alg_bits = ret;
}
}
#endif
return ret;
}
/* returns value less than 0 on fail to match
* On a successful match the priority level found is returned
*/
int wolfSSL_sk_SSL_CIPHER_find(
WOLF_STACK_OF(WOLFSSL_CIPHER)* sk, const WOLFSSL_CIPHER* toFind)
{
WOLFSSL_STACK* next;
int i, sz;
if (sk == NULL || toFind == NULL) {
return WOLFSSL_FATAL_ERROR;
}
sz = wolfSSL_sk_SSL_CIPHER_num(sk);
next = sk;
for (i = 0; i < sz && next != NULL; i++) {
if (next->data.cipher.cipherSuite0 == toFind->cipherSuite0 &&
next->data.cipher.cipherSuite == toFind->cipherSuite) {
return sz - i; /* reverse because stack pushed highest on first */
}
next = next->next;
}
return WOLFSSL_FATAL_ERROR;
}
/* free's all nodes in the stack and there data */
void wolfSSL_sk_SSL_CIPHER_free(WOLF_STACK_OF(WOLFSSL_CIPHER)* sk)
{
WOLFSSL_ENTER("wolfSSL_sk_SSL_CIPHER_free");
wolfSSL_sk_free(sk);
}
#ifdef HAVE_SNI
int wolfSSL_set_tlsext_host_name(WOLFSSL* ssl, const char* host_name)
{
int ret;
WOLFSSL_ENTER("wolfSSL_set_tlsext_host_name");
ret = wolfSSL_UseSNI(ssl, WOLFSSL_SNI_HOST_NAME,
host_name, (word16)XSTRLEN(host_name));
WOLFSSL_LEAVE("wolfSSL_set_tlsext_host_name", ret);
return ret;
}
/* May be called by server to get the requested accepted name and by the client
* to get the requested name. */
const char * wolfSSL_get_servername(WOLFSSL* ssl, byte type)
{
void * serverName = NULL;
if (ssl == NULL)
return NULL;
TLSX_SNI_GetRequest(ssl->extensions, type, &serverName,
!wolfSSL_is_server(ssl));
return (const char *)serverName;
}
#endif /* HAVE_SNI */
WOLFSSL_CTX* wolfSSL_set_SSL_CTX(WOLFSSL* ssl, WOLFSSL_CTX* ctx)
{
int ret;
/* This method requires some explanation. Its sibling is
* int SetSSL_CTX(WOLFSSL* ssl, WOLFSSL_CTX* ctx, int writeDup)
* which re-inits the WOLFSSL* with all settings in the new CTX.
* That one is the right one to use *before* a handshake is started.
*
* This method was added by OpenSSL to be used *during* the handshake, e.g.
* when a server inspects the SNI in a ClientHello callback and
* decides which set of certificates to use.
*
* Since, at the time the SNI callback is run, some decisions on
* Extensions or the ServerHello might already have been taken, this
* method is very restricted in what it does:
* - changing the server certificate(s)
* - changing the server id for session handling
* and everything else in WOLFSSL* needs to remain untouched.
*/
WOLFSSL_ENTER("wolfSSL_set_SSL_CTX");
if (ssl == NULL || ctx == NULL)
return NULL;
if (ssl->ctx == ctx)
return ssl->ctx;
if (ctx->suites == NULL) {
/* suites */
if (AllocateCtxSuites(ctx) != 0)
return NULL;
InitSSL_CTX_Suites(ctx);
}
wolfSSL_RefInc(&ctx->ref, &ret);
#ifdef WOLFSSL_REFCNT_ERROR_RETURN
if (ret != 0) {
/* can only fail on serious stuff, like mutex not working
* or ctx refcount out of whack. */
return NULL;
}
#else
(void)ret;
#endif
if (ssl->ctx != NULL)
wolfSSL_CTX_free(ssl->ctx);
ssl->ctx = ctx;
#ifndef NO_CERTS
/* ctx owns certificate, certChain and key */
ssl->buffers.certificate = ctx->certificate;
ssl->buffers.certChain = ctx->certChain;
#ifdef WOLFSSL_TLS13
ssl->buffers.certChainCnt = ctx->certChainCnt;
#endif
#ifndef WOLFSSL_BLIND_PRIVATE_KEY
ssl->buffers.key = ctx->privateKey;
#else
if (ctx->privateKey != NULL) {
AllocCopyDer(&ssl->buffers.key, ctx->privateKey->buffer,
ctx->privateKey->length, ctx->privateKey->type,
ctx->privateKey->heap);
/* Blind the private key for the SSL with new random mask. */
wolfssl_priv_der_unblind(ssl->buffers.key, ctx->privateKeyMask);
ret = wolfssl_priv_der_blind(ssl->rng, ssl->buffers.key,
&ssl->buffers.keyMask);
if (ret != 0) {
return ret;
}
}
#endif
ssl->buffers.keyType = ctx->privateKeyType;
ssl->buffers.keyId = ctx->privateKeyId;
ssl->buffers.keyLabel = ctx->privateKeyLabel;
ssl->buffers.keySz = ctx->privateKeySz;
ssl->buffers.keyDevId = ctx->privateKeyDevId;
/* flags indicating what certs/keys are available */
ssl->options.haveRSA = ctx->haveRSA;
ssl->options.haveDH = ctx->haveDH;
ssl->options.haveECDSAsig = ctx->haveECDSAsig;
ssl->options.haveECC = ctx->haveECC;
ssl->options.haveStaticECC = ctx->haveStaticECC;
ssl->options.haveFalconSig = ctx->haveFalconSig;
ssl->options.haveDilithiumSig = ctx->haveDilithiumSig;
#ifdef WOLFSSL_DUAL_ALG_CERTS
#ifndef WOLFSSL_BLIND_PRIVATE_KEY
ssl->buffers.altKey = ctx->altPrivateKey;
#else
if (ctx->altPrivateKey != NULL) {
AllocCopyDer(&ssl->buffers.altkey, ctx->altPrivateKey->buffer,
ctx->altPrivateKey->length, ctx->altPrivateKey->type,
ctx->altPrivateKey->heap);
/* Blind the private key for the SSL with new random mask. */
wolfssl_priv_der_unblind(ssl->buffers.altKey, ctx->altPrivateKeyMask);
ret = wolfssl_priv_der_blind(ssl->rng, ssl->buffers.altKey,
&ssl->buffers.altKeyMask);
if (ret != 0) {
return ret;
}
}
#endif
ssl->buffers.altKeySz = ctx->altPrivateKeySz;
ssl->buffers.altKeyType = ctx->altPrivateKeyType;
#endif /* WOLFSSL_DUAL_ALG_CERTS */
#endif
#ifdef WOLFSSL_SESSION_ID_CTX
/* copy over application session context ID */
ssl->sessionCtxSz = ctx->sessionCtxSz;
XMEMCPY(ssl->sessionCtx, ctx->sessionCtx, ctx->sessionCtxSz);
#endif
return ssl->ctx;
}
VerifyCallback wolfSSL_CTX_get_verify_callback(WOLFSSL_CTX* ctx)
{
WOLFSSL_ENTER("wolfSSL_CTX_get_verify_callback");
if(ctx)
return ctx->verifyCallback;
return NULL;
}
#ifdef HAVE_SNI
/* this is a compatibily function, consider using
* wolfSSL_CTX_set_servername_callback */
int wolfSSL_CTX_set_tlsext_servername_callback(WOLFSSL_CTX* ctx,
CallbackSniRecv cb)
{
WOLFSSL_ENTER("wolfSSL_CTX_set_tlsext_servername_callback");
if (ctx) {
ctx->sniRecvCb = cb;
return WOLFSSL_SUCCESS;
}
return WOLFSSL_FAILURE;
}
#endif /* HAVE_SNI */
#ifndef NO_BIO
void wolfSSL_ERR_load_BIO_strings(void) {
WOLFSSL_ENTER("wolfSSL_ERR_load_BIO_strings");
/* do nothing */
}
#endif
#ifndef NO_WOLFSSL_STUB
/* Set THREADID callback, return 1 on success, 0 on error */
int wolfSSL_THREADID_set_callback(
void(*threadid_func)(WOLFSSL_CRYPTO_THREADID*))
{
WOLFSSL_ENTER("wolfSSL_THREADID_set_callback");
WOLFSSL_STUB("CRYPTO_THREADID_set_callback");
(void)threadid_func;
return 1;
}
#endif
#ifndef NO_WOLFSSL_STUB
void wolfSSL_THREADID_set_numeric(void* id, unsigned long val)
{
WOLFSSL_ENTER("wolfSSL_THREADID_set_numeric");
WOLFSSL_STUB("CRYPTO_THREADID_set_numeric");
(void)id;
(void)val;
return;
}
#endif
#endif /* OPENSSL_ALL || (OPENSSL_EXTRA && (HAVE_STUNNEL || WOLFSSL_NGINX ||
* HAVE_LIGHTY || WOLFSSL_HAPROXY || WOLFSSL_OPENSSH ||
* HAVE_SBLIM_SFCB)) */
#ifdef HAVE_SNI
void wolfSSL_CTX_set_servername_callback(WOLFSSL_CTX* ctx, CallbackSniRecv cb)
{
WOLFSSL_ENTER("wolfSSL_CTX_set_servername_callback");
if (ctx)
ctx->sniRecvCb = cb;
}
int wolfSSL_CTX_set_servername_arg(WOLFSSL_CTX* ctx, void* arg)
{
WOLFSSL_ENTER("wolfSSL_CTX_set_servername_arg");
if (ctx) {
ctx->sniRecvCbArg = arg;
return WOLFSSL_SUCCESS;
}
return WOLFSSL_FAILURE;
}
#endif /* HAVE_SNI */
#if defined(OPENSSL_EXTRA)
int wolfSSL_CRYPTO_memcmp(const void *a, const void *b, size_t size)
{
if (!a || !b)
return 0;
return ConstantCompare((const byte*)a, (const byte*)b, (int)size);
}
unsigned long wolfSSL_ERR_peek_last_error(void)
{
WOLFSSL_ENTER("wolfSSL_ERR_peek_last_error");
#ifdef WOLFSSL_HAVE_ERROR_QUEUE
{
int ret;
if ((ret = wc_PeekErrorNode(-1, NULL, NULL, NULL)) < 0) {
WOLFSSL_MSG("Issue peeking at error node in queue");
return 0;
}
if (ret == -ASN_NO_PEM_HEADER)
return (ERR_LIB_PEM << 24) | PEM_R_NO_START_LINE;
#if defined(WOLFSSL_PYTHON)
if (ret == ASN1_R_HEADER_TOO_LONG)
return (ERR_LIB_ASN1 << 24) | ASN1_R_HEADER_TOO_LONG;
#endif
return (unsigned long)ret;
}
#else
return (unsigned long)(0 - NOT_COMPILED_IN);
#endif
}
#endif /* OPENSSL_EXTRA */
int wolfSSL_version(WOLFSSL* ssl)
{
WOLFSSL_ENTER("wolfSSL_version");
if (ssl->version.major == SSLv3_MAJOR) {
switch (ssl->version.minor) {
case SSLv3_MINOR :
return SSL3_VERSION;
case TLSv1_MINOR :
return TLS1_VERSION;
case TLSv1_1_MINOR :
return TLS1_1_VERSION;
case TLSv1_2_MINOR :
return TLS1_2_VERSION;
case TLSv1_3_MINOR :
return TLS1_3_VERSION;
default:
return WOLFSSL_FAILURE;
}
}
else if (ssl->version.major == DTLS_MAJOR) {
switch (ssl->version.minor) {
case DTLS_MINOR :
return DTLS1_VERSION;
case DTLSv1_2_MINOR :
return DTLS1_2_VERSION;
case DTLSv1_3_MINOR:
return DTLS1_3_VERSION;
default:
return WOLFSSL_FAILURE;
}
}
return WOLFSSL_FAILURE;
}
WOLFSSL_CTX* wolfSSL_get_SSL_CTX(WOLFSSL* ssl)
{
WOLFSSL_ENTER("wolfSSL_get_SSL_CTX");
return ssl->ctx;
}
#if defined(OPENSSL_ALL) || (defined(OPENSSL_EXTRA) && defined(HAVE_STUNNEL)) \
|| defined(WOLFSSL_MYSQL_COMPATIBLE) || defined(WOLFSSL_NGINX)
/* TODO: Doesn't currently track SSL_VERIFY_CLIENT_ONCE */
int wolfSSL_get_verify_mode(const WOLFSSL* ssl) {
int mode = 0;
WOLFSSL_ENTER("wolfSSL_get_verify_mode");
if (!ssl) {
return WOLFSSL_FAILURE;
}
if (ssl->options.verifyNone) {
mode = WOLFSSL_VERIFY_NONE;
}
else {
if (ssl->options.verifyPeer) {
mode |= WOLFSSL_VERIFY_PEER;
}
if (ssl->options.failNoCert) {
mode |= WOLFSSL_VERIFY_FAIL_IF_NO_PEER_CERT;
}
if (ssl->options.failNoCertxPSK) {
mode |= WOLFSSL_VERIFY_FAIL_EXCEPT_PSK;
}
#if defined(WOLFSSL_TLS13) && defined(WOLFSSL_POST_HANDSHAKE_AUTH)
if (ssl->options.verifyPostHandshake) {
mode |= WOLFSSL_VERIFY_POST_HANDSHAKE;
}
#endif
}
WOLFSSL_LEAVE("wolfSSL_get_verify_mode", mode);
return mode;
}
int wolfSSL_CTX_get_verify_mode(const WOLFSSL_CTX* ctx)
{
int mode = 0;
WOLFSSL_ENTER("wolfSSL_CTX_get_verify_mode");
if (!ctx) {
return WOLFSSL_FAILURE;
}
if (ctx->verifyNone) {
mode = WOLFSSL_VERIFY_NONE;
}
else {
if (ctx->verifyPeer) {
mode |= WOLFSSL_VERIFY_PEER;
}
if (ctx->failNoCert) {
mode |= WOLFSSL_VERIFY_FAIL_IF_NO_PEER_CERT;
}
if (ctx->failNoCertxPSK) {
mode |= WOLFSSL_VERIFY_FAIL_EXCEPT_PSK;
}
#if defined(WOLFSSL_TLS13) && defined(WOLFSSL_POST_HANDSHAKE_AUTH)
if (ctx->verifyPostHandshake) {
mode |= WOLFSSL_VERIFY_POST_HANDSHAKE;
}
#endif
}
WOLFSSL_LEAVE("wolfSSL_CTX_get_verify_mode", mode);
return mode;
}
#endif
#ifdef WOLFSSL_JNI
int wolfSSL_set_jobject(WOLFSSL* ssl, void* objPtr)
{
WOLFSSL_ENTER("wolfSSL_set_jobject");
if (ssl != NULL)
{
ssl->jObjectRef = objPtr;
return WOLFSSL_SUCCESS;
}
return WOLFSSL_FAILURE;
}
void* wolfSSL_get_jobject(WOLFSSL* ssl)
{
WOLFSSL_ENTER("wolfSSL_get_jobject");
if (ssl != NULL)
return ssl->jObjectRef;
return NULL;
}
#endif /* WOLFSSL_JNI */
#ifdef WOLFSSL_ASYNC_CRYPT
int wolfSSL_CTX_AsyncPoll(WOLFSSL_CTX* ctx, WOLF_EVENT** events, int maxEvents,
WOLF_EVENT_FLAG flags, int* eventCount)
{
if (ctx == NULL) {
return BAD_FUNC_ARG;
}
return wolfAsync_EventQueuePoll(&ctx->event_queue, NULL,
events, maxEvents, flags, eventCount);
}
int wolfSSL_AsyncPoll(WOLFSSL* ssl, WOLF_EVENT_FLAG flags)
{
int ret, eventCount = 0;
WOLF_EVENT* events[1];
if (ssl == NULL) {
return BAD_FUNC_ARG;
}
ret = wolfAsync_EventQueuePoll(&ssl->ctx->event_queue, ssl,
events, sizeof(events)/sizeof(events[0]), flags, &eventCount);
if (ret == 0) {
ret = eventCount;
}
return ret;
}
#endif /* WOLFSSL_ASYNC_CRYPT */
#ifdef OPENSSL_EXTRA
static int peek_ignore_err(int err)
{
switch(err) {
case -WC_NO_ERR_TRACE(WANT_READ):
case -WC_NO_ERR_TRACE(WANT_WRITE):
case -WC_NO_ERR_TRACE(ZERO_RETURN):
case -WOLFSSL_ERROR_ZERO_RETURN:
case -WC_NO_ERR_TRACE(SOCKET_PEER_CLOSED_E):
case -WC_NO_ERR_TRACE(SOCKET_ERROR_E):
return 1;
default:
return 0;
}
}
unsigned long wolfSSL_ERR_peek_error_line_data(const char **file, int *line,
const char **data, int *flags)
{
unsigned long err;
WOLFSSL_ENTER("wolfSSL_ERR_peek_error_line_data");
err = wc_PeekErrorNodeLineData(file, line, data, flags, peek_ignore_err);
if (err == -WC_NO_ERR_TRACE(ASN_NO_PEM_HEADER))
return (ERR_LIB_PEM << 24) | PEM_R_NO_START_LINE;
#ifdef OPENSSL_ALL
/* PARSE_ERROR is returned if an HTTP request is detected. */
else if (err == -WC_NO_ERR_TRACE(PARSE_ERROR))
return (ERR_LIB_SSL << 24) | -SSL_R_HTTP_REQUEST;
#endif
#if defined(OPENSSL_ALL) && defined(WOLFSSL_PYTHON)
else if (err == WC_NO_ERR_TRACE(ASN1_R_HEADER_TOO_LONG))
return (ERR_LIB_ASN1 << 24) | ASN1_R_HEADER_TOO_LONG;
#endif
return err;
}
#endif
#if defined(OPENSSL_ALL) || defined(WOLFSSL_NGINX) || defined(WOLFSSL_HAPROXY)
#if !defined(WOLFSSL_USER_IO)
/* converts an IPv6 or IPv4 address into an octet string for use with rfc3280
* example input would be "127.0.0.1" and the returned value would be 7F000001
*/
WOLFSSL_ASN1_STRING* wolfSSL_a2i_IPADDRESS(const char* ipa)
{
int ipaSz = WOLFSSL_IP4_ADDR_LEN;
char buf[WOLFSSL_IP6_ADDR_LEN + 1]; /* plus 1 for terminator */
int af = WOLFSSL_IP4;
WOLFSSL_ASN1_STRING *ret = NULL;
if (ipa == NULL)
return NULL;
if (XSTRSTR(ipa, ":") != NULL) {
af = WOLFSSL_IP6;
ipaSz = WOLFSSL_IP6_ADDR_LEN;
}
buf[WOLFSSL_IP6_ADDR_LEN] = '\0';
if (XINET_PTON(af, ipa, (void*)buf) != 1) {
WOLFSSL_MSG("Error parsing IP address");
return NULL;
}
ret = wolfSSL_ASN1_STRING_new();
if (ret != NULL) {
if (wolfSSL_ASN1_STRING_set(ret, buf, ipaSz) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("Error setting the string");
wolfSSL_ASN1_STRING_free(ret);
ret = NULL;
}
}
return ret;
}
#endif /* !WOLFSSL_USER_IO */
/* Is the specified cipher suite a fake one used an an extension proxy? */
static WC_INLINE int SCSV_Check(byte suite0, byte suite)
{
(void)suite0;
(void)suite;
#ifdef HAVE_RENEGOTIATION_INDICATION
if (suite0 == CIPHER_BYTE && suite == TLS_EMPTY_RENEGOTIATION_INFO_SCSV)
return 1;
#endif
return 0;
}
static WC_INLINE int sslCipherMinMaxCheck(const WOLFSSL *ssl, byte suite0,
byte suite)
{
const CipherSuiteInfo* cipher_names = GetCipherNames();
int cipherSz = GetCipherNamesSize();
int i;
for (i = 0; i < cipherSz; i++)
if (cipher_names[i].cipherSuite0 == suite0 &&
cipher_names[i].cipherSuite == suite)
break;
if (i == cipherSz)
return 1;
/* Check min version */
if (cipher_names[i].minor < ssl->options.minDowngrade) {
if (ssl->options.minDowngrade <= TLSv1_2_MINOR &&
cipher_names[i].minor >= TLSv1_MINOR)
/* 1.0 ciphersuites are in general available in 1.1 and
* 1.1 ciphersuites are in general available in 1.2 */
return 0;
return 1;
}
/* Check max version */
switch (cipher_names[i].minor) {
case SSLv3_MINOR :
return ssl->options.mask & WOLFSSL_OP_NO_SSLv3;
case TLSv1_MINOR :
return ssl->options.mask & WOLFSSL_OP_NO_TLSv1;
case TLSv1_1_MINOR :
return ssl->options.mask & WOLFSSL_OP_NO_TLSv1_1;
case TLSv1_2_MINOR :
return ssl->options.mask & WOLFSSL_OP_NO_TLSv1_2;
case TLSv1_3_MINOR :
return ssl->options.mask & WOLFSSL_OP_NO_TLSv1_3;
default:
WOLFSSL_MSG("Unrecognized minor version");
return 1;
}
}
/* returns a pointer to internal cipher suite list. Should not be free'd by
* caller.
*/
WOLF_STACK_OF(WOLFSSL_CIPHER) *wolfSSL_get_ciphers_compat(const WOLFSSL *ssl)
{
WOLF_STACK_OF(WOLFSSL_CIPHER)* ret = NULL;
const Suites* suites;
#if defined(OPENSSL_ALL) || defined(WOLFSSL_QT)
const CipherSuiteInfo* cipher_names = GetCipherNames();
int cipherSz = GetCipherNamesSize();
#endif
WOLFSSL_ENTER("wolfSSL_get_ciphers_compat");
if (ssl == NULL)
return NULL;
suites = WOLFSSL_SUITES(ssl);
if (suites == NULL)
return NULL;
/* check if stack needs populated */
if (ssl->suitesStack == NULL) {
int i;
#if defined(OPENSSL_ALL) || defined(WOLFSSL_QT)
int j;
/* higher priority of cipher suite will be on top of stack */
for (i = suites->suiteSz - 2; i >=0; i-=2) {
#else
for (i = 0; i < suites->suiteSz; i+=2) {
#endif
WOLFSSL_STACK* add;
/* A couple of suites are placeholders for special options,
* skip those. */
if (SCSV_Check(suites->suites[i], suites->suites[i+1])
|| sslCipherMinMaxCheck(ssl, suites->suites[i],
suites->suites[i+1])) {
continue;
}
add = wolfSSL_sk_new_node(ssl->heap);
if (add != NULL) {
add->type = STACK_TYPE_CIPHER;
add->data.cipher.cipherSuite0 = suites->suites[i];
add->data.cipher.cipherSuite = suites->suites[i+1];
add->data.cipher.ssl = ssl;
#if defined(OPENSSL_ALL) || defined(WOLFSSL_QT)
for (j = 0; j < cipherSz; j++) {
if (cipher_names[j].cipherSuite0 ==
add->data.cipher.cipherSuite0 &&
cipher_names[j].cipherSuite ==
add->data.cipher.cipherSuite) {
add->data.cipher.offset = (unsigned long)j;
break;
}
}
#endif
#if defined(WOLFSSL_QT) || defined(OPENSSL_ALL)
/* in_stack is checked in wolfSSL_CIPHER_description */
add->data.cipher.in_stack = 1;
#endif
add->next = ret;
if (ret != NULL) {
add->num = ret->num + 1;
}
else {
add->num = 1;
}
ret = add;
}
}
((WOLFSSL*)ssl)->suitesStack = ret;
}
return ssl->suitesStack;
}
#endif /* OPENSSL_ALL || WOLFSSL_NGINX || WOLFSSL_HAPROXY */
#if defined(OPENSSL_ALL) || defined(WOLFSSL_NGINX) || \
defined(WOLFSSL_HAPROXY) || defined(OPENSSL_EXTRA) || \
defined(HAVE_LIGHTY) || defined(HAVE_SECRET_CALLBACK)
long wolfSSL_SSL_CTX_get_timeout(const WOLFSSL_CTX *ctx)
{
WOLFSSL_ENTER("wolfSSL_SSL_CTX_get_timeout");
if (ctx == NULL)
return 0;
return ctx->timeout;
}
/* returns the time in seconds of the current timeout */
long wolfSSL_get_timeout(WOLFSSL* ssl)
{
WOLFSSL_ENTER("wolfSSL_get_timeout");
if (ssl == NULL)
return 0;
return ssl->timeout;
}
#endif
#if defined(OPENSSL_ALL) || defined(WOLFSSL_NGINX) || defined(WOLFSSL_HAPROXY) \
|| defined(OPENSSL_EXTRA) || defined(HAVE_LIGHTY)
#ifdef HAVE_ECC
int wolfSSL_SSL_CTX_set_tmp_ecdh(WOLFSSL_CTX *ctx, WOLFSSL_EC_KEY *ecdh)
{
WOLFSSL_ENTER("wolfSSL_SSL_CTX_set_tmp_ecdh");
if (ctx == NULL || ecdh == NULL)
return BAD_FUNC_ARG;
ctx->ecdhCurveOID = (word32)ecdh->group->curve_oid;
return WOLFSSL_SUCCESS;
}
#endif
#ifndef NO_BIO
BIO *wolfSSL_SSL_get_rbio(const WOLFSSL *s)
{
WOLFSSL_ENTER("wolfSSL_SSL_get_rbio");
/* Nginx sets the buffer size if the read BIO is different to write BIO.
* The setting buffer size doesn't do anything so return NULL for both.
*/
if (s == NULL)
return NULL;
return s->biord;
}
BIO *wolfSSL_SSL_get_wbio(const WOLFSSL *s)
{
WOLFSSL_ENTER("wolfSSL_SSL_get_wbio");
(void)s;
/* Nginx sets the buffer size if the read BIO is different to write BIO.
* The setting buffer size doesn't do anything so return NULL for both.
*/
if (s == NULL)
return NULL;
return s->biowr;
}
#endif /* !NO_BIO */
int wolfSSL_SSL_do_handshake_internal(WOLFSSL *s)
{
WOLFSSL_ENTER("wolfSSL_SSL_do_handshake_internal");
if (s == NULL)
return WOLFSSL_FAILURE;
if (s->options.side == WOLFSSL_CLIENT_END) {
#ifndef NO_WOLFSSL_CLIENT
return wolfSSL_connect(s);
#else
WOLFSSL_MSG("Client not compiled in");
return WOLFSSL_FAILURE;
#endif
}
#ifndef NO_WOLFSSL_SERVER
return wolfSSL_accept(s);
#else
WOLFSSL_MSG("Server not compiled in");
return WOLFSSL_FAILURE;
#endif
}
int wolfSSL_SSL_do_handshake(WOLFSSL *s)
{
WOLFSSL_ENTER("wolfSSL_SSL_do_handshake");
#ifdef WOLFSSL_QUIC
if (WOLFSSL_IS_QUIC(s)) {
return wolfSSL_quic_do_handshake(s);
}
#endif
return wolfSSL_SSL_do_handshake_internal(s);
}
#if defined(OPENSSL_VERSION_NUMBER) && OPENSSL_VERSION_NUMBER >= 0x10100000L
int wolfSSL_SSL_in_init(const WOLFSSL *ssl)
#else
int wolfSSL_SSL_in_init(WOLFSSL *ssl)
#endif
{
WOLFSSL_ENTER("wolfSSL_SSL_in_init");
return !wolfSSL_is_init_finished(ssl);
}
int wolfSSL_SSL_in_before(const WOLFSSL *ssl)
{
WOLFSSL_ENTER("wolfSSL_SSL_in_before");
if (ssl == NULL)
return WOLFSSL_FAILURE;
return ssl->options.handShakeState == NULL_STATE;
}
int wolfSSL_SSL_in_connect_init(WOLFSSL* ssl)
{
WOLFSSL_ENTER("wolfSSL_SSL_in_connect_init");
if (ssl == NULL)
return WOLFSSL_FAILURE;
if (ssl->options.side == WOLFSSL_CLIENT_END) {
return ssl->options.connectState > CONNECT_BEGIN &&
ssl->options.connectState < SECOND_REPLY_DONE;
}
return ssl->options.acceptState > ACCEPT_BEGIN &&
ssl->options.acceptState < ACCEPT_THIRD_REPLY_DONE;
}
#if defined(HAVE_SESSION_TICKET) && !defined(NO_WOLFSSL_SERVER)
/* Expected return values from implementations of OpenSSL ticket key callback.
*/
#define TICKET_KEY_CB_RET_FAILURE (-1)
#define TICKET_KEY_CB_RET_NOT_FOUND 0
#define TICKET_KEY_CB_RET_OK 1
#define TICKET_KEY_CB_RET_RENEW 2
/* Implementation of session ticket encryption/decryption using OpenSSL
* callback to initialize the cipher and HMAC.
*
* ssl The SSL/TLS object.
* keyName The key name - used to identify the key to be used.
* iv The IV to use.
* mac The MAC of the encrypted data.
* enc Encrypt ticket.
* encTicket The ticket data.
* encTicketLen The length of the ticket data.
* encLen The encrypted/decrypted ticket length - output length.
* ctx Ignored. Application specific data.
* returns WOLFSSL_TICKET_RET_OK to indicate success,
* WOLFSSL_TICKET_RET_CREATE if a new ticket is required and
* WOLFSSL_TICKET_RET_FATAL on error.
*/
static int wolfSSL_TicketKeyCb(WOLFSSL* ssl,
unsigned char keyName[WOLFSSL_TICKET_NAME_SZ],
unsigned char iv[WOLFSSL_TICKET_IV_SZ],
unsigned char mac[WOLFSSL_TICKET_MAC_SZ],
int enc, unsigned char* encTicket,
int encTicketLen, int* encLen, void* ctx)
{
byte digest[WC_MAX_DIGEST_SIZE];
#ifdef WOLFSSL_SMALL_STACK
WOLFSSL_EVP_CIPHER_CTX *evpCtx;
#else
WOLFSSL_EVP_CIPHER_CTX evpCtx[1];
#endif
WOLFSSL_HMAC_CTX hmacCtx;
unsigned int mdSz = 0;
int len = 0;
int ret = WOLFSSL_TICKET_RET_FATAL;
int res;
int totalSz = 0;
(void)ctx;
WOLFSSL_ENTER("wolfSSL_TicketKeyCb");
if (ssl == NULL || ssl->ctx == NULL || ssl->ctx->ticketEncWrapCb == NULL) {
WOLFSSL_MSG("Bad parameter");
return WOLFSSL_TICKET_RET_FATAL;
}
#ifdef WOLFSSL_SMALL_STACK
evpCtx = (WOLFSSL_EVP_CIPHER_CTX *)XMALLOC(sizeof(*evpCtx), ssl->heap,
DYNAMIC_TYPE_TMP_BUFFER);
if (evpCtx == NULL) {
WOLFSSL_MSG("out of memory");
return WOLFSSL_TICKET_RET_FATAL;
}
#endif
/* Initialize the cipher and HMAC. */
wolfSSL_EVP_CIPHER_CTX_init(evpCtx);
if (wolfSSL_HMAC_CTX_Init(&hmacCtx) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("wolfSSL_HMAC_CTX_Init error");
#ifdef WOLFSSL_SMALL_STACK
XFREE(evpCtx, ssl->heap, DYNAMIC_TYPE_TMP_BUFFER);
#endif
return WOLFSSL_TICKET_RET_FATAL;
}
res = ssl->ctx->ticketEncWrapCb(ssl, keyName,
iv, evpCtx, &hmacCtx, enc);
if (res != TICKET_KEY_CB_RET_OK && res != TICKET_KEY_CB_RET_RENEW) {
WOLFSSL_MSG("Ticket callback error");
ret = WOLFSSL_TICKET_RET_FATAL;
goto end;
}
if (wolfSSL_HMAC_size(&hmacCtx) > WOLFSSL_TICKET_MAC_SZ) {
WOLFSSL_MSG("Ticket cipher MAC size error");
goto end;
}
if (enc)
{
/* Encrypt in place. */
if (!wolfSSL_EVP_CipherUpdate(evpCtx, encTicket, &len,
encTicket, encTicketLen))
goto end;
totalSz = len;
if (totalSz > *encLen)
goto end;
if (!wolfSSL_EVP_EncryptFinal(evpCtx, &encTicket[len], &len))
goto end;
/* Total length of encrypted data. */
totalSz += len;
if (totalSz > *encLen)
goto end;
/* HMAC the encrypted data into the parameter 'mac'. */
if (!wolfSSL_HMAC_Update(&hmacCtx, encTicket, totalSz))
goto end;
if (!wolfSSL_HMAC_Final(&hmacCtx, mac, &mdSz))
goto end;
}
else
{
/* HMAC the encrypted data and compare it to the passed in data. */
if (!wolfSSL_HMAC_Update(&hmacCtx, encTicket, encTicketLen))
goto end;
if (!wolfSSL_HMAC_Final(&hmacCtx, digest, &mdSz))
goto end;
if (XMEMCMP(mac, digest, mdSz) != 0)
goto end;
/* Decrypt the ticket data in place. */
if (!wolfSSL_EVP_CipherUpdate(evpCtx, encTicket, &len,
encTicket, encTicketLen))
goto end;
totalSz = len;
if (totalSz > encTicketLen)
goto end;
if (!wolfSSL_EVP_DecryptFinal(evpCtx, &encTicket[len], &len))
goto end;
/* Total length of decrypted data. */
totalSz += len;
if (totalSz > encTicketLen)
goto end;
}
*encLen = totalSz;
if (res == TICKET_KEY_CB_RET_RENEW && !IsAtLeastTLSv1_3(ssl->version)
&& !enc)
ret = WOLFSSL_TICKET_RET_CREATE;
else
ret = WOLFSSL_TICKET_RET_OK;
end:
(void)wc_HmacFree(&hmacCtx.hmac);
(void)wolfSSL_EVP_CIPHER_CTX_cleanup(evpCtx);
#ifdef WOLFSSL_SMALL_STACK
XFREE(evpCtx, ssl->heap, DYNAMIC_TYPE_TMP_BUFFER);
#endif
return ret;
}
/* Set the callback to use when encrypting/decrypting tickets.
*
* ctx The SSL/TLS context object.
* cb The OpenSSL session ticket callback.
* returns WOLFSSL_SUCCESS to indicate success.
*/
int wolfSSL_CTX_set_tlsext_ticket_key_cb(WOLFSSL_CTX *ctx, ticketCompatCb cb)
{
/* Set the ticket encryption callback to be a wrapper around OpenSSL
* callback.
*/
ctx->ticketEncCb = wolfSSL_TicketKeyCb;
ctx->ticketEncWrapCb = cb;
return WOLFSSL_SUCCESS;
}
#endif /* HAVE_SESSION_TICKET */
#endif /* OPENSSL_ALL || WOLFSSL_NGINX || WOLFSSL_HAPROXY ||
OPENSSL_EXTRA || HAVE_LIGHTY */
#if defined(HAVE_SESSION_TICKET) && !defined(WOLFSSL_NO_DEF_TICKET_ENC_CB) && \
!defined(NO_WOLFSSL_SERVER)
/* Serialize the session ticket encryption keys.
*
* @param [in] ctx SSL/TLS context object.
* @param [in] keys Buffer to hold session ticket keys.
* @param [in] keylen Length of buffer.
* @return WOLFSSL_SUCCESS on success.
* @return WOLFSSL_FAILURE when ctx is NULL, keys is NULL or keylen is not the
* correct length.
*/
long wolfSSL_CTX_get_tlsext_ticket_keys(WOLFSSL_CTX *ctx,
unsigned char *keys, int keylen)
{
if (ctx == NULL || keys == NULL) {
return WOLFSSL_FAILURE;
}
if (keylen != WOLFSSL_TICKET_KEYS_SZ) {
return WOLFSSL_FAILURE;
}
XMEMCPY(keys, ctx->ticketKeyCtx.name, WOLFSSL_TICKET_NAME_SZ);
keys += WOLFSSL_TICKET_NAME_SZ;
XMEMCPY(keys, ctx->ticketKeyCtx.key[0], WOLFSSL_TICKET_KEY_SZ);
keys += WOLFSSL_TICKET_KEY_SZ;
XMEMCPY(keys, ctx->ticketKeyCtx.key[1], WOLFSSL_TICKET_KEY_SZ);
keys += WOLFSSL_TICKET_KEY_SZ;
c32toa(ctx->ticketKeyCtx.expirary[0], keys);
keys += OPAQUE32_LEN;
c32toa(ctx->ticketKeyCtx.expirary[1], keys);
return WOLFSSL_SUCCESS;
}
/* Deserialize the session ticket encryption keys.
*
* @param [in] ctx SSL/TLS context object.
* @param [in] keys Session ticket keys.
* @param [in] keylen Length of data.
* @return WOLFSSL_SUCCESS on success.
* @return WOLFSSL_FAILURE when ctx is NULL, keys is NULL or keylen is not the
* correct length.
*/
long wolfSSL_CTX_set_tlsext_ticket_keys(WOLFSSL_CTX *ctx,
const void *keys_vp, int keylen)
{
const byte* keys = (const byte*)keys_vp;
if (ctx == NULL || keys == NULL) {
return WOLFSSL_FAILURE;
}
if (keylen != WOLFSSL_TICKET_KEYS_SZ) {
return WOLFSSL_FAILURE;
}
XMEMCPY(ctx->ticketKeyCtx.name, keys, WOLFSSL_TICKET_NAME_SZ);
keys += WOLFSSL_TICKET_NAME_SZ;
XMEMCPY(ctx->ticketKeyCtx.key[0], keys, WOLFSSL_TICKET_KEY_SZ);
keys += WOLFSSL_TICKET_KEY_SZ;
XMEMCPY(ctx->ticketKeyCtx.key[1], keys, WOLFSSL_TICKET_KEY_SZ);
keys += WOLFSSL_TICKET_KEY_SZ;
ato32(keys, &ctx->ticketKeyCtx.expirary[0]);
keys += OPAQUE32_LEN;
ato32(keys, &ctx->ticketKeyCtx.expirary[1]);
return WOLFSSL_SUCCESS;
}
#endif
#if defined(OPENSSL_ALL) || defined(WOLFSSL_NGINX) || defined(WOLFSSL_HAPROXY)
#ifdef HAVE_OCSP
/* Not an OpenSSL API. */
int wolfSSL_get_ocsp_response(WOLFSSL* ssl, byte** response)
{
*response = ssl->ocspResp;
return ssl->ocspRespSz;
}
/* Not an OpenSSL API. */
char* wolfSSL_get_ocsp_url(WOLFSSL* ssl)
{
return ssl->url;
}
/* Not an OpenSSL API. */
int wolfSSL_set_ocsp_url(WOLFSSL* ssl, char* url)
{
if (ssl == NULL)
return WOLFSSL_FAILURE;
ssl->url = url;
return WOLFSSL_SUCCESS;
}
#endif /* OCSP */
#endif /* OPENSSL_ALL || WOLFSSL_NGINX || WOLFSSL_HAPROXY */
#if defined(HAVE_OCSP) && !defined(NO_ASN_TIME)
int wolfSSL_get_ocsp_producedDate(
WOLFSSL *ssl,
byte *producedDate,
size_t producedDate_space,
int *producedDateFormat)
{
if ((ssl->ocspProducedDateFormat != ASN_UTC_TIME) &&
(ssl->ocspProducedDateFormat != ASN_GENERALIZED_TIME))
return BAD_FUNC_ARG;
if ((producedDate == NULL) || (producedDateFormat == NULL))
return BAD_FUNC_ARG;
if (XSTRLEN((char *)ssl->ocspProducedDate) >= producedDate_space)
return BUFFER_E;
XSTRNCPY((char *)producedDate, (const char *)ssl->ocspProducedDate,
producedDate_space);
*producedDateFormat = ssl->ocspProducedDateFormat;
return 0;
}
int wolfSSL_get_ocsp_producedDate_tm(WOLFSSL *ssl, struct tm *produced_tm) {
int idx = 0;
if ((ssl->ocspProducedDateFormat != ASN_UTC_TIME) &&
(ssl->ocspProducedDateFormat != ASN_GENERALIZED_TIME))
return BAD_FUNC_ARG;
if (produced_tm == NULL)
return BAD_FUNC_ARG;
if (ExtractDate(ssl->ocspProducedDate,
(unsigned char)ssl->ocspProducedDateFormat, produced_tm, &idx))
return 0;
else
return ASN_PARSE_E;
}
#endif
#if defined(WOLFSSL_NGINX) || defined(WOLFSSL_HAPROXY) || \
defined(OPENSSL_EXTRA) || defined(OPENSSL_ALL)
int wolfSSL_CTX_get_extra_chain_certs(WOLFSSL_CTX* ctx,
WOLF_STACK_OF(X509)** chain)
{
word32 idx;
word32 length;
WOLFSSL_STACK* node;
WOLFSSL_STACK* last = NULL;
if (ctx == NULL || chain == NULL) {
chain = NULL;
return WOLFSSL_FAILURE;
}
if (ctx->x509Chain != NULL) {
*chain = ctx->x509Chain;
return WOLFSSL_SUCCESS;
}
/* If there are no chains then success! */
*chain = NULL;
if (ctx->certChain == NULL || ctx->certChain->length == 0) {
return WOLFSSL_SUCCESS;
}
/* Create a new stack of WOLFSSL_X509 object from chain buffer. */
for (idx = 0; idx < ctx->certChain->length; ) {
node = wolfSSL_sk_X509_new_null();
if (node == NULL)
return WOLFSSL_FAILURE;
node->next = NULL;
/* 3 byte length | X509 DER data */
ato24(ctx->certChain->buffer + idx, &length);
idx += 3;
/* Create a new X509 from DER encoded data. */
node->data.x509 = wolfSSL_X509_d2i_ex(NULL,
ctx->certChain->buffer + idx, (int)length, ctx->heap);
if (node->data.x509 == NULL) {
XFREE(node, NULL, DYNAMIC_TYPE_OPENSSL);
/* Return as much of the chain as we created. */
ctx->x509Chain = *chain;
return WOLFSSL_FAILURE;
}
idx += length;
/* Add object to the end of the stack. */
if (last == NULL) {
node->num = 1;
*chain = node;
}
else {
(*chain)->num++;
last->next = node;
}
last = node;
}
ctx->x509Chain = *chain;
return WOLFSSL_SUCCESS;
}
int wolfSSL_CTX_get_tlsext_status_cb(WOLFSSL_CTX* ctx, tlsextStatusCb* cb)
{
if (ctx == NULL || ctx->cm == NULL || cb == NULL)
return WOLFSSL_FAILURE;
#if !defined(NO_WOLFSSL_SERVER) && (defined(HAVE_CERTIFICATE_STATUS_REQUEST) \
|| defined(HAVE_CERTIFICATE_STATUS_REQUEST_V2))
if (ctx->cm->ocsp_stapling == NULL)
return WOLFSSL_FAILURE;
*cb = ctx->cm->ocsp_stapling->statusCb;
#else
(void)cb;
*cb = NULL;
#endif
return WOLFSSL_SUCCESS;
}
int wolfSSL_CTX_set_tlsext_status_cb(WOLFSSL_CTX* ctx, tlsextStatusCb cb)
{
if (ctx == NULL || ctx->cm == NULL)
return WOLFSSL_FAILURE;
#if !defined(NO_WOLFSSL_SERVER) && (defined(HAVE_CERTIFICATE_STATUS_REQUEST) \
|| defined(HAVE_CERTIFICATE_STATUS_REQUEST_V2))
/* Ensure stapling is on for callback to be used. */
wolfSSL_CTX_EnableOCSPStapling(ctx);
if (ctx->cm->ocsp_stapling == NULL)
return WOLFSSL_FAILURE;
ctx->cm->ocsp_stapling->statusCb = cb;
#else
(void)cb;
#endif
return WOLFSSL_SUCCESS;
}
int wolfSSL_CTX_get0_chain_certs(WOLFSSL_CTX *ctx,
WOLF_STACK_OF(WOLFSSL_X509) **sk)
{
WOLFSSL_ENTER("wolfSSL_CTX_get0_chain_certs");
if (ctx == NULL || sk == NULL) {
WOLFSSL_MSG("Bad parameter");
return WOLFSSL_FAILURE;
}
/* This function should return ctx->x509Chain if it is populated, otherwise
it should be populated from ctx->certChain. This matches the behavior of
wolfSSL_CTX_get_extra_chain_certs, so it is used directly. */
return wolfSSL_CTX_get_extra_chain_certs(ctx, sk);
}
#ifdef KEEP_OUR_CERT
int wolfSSL_get0_chain_certs(WOLFSSL *ssl,
WOLF_STACK_OF(WOLFSSL_X509) **sk)
{
WOLFSSL_ENTER("wolfSSL_get0_chain_certs");
if (ssl == NULL || sk == NULL) {
WOLFSSL_MSG("Bad parameter");
return WOLFSSL_FAILURE;
}
*sk = ssl->ourCertChain;
return WOLFSSL_SUCCESS;
}
#endif
WOLF_STACK_OF(WOLFSSL_STRING)* wolfSSL_sk_WOLFSSL_STRING_new(void)
{
WOLF_STACK_OF(WOLFSSL_STRING)* ret = wolfSSL_sk_new_node(NULL);
if (ret) {
ret->type = STACK_TYPE_STRING;
}
return ret;
}
void wolfSSL_WOLFSSL_STRING_free(WOLFSSL_STRING s)
{
WOLFSSL_ENTER("wolfSSL_WOLFSSL_STRING_free");
if (s != NULL)
XFREE(s, NULL, DYNAMIC_TYPE_OPENSSL);
}
void wolfSSL_sk_WOLFSSL_STRING_free(WOLF_STACK_OF(WOLFSSL_STRING)* sk)
{
WOLFSSL_STACK* tmp;
WOLFSSL_ENTER("wolfSSL_sk_WOLFSSL_STRING_free");
if (sk == NULL)
return;
/* parse through stack freeing each node */
while (sk) {
tmp = sk->next;
XFREE(sk->data.string, NULL, DYNAMIC_TYPE_OPENSSL);
XFREE(sk, NULL, DYNAMIC_TYPE_OPENSSL);
sk = tmp;
}
}
WOLFSSL_STRING wolfSSL_sk_WOLFSSL_STRING_value(
WOLF_STACK_OF(WOLFSSL_STRING)* strings, int idx)
{
for (; idx > 0 && strings != NULL; idx--)
strings = strings->next;
if (strings == NULL)
return NULL;
return strings->data.string;
}
int wolfSSL_sk_WOLFSSL_STRING_num(WOLF_STACK_OF(WOLFSSL_STRING)* strings)
{
if (strings)
return (int)strings->num;
return 0;
}
#endif /* WOLFSSL_NGINX || WOLFSSL_HAPROXY || OPENSSL_EXTRA || OPENSSL_ALL */
#if defined(OPENSSL_ALL) || defined(WOLFSSL_NGINX) || \
defined(WOLFSSL_HAPROXY) || defined(HAVE_LIGHTY) || \
defined(WOLFSSL_QUIC)
#ifdef HAVE_ALPN
void wolfSSL_get0_alpn_selected(const WOLFSSL *ssl, const unsigned char **data,
unsigned int *len)
{
word16 nameLen;
if (ssl != NULL && data != NULL && len != NULL) {
TLSX_ALPN_GetRequest(ssl->extensions, (void **)data, &nameLen);
*len = nameLen;
}
}
int wolfSSL_select_next_proto(unsigned char **out, unsigned char *outLen,
const unsigned char *in, unsigned int inLen,
const unsigned char *clientNames,
unsigned int clientLen)
{
unsigned int i, j;
byte lenIn, lenClient;
if (out == NULL || outLen == NULL || in == NULL || clientNames == NULL)
return OPENSSL_NPN_UNSUPPORTED;
for (i = 0; i < inLen; i += lenIn) {
lenIn = in[i++];
for (j = 0; j < clientLen; j += lenClient) {
lenClient = clientNames[j++];
if (lenIn != lenClient)
continue;
if (XMEMCMP(in + i, clientNames + j, lenIn) == 0) {
*out = (unsigned char *)(in + i);
*outLen = lenIn;
return OPENSSL_NPN_NEGOTIATED;
}
}
}
*out = (unsigned char *)clientNames + 1;
*outLen = clientNames[0];
return OPENSSL_NPN_NO_OVERLAP;
}
void wolfSSL_set_alpn_select_cb(WOLFSSL *ssl,
int (*cb) (WOLFSSL *ssl,
const unsigned char **out,
unsigned char *outlen,
const unsigned char *in,
unsigned int inlen,
void *arg), void *arg)
{
if (ssl != NULL) {
ssl->alpnSelect = cb;
ssl->alpnSelectArg = arg;
}
}
void wolfSSL_CTX_set_alpn_select_cb(WOLFSSL_CTX *ctx,
int (*cb) (WOLFSSL *ssl,
const unsigned char **out,
unsigned char *outlen,
const unsigned char *in,
unsigned int inlen,
void *arg), void *arg)
{
if (ctx != NULL) {
ctx->alpnSelect = cb;
ctx->alpnSelectArg = arg;
}
}
void wolfSSL_CTX_set_next_protos_advertised_cb(WOLFSSL_CTX *s,
int (*cb) (WOLFSSL *ssl,
const unsigned char
**out,
unsigned int *outlen,
void *arg), void *arg)
{
(void)s;
(void)cb;
(void)arg;
WOLFSSL_STUB("wolfSSL_CTX_set_next_protos_advertised_cb");
}
void wolfSSL_CTX_set_next_proto_select_cb(WOLFSSL_CTX *s,
int (*cb) (WOLFSSL *ssl,
unsigned char **out,
unsigned char *outlen,
const unsigned char *in,
unsigned int inlen,
void *arg), void *arg)
{
(void)s;
(void)cb;
(void)arg;
WOLFSSL_STUB("wolfSSL_CTX_set_next_proto_select_cb");
}
void wolfSSL_get0_next_proto_negotiated(const WOLFSSL *s,
const unsigned char **data, unsigned *len)
{
(void)s;
(void)data;
(void)len;
WOLFSSL_STUB("wolfSSL_get0_next_proto_negotiated");
}
#endif /* HAVE_ALPN */
#endif /* WOLFSSL_NGINX / WOLFSSL_HAPROXY */
#if defined(OPENSSL_EXTRA) || defined(HAVE_CURL)
int wolfSSL_curve_is_disabled(const WOLFSSL* ssl, word16 curve_id)
{
int ret = 0;
WOLFSSL_ENTER("wolfSSL_curve_is_disabled");
WOLFSSL_MSG_EX("wolfSSL_curve_is_disabled checking for %d", curve_id);
/* (curve_id >= WOLFSSL_FFDHE_START) - DH parameters are never disabled. */
if (curve_id < WOLFSSL_FFDHE_START) {
if (curve_id > WOLFSSL_ECC_MAX_AVAIL) {
WOLFSSL_MSG("Curve id out of supported range");
/* Disabled if not in valid range. */
ret = 1;
}
else if (curve_id >= 32) {
/* 0 is for invalid and 1-14 aren't used otherwise. */
ret = (ssl->disabledCurves & (1U << (curve_id - 32))) != 0;
}
else {
ret = (ssl->disabledCurves & (1U << curve_id)) != 0;
}
}
WOLFSSL_LEAVE("wolfSSL_curve_is_disabled", ret);
return ret;
}
#if (defined(HAVE_ECC) || \
defined(HAVE_CURVE25519) || defined(HAVE_CURVE448))
#define CURVE_NAME(c) XSTR_SIZEOF((c)), (c)
const WOLF_EC_NIST_NAME kNistCurves[] = {
{CURVE_NAME("P-160"), NID_secp160r1, WOLFSSL_ECC_SECP160R1},
{CURVE_NAME("P-160-2"), NID_secp160r2, WOLFSSL_ECC_SECP160R2},
{CURVE_NAME("P-192"), NID_X9_62_prime192v1, WOLFSSL_ECC_SECP192R1},
{CURVE_NAME("P-224"), NID_secp224r1, WOLFSSL_ECC_SECP224R1},
{CURVE_NAME("P-256"), NID_X9_62_prime256v1, WOLFSSL_ECC_SECP256R1},
{CURVE_NAME("P-384"), NID_secp384r1, WOLFSSL_ECC_SECP384R1},
{CURVE_NAME("P-521"), NID_secp521r1, WOLFSSL_ECC_SECP521R1},
{CURVE_NAME("K-160"), NID_secp160k1, WOLFSSL_ECC_SECP160K1},
{CURVE_NAME("K-192"), NID_secp192k1, WOLFSSL_ECC_SECP192K1},
{CURVE_NAME("K-224"), NID_secp224k1, WOLFSSL_ECC_SECP224R1},
{CURVE_NAME("K-256"), NID_secp256k1, WOLFSSL_ECC_SECP256K1},
{CURVE_NAME("B-256"), NID_brainpoolP256r1, WOLFSSL_ECC_BRAINPOOLP256R1},
{CURVE_NAME("B-384"), NID_brainpoolP384r1, WOLFSSL_ECC_BRAINPOOLP384R1},
{CURVE_NAME("B-512"), NID_brainpoolP512r1, WOLFSSL_ECC_BRAINPOOLP512R1},
#ifdef HAVE_CURVE25519
{CURVE_NAME("X25519"), NID_X25519, WOLFSSL_ECC_X25519},
#endif
#ifdef HAVE_CURVE448
{CURVE_NAME("X448"), NID_X448, WOLFSSL_ECC_X448},
#endif
#ifdef HAVE_PQC
{CURVE_NAME("KYBER_LEVEL1"), WOLFSSL_KYBER_LEVEL1, WOLFSSL_KYBER_LEVEL1},
{CURVE_NAME("KYBER_LEVEL3"), WOLFSSL_KYBER_LEVEL3, WOLFSSL_KYBER_LEVEL1},
{CURVE_NAME("KYBER_LEVEL5"), WOLFSSL_KYBER_LEVEL5, WOLFSSL_KYBER_LEVEL1},
#ifdef HAVE_LIBOQS
{CURVE_NAME("P256_KYBER_LEVEL1"), WOLFSSL_P256_KYBER_LEVEL1, WOLFSSL_P256_KYBER_LEVEL1},
{CURVE_NAME("P384_KYBER_LEVEL3"), WOLFSSL_P384_KYBER_LEVEL3, WOLFSSL_P256_KYBER_LEVEL1},
{CURVE_NAME("P521_KYBER_LEVEL5"), WOLFSSL_P521_KYBER_LEVEL5, WOLFSSL_P256_KYBER_LEVEL1},
#endif
#endif
#ifdef WOLFSSL_SM2
{CURVE_NAME("SM2"), NID_sm2, WOLFSSL_ECC_SM2P256V1},
#endif
/* Alternative curve names */
{CURVE_NAME("prime256v1"), NID_X9_62_prime256v1, WOLFSSL_ECC_SECP256R1},
{CURVE_NAME("secp256r1"), NID_X9_62_prime256v1, WOLFSSL_ECC_SECP256R1},
{CURVE_NAME("secp384r1"), NID_secp384r1, WOLFSSL_ECC_SECP384R1},
{CURVE_NAME("secp521r1"), NID_secp521r1, WOLFSSL_ECC_SECP521R1},
#ifdef WOLFSSL_SM2
{CURVE_NAME("sm2p256v1"), NID_sm2, WOLFSSL_ECC_SM2P256V1},
#endif
{0, NULL, 0, 0},
};
int set_curves_list(WOLFSSL* ssl, WOLFSSL_CTX *ctx, const char* names,
byte curves_only)
{
int idx, start = 0, len, i, ret = WOLFSSL_FAILURE;
word16 curve;
word32 disabled;
char name[MAX_CURVE_NAME_SZ];
byte groups_len = 0;
#ifdef WOLFSSL_SMALL_STACK
void *heap = ssl? ssl->heap : ctx ? ctx->heap : NULL;
int *groups;
#else
int groups[WOLFSSL_MAX_GROUP_COUNT];
#endif
const WOLF_EC_NIST_NAME* nist_name;
#ifdef WOLFSSL_SMALL_STACK
groups = (int*)XMALLOC(sizeof(int)*WOLFSSL_MAX_GROUP_COUNT,
heap, DYNAMIC_TYPE_TMP_BUFFER);
if (groups == NULL) {
ret = MEMORY_E;
goto leave;
}
#endif
for (idx = 1; names[idx-1] != '\0'; idx++) {
if (names[idx] != ':' && names[idx] != '\0')
continue;
len = idx - start;
if (len > MAX_CURVE_NAME_SZ - 1)
goto leave;
XMEMCPY(name, names + start, len);
name[len] = 0;
curve = WOLFSSL_NAMED_GROUP_INVALID;
for (nist_name = kNistCurves; nist_name->name != NULL; nist_name++) {
if (len == nist_name->name_len &&
XSTRNCMP(name, nist_name->name, len) == 0) {
curve = nist_name->curve;
break;
}
}
if (curve == WOLFSSL_NAMED_GROUP_INVALID) {
#if !defined(HAVE_FIPS) && !defined(HAVE_SELFTEST) && defined(HAVE_ECC)
int nret;
const ecc_set_type *eccSet;
nret = wc_ecc_get_curve_idx_from_name(name);
if (nret < 0) {
WOLFSSL_MSG("Could not find name in set");
goto leave;
}
eccSet = wc_ecc_get_curve_params(ret);
if (eccSet == NULL) {
WOLFSSL_MSG("NULL set returned");
goto leave;
}
curve = GetCurveByOID(eccSet->oidSum);
#else
WOLFSSL_MSG("API not present to search farther using name");
goto leave;
#endif
}
if ((curves_only && curve >= WOLFSSL_ECC_MAX_AVAIL) ||
curve == WOLFSSL_NAMED_GROUP_INVALID) {
WOLFSSL_MSG("curve value is not supported");
goto leave;
}
for (i = 0; i < groups_len; ++i) {
if (groups[i] == curve) {
/* silently drop duplicates */
break;
}
}
if (i >= groups_len) {
if (groups_len >= WOLFSSL_MAX_GROUP_COUNT) {
WOLFSSL_MSG_EX("setting %d or more supported "
"curves is not permitted", groups_len);
goto leave;
}
groups[groups_len++] = (int)curve;
}
start = idx + 1;
}
/* Disable all curves so that only the ones the user wants are enabled. */
disabled = 0xFFFFFFFFUL;
for (i = 0; i < groups_len; ++i) {
/* Switch the bit to off and therefore is enabled. */
curve = (word16)groups[i];
if (curve >= 64) {
WC_DO_NOTHING;
}
else if (curve >= 32) {
/* 0 is for invalid and 1-14 aren't used otherwise. */
disabled &= ~(1U << (curve - 32));
}
else {
disabled &= ~(1U << curve);
}
#ifdef HAVE_SUPPORTED_CURVES
#if !defined(WOLFSSL_OLD_SET_CURVES_LIST)
/* using the wolfSSL API to set the groups, this will populate
* (ssl|ctx)->groups and reset any TLSX_SUPPORTED_GROUPS.
* The order in (ssl|ctx)->groups will then be respected
* when TLSX_KEY_SHARE needs to be established */
if ((ssl && wolfSSL_set_groups(ssl, groups, groups_len)
!= WOLFSSL_SUCCESS)
|| (ctx && wolfSSL_CTX_set_groups(ctx, groups, groups_len)
!= WOLFSSL_SUCCESS)) {
WOLFSSL_MSG("Unable to set supported curve");
goto leave;
}
#elif !defined(NO_WOLFSSL_CLIENT)
/* set the supported curve so client TLS extension contains only the
* desired curves */
if ((ssl && wolfSSL_UseSupportedCurve(ssl, curve) != WOLFSSL_SUCCESS)
|| (ctx && wolfSSL_CTX_UseSupportedCurve(ctx, curve)
!= WOLFSSL_SUCCESS)) {
WOLFSSL_MSG("Unable to set supported curve");
goto leave;
}
#endif
#endif /* HAVE_SUPPORTED_CURVES */
}
if (ssl)
ssl->disabledCurves = disabled;
else
ctx->disabledCurves = disabled;
ret = WOLFSSL_SUCCESS;
leave:
#ifdef WOLFSSL_SMALL_STACK
if (groups)
XFREE((void*)groups, heap, DYNAMIC_TYPE_TMP_BUFFER);
#endif
return ret;
}
int wolfSSL_CTX_set1_curves_list(WOLFSSL_CTX* ctx, const char* names)
{
WOLFSSL_ENTER("wolfSSL_CTX_set1_curves_list");
if (ctx == NULL || names == NULL) {
WOLFSSL_MSG("ctx or names was NULL");
return WOLFSSL_FAILURE;
}
return set_curves_list(NULL, ctx, names, 1);
}
int wolfSSL_set1_curves_list(WOLFSSL* ssl, const char* names)
{
WOLFSSL_ENTER("wolfSSL_set1_curves_list");
if (ssl == NULL || names == NULL) {
WOLFSSL_MSG("ssl or names was NULL");
return WOLFSSL_FAILURE;
}
return set_curves_list(ssl, NULL, names, 1);
}
#endif /* (HAVE_ECC || HAVE_CURVE25519 || HAVE_CURVE448) */
#endif /* OPENSSL_EXTRA || HAVE_CURL */
#ifdef OPENSSL_EXTRA
/* Sets a callback for when sending and receiving protocol messages.
* This callback is copied to all WOLFSSL objects created from the ctx.
*
* ctx WOLFSSL_CTX structure to set callback in
* cb callback to use
*
* return WOLFSSL_SUCCESS on success and WOLFSSL_FAILURE with error case
*/
int wolfSSL_CTX_set_msg_callback(WOLFSSL_CTX *ctx, SSL_Msg_Cb cb)
{
WOLFSSL_ENTER("wolfSSL_CTX_set_msg_callback");
if (ctx == NULL) {
WOLFSSL_MSG("Null ctx passed in");
return WOLFSSL_FAILURE;
}
ctx->protoMsgCb = cb;
return WOLFSSL_SUCCESS;
}
/* Sets a callback for when sending and receiving protocol messages.
*
* ssl WOLFSSL structure to set callback in
* cb callback to use
*
* return WOLFSSL_SUCCESS on success and WOLFSSL_FAILURE with error case
*/
int wolfSSL_set_msg_callback(WOLFSSL *ssl, SSL_Msg_Cb cb)
{
WOLFSSL_ENTER("wolfSSL_set_msg_callback");
if (ssl == NULL) {
return WOLFSSL_FAILURE;
}
if (cb != NULL) {
ssl->toInfoOn = 1;
}
ssl->protoMsgCb = cb;
return WOLFSSL_SUCCESS;
}
/* set the user argument to pass to the msg callback when called
* return WOLFSSL_SUCCESS on success */
int wolfSSL_CTX_set_msg_callback_arg(WOLFSSL_CTX *ctx, void* arg)
{
WOLFSSL_ENTER("wolfSSL_CTX_set_msg_callback_arg");
if (ctx == NULL) {
WOLFSSL_MSG("Null WOLFSSL_CTX passed in");
return WOLFSSL_FAILURE;
}
ctx->protoMsgCtx = arg;
return WOLFSSL_SUCCESS;
}
int wolfSSL_set_msg_callback_arg(WOLFSSL *ssl, void* arg)
{
WOLFSSL_ENTER("wolfSSL_set_msg_callback_arg");
if (ssl == NULL)
return WOLFSSL_FAILURE;
ssl->protoMsgCtx = arg;
return WOLFSSL_SUCCESS;
}
void *wolfSSL_OPENSSL_memdup(const void *data, size_t siz, const char* file,
int line)
{
void *ret;
(void)file;
(void)line;
if (data == NULL || siz >= INT_MAX)
return NULL;
ret = OPENSSL_malloc(siz);
if (ret == NULL) {
return NULL;
}
return XMEMCPY(ret, data, siz);
}
void wolfSSL_OPENSSL_cleanse(void *ptr, size_t len)
{
if (ptr)
ForceZero(ptr, (word32)len);
}
int wolfSSL_CTX_set_alpn_protos(WOLFSSL_CTX *ctx, const unsigned char *p,
unsigned int p_len)
{
WOLFSSL_ENTER("wolfSSL_CTX_set_alpn_protos");
if (ctx == NULL)
return BAD_FUNC_ARG;
if (ctx->alpn_cli_protos != NULL) {
XFREE((void*)ctx->alpn_cli_protos, ctx->heap, DYNAMIC_TYPE_OPENSSL);
}
ctx->alpn_cli_protos = (const unsigned char*)XMALLOC(p_len,
ctx->heap, DYNAMIC_TYPE_OPENSSL);
if (ctx->alpn_cli_protos == NULL) {
#if defined(WOLFSSL_ERROR_CODE_OPENSSL)
/* 0 on success in OpenSSL, non-0 on failure in OpenSSL
* the function reverses the return value convention.
*/
return 1;
#else
return WOLFSSL_FAILURE;
#endif
}
XMEMCPY((void*)ctx->alpn_cli_protos, p, p_len);
ctx->alpn_cli_protos_len = p_len;
#if defined(WOLFSSL_ERROR_CODE_OPENSSL)
/* 0 on success in OpenSSL, non-0 on failure in OpenSSL
* the function reverses the return value convention.
*/
return 0;
#else
return WOLFSSL_SUCCESS;
#endif
}
#ifdef HAVE_ALPN
#ifndef NO_BIO
/* Sets the ALPN extension protos
*
* example format is
* unsigned char p[] = {
* 8, 'h', 't', 't', 'p', '/', '1', '.', '1'
* };
*
* returns WOLFSSL_SUCCESS on success */
int wolfSSL_set_alpn_protos(WOLFSSL* ssl,
const unsigned char* p, unsigned int p_len)
{
WOLFSSL_BIO* bio;
char* pt = NULL;
unsigned int sz;
unsigned int idx = 0;
int alpn_opt = WOLFSSL_ALPN_CONTINUE_ON_MISMATCH;
WOLFSSL_ENTER("wolfSSL_set_alpn_protos");
if (ssl == NULL || p_len <= 1) {
#if defined(WOLFSSL_ERROR_CODE_OPENSSL)
/* 0 on success in OpenSSL, non-0 on failure in OpenSSL
* the function reverses the return value convention.
*/
return 1;
#else
return WOLFSSL_FAILURE;
#endif
}
bio = wolfSSL_BIO_new(wolfSSL_BIO_s_mem());
if (bio == NULL) {
#if defined(WOLFSSL_ERROR_CODE_OPENSSL)
/* 0 on success in OpenSSL, non-0 on failure in OpenSSL
* the function reverses the return value convention.
*/
return 1;
#else
return WOLFSSL_FAILURE;
#endif
}
/* convert into comma separated list */
while (idx < p_len - 1) {
unsigned int i;
sz = p[idx++];
if (idx + sz > p_len) {
WOLFSSL_MSG("Bad list format");
wolfSSL_BIO_free(bio);
#if defined(WOLFSSL_ERROR_CODE_OPENSSL)
/* 0 on success in OpenSSL, non-0 on failure in OpenSSL
* the function reverses the return value convention.
*/
return 1;
#else
return WOLFSSL_FAILURE;
#endif
}
if (sz > 0) {
for (i = 0; i < sz; i++) {
wolfSSL_BIO_write(bio, &p[idx++], 1);
}
if (idx < p_len - 1)
wolfSSL_BIO_write(bio, ",", 1);
}
}
wolfSSL_BIO_write(bio, "\0", 1);
/* clears out all current ALPN extensions set */
TLSX_Remove(&ssl->extensions, TLSX_APPLICATION_LAYER_PROTOCOL, ssl->heap);
if ((sz = (unsigned int)wolfSSL_BIO_get_mem_data(bio, &pt)) > 0) {
wolfSSL_UseALPN(ssl, pt, sz, (byte) alpn_opt);
}
wolfSSL_BIO_free(bio);
#if defined(WOLFSSL_ERROR_CODE_OPENSSL)
/* 0 on success in OpenSSL, non-0 on failure in OpenSSL
* the function reverses the return value convention.
*/
return 0;
#else
return WOLFSSL_SUCCESS;
#endif
}
#endif /* !NO_BIO */
#endif /* HAVE_ALPN */
#endif /* OPENSSL_EXTRA */
#if defined(OPENSSL_EXTRA)
#ifndef NO_BIO
#define WOLFSSL_BIO_INCLUDED
#include "src/bio.c"
#endif
word32 nid2oid(int nid, int grp)
{
/* get OID type */
switch (grp) {
/* oidHashType */
case oidHashType:
switch (nid) {
#ifdef WOLFSSL_MD2
case NID_md2:
return MD2h;
#endif
#ifndef NO_MD5
case NID_md5:
return MD5h;
#endif
#ifndef NO_SHA
case NID_sha1:
return SHAh;
#endif
case NID_sha224:
return SHA224h;
#ifndef NO_SHA256
case NID_sha256:
return SHA256h;
#endif
#ifdef WOLFSSL_SHA384
case NID_sha384:
return SHA384h;
#endif
#ifdef WOLFSSL_SHA512
case NID_sha512:
return SHA512h;
#endif
#ifndef WOLFSSL_NOSHA3_224
case NID_sha3_224:
return SHA3_224h;
#endif
#ifndef WOLFSSL_NOSHA3_256
case NID_sha3_256:
return SHA3_256h;
#endif
#ifndef WOLFSSL_NOSHA3_384
case NID_sha3_384:
return SHA3_384h;
#endif
#ifndef WOLFSSL_NOSHA3_512
case NID_sha3_512:
return SHA3_512h;
#endif
}
break;
/* oidSigType */
case oidSigType:
switch (nid) {
#ifndef NO_DSA
case NID_dsaWithSHA1:
return CTC_SHAwDSA;
case NID_dsa_with_SHA256:
return CTC_SHA256wDSA;
#endif /* NO_DSA */
#ifndef NO_RSA
case NID_md2WithRSAEncryption:
return CTC_MD2wRSA;
case NID_md5WithRSAEncryption:
return CTC_MD5wRSA;
case NID_sha1WithRSAEncryption:
return CTC_SHAwRSA;
case NID_sha224WithRSAEncryption:
return CTC_SHA224wRSA;
case NID_sha256WithRSAEncryption:
return CTC_SHA256wRSA;
case NID_sha384WithRSAEncryption:
return CTC_SHA384wRSA;
case NID_sha512WithRSAEncryption:
return CTC_SHA512wRSA;
#ifdef WOLFSSL_SHA3
case NID_RSA_SHA3_224:
return CTC_SHA3_224wRSA;
case NID_RSA_SHA3_256:
return CTC_SHA3_256wRSA;
case NID_RSA_SHA3_384:
return CTC_SHA3_384wRSA;
case NID_RSA_SHA3_512:
return CTC_SHA3_512wRSA;
#endif
#endif /* NO_RSA */
#ifdef HAVE_ECC
case NID_ecdsa_with_SHA1:
return CTC_SHAwECDSA;
case NID_ecdsa_with_SHA224:
return CTC_SHA224wECDSA;
case NID_ecdsa_with_SHA256:
return CTC_SHA256wECDSA;
case NID_ecdsa_with_SHA384:
return CTC_SHA384wECDSA;
case NID_ecdsa_with_SHA512:
return CTC_SHA512wECDSA;
#ifdef WOLFSSL_SHA3
case NID_ecdsa_with_SHA3_224:
return CTC_SHA3_224wECDSA;
case NID_ecdsa_with_SHA3_256:
return CTC_SHA3_256wECDSA;
case NID_ecdsa_with_SHA3_384:
return CTC_SHA3_384wECDSA;
case NID_ecdsa_with_SHA3_512:
return CTC_SHA3_512wECDSA;
#endif
#endif /* HAVE_ECC */
}
break;
/* oidKeyType */
case oidKeyType:
switch (nid) {
#ifndef NO_DSA
case NID_dsa:
return DSAk;
#endif /* NO_DSA */
#ifndef NO_RSA
case NID_rsaEncryption:
return RSAk;
#endif /* NO_RSA */
#ifdef HAVE_ECC
case NID_X9_62_id_ecPublicKey:
return ECDSAk;
#endif /* HAVE_ECC */
}
break;
#ifdef HAVE_ECC
case oidCurveType:
switch (nid) {
case NID_X9_62_prime192v1:
return ECC_SECP192R1_OID;
case NID_X9_62_prime192v2:
return ECC_PRIME192V2_OID;
case NID_X9_62_prime192v3:
return ECC_PRIME192V3_OID;
case NID_X9_62_prime239v1:
return ECC_PRIME239V1_OID;
case NID_X9_62_prime239v2:
return ECC_PRIME239V2_OID;
case NID_X9_62_prime239v3:
return ECC_PRIME239V3_OID;
case NID_X9_62_prime256v1:
return ECC_SECP256R1_OID;
case NID_secp112r1:
return ECC_SECP112R1_OID;
case NID_secp112r2:
return ECC_SECP112R2_OID;
case NID_secp128r1:
return ECC_SECP128R1_OID;
case NID_secp128r2:
return ECC_SECP128R2_OID;
case NID_secp160r1:
return ECC_SECP160R1_OID;
case NID_secp160r2:
return ECC_SECP160R2_OID;
case NID_secp224r1:
return ECC_SECP224R1_OID;
case NID_secp384r1:
return ECC_SECP384R1_OID;
case NID_secp521r1:
return ECC_SECP521R1_OID;
case NID_secp160k1:
return ECC_SECP160K1_OID;
case NID_secp192k1:
return ECC_SECP192K1_OID;
case NID_secp224k1:
return ECC_SECP224K1_OID;
case NID_secp256k1:
return ECC_SECP256K1_OID;
case NID_brainpoolP160r1:
return ECC_BRAINPOOLP160R1_OID;
case NID_brainpoolP192r1:
return ECC_BRAINPOOLP192R1_OID;
case NID_brainpoolP224r1:
return ECC_BRAINPOOLP224R1_OID;
case NID_brainpoolP256r1:
return ECC_BRAINPOOLP256R1_OID;
case NID_brainpoolP320r1:
return ECC_BRAINPOOLP320R1_OID;
case NID_brainpoolP384r1:
return ECC_BRAINPOOLP384R1_OID;
case NID_brainpoolP512r1:
return ECC_BRAINPOOLP512R1_OID;
}
break;
#endif /* HAVE_ECC */
/* oidBlkType */
case oidBlkType:
switch (nid) {
#ifdef WOLFSSL_AES_128
case AES128CBCb:
return AES128CBCb;
#endif
#ifdef WOLFSSL_AES_192
case AES192CBCb:
return AES192CBCb;
#endif
#ifdef WOLFSSL_AES_256
case AES256CBCb:
return AES256CBCb;
#endif
#ifndef NO_DES3
case NID_des:
return DESb;
case NID_des3:
return DES3b;
#endif
}
break;
#ifdef HAVE_OCSP
case oidOcspType:
switch (nid) {
case NID_id_pkix_OCSP_basic:
return OCSP_BASIC_OID;
case OCSP_NONCE_OID:
return OCSP_NONCE_OID;
}
break;
#endif /* HAVE_OCSP */
/* oidCertExtType */
case oidCertExtType:
switch (nid) {
case NID_basic_constraints:
return BASIC_CA_OID;
case NID_subject_alt_name:
return ALT_NAMES_OID;
case NID_crl_distribution_points:
return CRL_DIST_OID;
case NID_info_access:
return AUTH_INFO_OID;
case NID_authority_key_identifier:
return AUTH_KEY_OID;
case NID_subject_key_identifier:
return SUBJ_KEY_OID;
case NID_inhibit_any_policy:
return INHIBIT_ANY_OID;
case NID_key_usage:
return KEY_USAGE_OID;
case NID_name_constraints:
return NAME_CONS_OID;
case NID_certificate_policies:
return CERT_POLICY_OID;
case NID_ext_key_usage:
return EXT_KEY_USAGE_OID;
}
break;
/* oidCertAuthInfoType */
case oidCertAuthInfoType:
switch (nid) {
case NID_ad_OCSP:
return AIA_OCSP_OID;
case NID_ad_ca_issuers:
return AIA_CA_ISSUER_OID;
}
break;
/* oidCertPolicyType */
case oidCertPolicyType:
switch (nid) {
case NID_any_policy:
return CP_ANY_OID;
}
break;
/* oidCertAltNameType */
case oidCertAltNameType:
switch (nid) {
case NID_hw_name_oid:
return HW_NAME_OID;
}
break;
/* oidCertKeyUseType */
case oidCertKeyUseType:
switch (nid) {
case NID_anyExtendedKeyUsage:
return EKU_ANY_OID;
case EKU_SERVER_AUTH_OID:
return EKU_SERVER_AUTH_OID;
case EKU_CLIENT_AUTH_OID:
return EKU_CLIENT_AUTH_OID;
case EKU_OCSP_SIGN_OID:
return EKU_OCSP_SIGN_OID;
}
break;
/* oidKdfType */
case oidKdfType:
switch (nid) {
case PBKDF2_OID:
return PBKDF2_OID;
}
break;
/* oidPBEType */
case oidPBEType:
switch (nid) {
case PBE_SHA1_RC4_128:
return PBE_SHA1_RC4_128;
case PBE_SHA1_DES:
return PBE_SHA1_DES;
case PBE_SHA1_DES3:
return PBE_SHA1_DES3;
}
break;
/* oidKeyWrapType */
case oidKeyWrapType:
switch (nid) {
#ifdef WOLFSSL_AES_128
case AES128_WRAP:
return AES128_WRAP;
#endif
#ifdef WOLFSSL_AES_192
case AES192_WRAP:
return AES192_WRAP;
#endif
#ifdef WOLFSSL_AES_256
case AES256_WRAP:
return AES256_WRAP;
#endif
}
break;
/* oidCmsKeyAgreeType */
case oidCmsKeyAgreeType:
switch (nid) {
#ifndef NO_SHA
case dhSinglePass_stdDH_sha1kdf_scheme:
return dhSinglePass_stdDH_sha1kdf_scheme;
#endif
#ifdef WOLFSSL_SHA224
case dhSinglePass_stdDH_sha224kdf_scheme:
return dhSinglePass_stdDH_sha224kdf_scheme;
#endif
#ifndef NO_SHA256
case dhSinglePass_stdDH_sha256kdf_scheme:
return dhSinglePass_stdDH_sha256kdf_scheme;
#endif
#ifdef WOLFSSL_SHA384
case dhSinglePass_stdDH_sha384kdf_scheme:
return dhSinglePass_stdDH_sha384kdf_scheme;
#endif
#ifdef WOLFSSL_SHA512
case dhSinglePass_stdDH_sha512kdf_scheme:
return dhSinglePass_stdDH_sha512kdf_scheme;
#endif
}
break;
/* oidCmsKeyAgreeType */
#ifdef WOLFSSL_CERT_REQ
case oidCsrAttrType:
switch (nid) {
case NID_pkcs9_contentType:
return PKCS9_CONTENT_TYPE_OID;
case NID_pkcs9_challengePassword:
return CHALLENGE_PASSWORD_OID;
case NID_serialNumber:
return SERIAL_NUMBER_OID;
case NID_userId:
return USER_ID_OID;
case NID_surname:
return SURNAME_OID;
}
break;
#endif
default:
WOLFSSL_MSG("NID not in table");
/* MSVC warns without the cast */
return (word32)-1;
}
/* MSVC warns without the cast */
return (word32)-1;
}
int oid2nid(word32 oid, int grp)
{
size_t i;
/* get OID type */
switch (grp) {
/* oidHashType */
case oidHashType:
switch (oid) {
#ifdef WOLFSSL_MD2
case MD2h:
return NID_md2;
#endif
#ifndef NO_MD5
case MD5h:
return NID_md5;
#endif
#ifndef NO_SHA
case SHAh:
return NID_sha1;
#endif
case SHA224h:
return NID_sha224;
#ifndef NO_SHA256
case SHA256h:
return NID_sha256;
#endif
#ifdef WOLFSSL_SHA384
case SHA384h:
return NID_sha384;
#endif
#ifdef WOLFSSL_SHA512
case SHA512h:
return NID_sha512;
#endif
}
break;
/* oidSigType */
case oidSigType:
switch (oid) {
#ifndef NO_DSA
case CTC_SHAwDSA:
return NID_dsaWithSHA1;
case CTC_SHA256wDSA:
return NID_dsa_with_SHA256;
#endif /* NO_DSA */
#ifndef NO_RSA
case CTC_MD2wRSA:
return NID_md2WithRSAEncryption;
case CTC_MD5wRSA:
return NID_md5WithRSAEncryption;
case CTC_SHAwRSA:
return NID_sha1WithRSAEncryption;
case CTC_SHA224wRSA:
return NID_sha224WithRSAEncryption;
case CTC_SHA256wRSA:
return NID_sha256WithRSAEncryption;
case CTC_SHA384wRSA:
return NID_sha384WithRSAEncryption;
case CTC_SHA512wRSA:
return NID_sha512WithRSAEncryption;
#ifdef WOLFSSL_SHA3
case CTC_SHA3_224wRSA:
return NID_RSA_SHA3_224;
case CTC_SHA3_256wRSA:
return NID_RSA_SHA3_256;
case CTC_SHA3_384wRSA:
return NID_RSA_SHA3_384;
case CTC_SHA3_512wRSA:
return NID_RSA_SHA3_512;
#endif
#ifdef WC_RSA_PSS
case CTC_RSASSAPSS:
return NID_rsassaPss;
#endif
#endif /* NO_RSA */
#ifdef HAVE_ECC
case CTC_SHAwECDSA:
return NID_ecdsa_with_SHA1;
case CTC_SHA224wECDSA:
return NID_ecdsa_with_SHA224;
case CTC_SHA256wECDSA:
return NID_ecdsa_with_SHA256;
case CTC_SHA384wECDSA:
return NID_ecdsa_with_SHA384;
case CTC_SHA512wECDSA:
return NID_ecdsa_with_SHA512;
#ifdef WOLFSSL_SHA3
case CTC_SHA3_224wECDSA:
return NID_ecdsa_with_SHA3_224;
case CTC_SHA3_256wECDSA:
return NID_ecdsa_with_SHA3_256;
case CTC_SHA3_384wECDSA:
return NID_ecdsa_with_SHA3_384;
case CTC_SHA3_512wECDSA:
return NID_ecdsa_with_SHA3_512;
#endif
#endif /* HAVE_ECC */
}
break;
/* oidKeyType */
case oidKeyType:
switch (oid) {
#ifndef NO_DSA
case DSAk:
return NID_dsa;
#endif /* NO_DSA */
#ifndef NO_RSA
case RSAk:
return NID_rsaEncryption;
#ifdef WC_RSA_PSS
case RSAPSSk:
return NID_rsassaPss;
#endif
#endif /* NO_RSA */
#ifdef HAVE_ECC
case ECDSAk:
return NID_X9_62_id_ecPublicKey;
#endif /* HAVE_ECC */
}
break;
#ifdef HAVE_ECC
case oidCurveType:
switch (oid) {
case ECC_SECP192R1_OID:
return NID_X9_62_prime192v1;
case ECC_PRIME192V2_OID:
return NID_X9_62_prime192v2;
case ECC_PRIME192V3_OID:
return NID_X9_62_prime192v3;
case ECC_PRIME239V1_OID:
return NID_X9_62_prime239v1;
case ECC_PRIME239V2_OID:
return NID_X9_62_prime239v2;
case ECC_PRIME239V3_OID:
return NID_X9_62_prime239v3;
case ECC_SECP256R1_OID:
return NID_X9_62_prime256v1;
case ECC_SECP112R1_OID:
return NID_secp112r1;
case ECC_SECP112R2_OID:
return NID_secp112r2;
case ECC_SECP128R1_OID:
return NID_secp128r1;
case ECC_SECP128R2_OID:
return NID_secp128r2;
case ECC_SECP160R1_OID:
return NID_secp160r1;
case ECC_SECP160R2_OID:
return NID_secp160r2;
case ECC_SECP224R1_OID:
return NID_secp224r1;
case ECC_SECP384R1_OID:
return NID_secp384r1;
case ECC_SECP521R1_OID:
return NID_secp521r1;
case ECC_SECP160K1_OID:
return NID_secp160k1;
case ECC_SECP192K1_OID:
return NID_secp192k1;
case ECC_SECP224K1_OID:
return NID_secp224k1;
case ECC_SECP256K1_OID:
return NID_secp256k1;
case ECC_BRAINPOOLP160R1_OID:
return NID_brainpoolP160r1;
case ECC_BRAINPOOLP192R1_OID:
return NID_brainpoolP192r1;
case ECC_BRAINPOOLP224R1_OID:
return NID_brainpoolP224r1;
case ECC_BRAINPOOLP256R1_OID:
return NID_brainpoolP256r1;
case ECC_BRAINPOOLP320R1_OID:
return NID_brainpoolP320r1;
case ECC_BRAINPOOLP384R1_OID:
return NID_brainpoolP384r1;
case ECC_BRAINPOOLP512R1_OID:
return NID_brainpoolP512r1;
}
break;
#endif /* HAVE_ECC */
/* oidBlkType */
case oidBlkType:
switch (oid) {
#ifdef WOLFSSL_AES_128
case AES128CBCb:
return AES128CBCb;
#endif
#ifdef WOLFSSL_AES_192
case AES192CBCb:
return AES192CBCb;
#endif
#ifdef WOLFSSL_AES_256
case AES256CBCb:
return AES256CBCb;
#endif
#ifndef NO_DES3
case DESb:
return NID_des;
case DES3b:
return NID_des3;
#endif
}
break;
#ifdef HAVE_OCSP
case oidOcspType:
switch (oid) {
case OCSP_BASIC_OID:
return NID_id_pkix_OCSP_basic;
case OCSP_NONCE_OID:
return OCSP_NONCE_OID;
}
break;
#endif /* HAVE_OCSP */
/* oidCertExtType */
case oidCertExtType:
switch (oid) {
case BASIC_CA_OID:
return NID_basic_constraints;
case ALT_NAMES_OID:
return NID_subject_alt_name;
case CRL_DIST_OID:
return NID_crl_distribution_points;
case AUTH_INFO_OID:
return NID_info_access;
case AUTH_KEY_OID:
return NID_authority_key_identifier;
case SUBJ_KEY_OID:
return NID_subject_key_identifier;
case INHIBIT_ANY_OID:
return NID_inhibit_any_policy;
case KEY_USAGE_OID:
return NID_key_usage;
case NAME_CONS_OID:
return NID_name_constraints;
case CERT_POLICY_OID:
return NID_certificate_policies;
case EXT_KEY_USAGE_OID:
return NID_ext_key_usage;
}
break;
/* oidCertAuthInfoType */
case oidCertAuthInfoType:
switch (oid) {
case AIA_OCSP_OID:
return NID_ad_OCSP;
case AIA_CA_ISSUER_OID:
return NID_ad_ca_issuers;
}
break;
/* oidCertPolicyType */
case oidCertPolicyType:
switch (oid) {
case CP_ANY_OID:
return NID_any_policy;
}
break;
/* oidCertAltNameType */
case oidCertAltNameType:
switch (oid) {
case HW_NAME_OID:
return NID_hw_name_oid;
}
break;
/* oidCertKeyUseType */
case oidCertKeyUseType:
switch (oid) {
case EKU_ANY_OID:
return NID_anyExtendedKeyUsage;
case EKU_SERVER_AUTH_OID:
return EKU_SERVER_AUTH_OID;
case EKU_CLIENT_AUTH_OID:
return EKU_CLIENT_AUTH_OID;
case EKU_OCSP_SIGN_OID:
return EKU_OCSP_SIGN_OID;
}
break;
/* oidKdfType */
case oidKdfType:
switch (oid) {
case PBKDF2_OID:
return PBKDF2_OID;
}
break;
/* oidPBEType */
case oidPBEType:
switch (oid) {
case PBE_SHA1_RC4_128:
return PBE_SHA1_RC4_128;
case PBE_SHA1_DES:
return PBE_SHA1_DES;
case PBE_SHA1_DES3:
return PBE_SHA1_DES3;
}
break;
/* oidKeyWrapType */
case oidKeyWrapType:
switch (oid) {
#ifdef WOLFSSL_AES_128
case AES128_WRAP:
return AES128_WRAP;
#endif
#ifdef WOLFSSL_AES_192
case AES192_WRAP:
return AES192_WRAP;
#endif
#ifdef WOLFSSL_AES_256
case AES256_WRAP:
return AES256_WRAP;
#endif
}
break;
/* oidCmsKeyAgreeType */
case oidCmsKeyAgreeType:
switch (oid) {
#ifndef NO_SHA
case dhSinglePass_stdDH_sha1kdf_scheme:
return dhSinglePass_stdDH_sha1kdf_scheme;
#endif
#ifdef WOLFSSL_SHA224
case dhSinglePass_stdDH_sha224kdf_scheme:
return dhSinglePass_stdDH_sha224kdf_scheme;
#endif
#ifndef NO_SHA256
case dhSinglePass_stdDH_sha256kdf_scheme:
return dhSinglePass_stdDH_sha256kdf_scheme;
#endif
#ifdef WOLFSSL_SHA384
case dhSinglePass_stdDH_sha384kdf_scheme:
return dhSinglePass_stdDH_sha384kdf_scheme;
#endif
#ifdef WOLFSSL_SHA512
case dhSinglePass_stdDH_sha512kdf_scheme:
return dhSinglePass_stdDH_sha512kdf_scheme;
#endif
}
break;
#ifdef WOLFSSL_CERT_REQ
case oidCsrAttrType:
switch (oid) {
case PKCS9_CONTENT_TYPE_OID:
return NID_pkcs9_contentType;
case CHALLENGE_PASSWORD_OID:
return NID_pkcs9_challengePassword;
case SERIAL_NUMBER_OID:
return NID_serialNumber;
case USER_ID_OID:
return NID_userId;
}
break;
#endif
default:
WOLFSSL_MSG("OID not in table");
}
/* If not found in above switch then try the table */
for (i = 0; i < WOLFSSL_OBJECT_INFO_SZ; i++) {
if (wolfssl_object_info[i].id == (int)oid) {
return wolfssl_object_info[i].nid;
}
}
return -1;
}
/* frees all nodes in the current threads error queue
*
* id thread id. ERR_remove_state is depreciated and id is ignored. The
* current threads queue will be free'd.
*/
void wolfSSL_ERR_remove_state(unsigned long id)
{
WOLFSSL_ENTER("wolfSSL_ERR_remove_state");
(void)id;
if (wc_ERR_remove_state() != 0) {
WOLFSSL_MSG("Error with removing the state");
}
}
#endif /* OPENSSL_EXTRA */
#ifdef OPENSSL_ALL
#if !defined(NO_BIO) && !defined(NO_PWDBASED) && defined(HAVE_PKCS8)
static int bio_get_data(WOLFSSL_BIO* bio, byte** data)
{
int ret = 0;
byte* mem = NULL;
ret = wolfSSL_BIO_get_len(bio);
if (ret > 0) {
mem = (byte*)XMALLOC(ret, bio->heap, DYNAMIC_TYPE_OPENSSL);
if (mem == NULL) {
WOLFSSL_MSG("Memory error");
ret = MEMORY_E;
}
if (ret >= 0) {
if ((ret = wolfSSL_BIO_read(bio, mem, ret)) <= 0) {
XFREE(mem, bio->heap, DYNAMIC_TYPE_OPENSSL);
ret = MEMORY_E;
mem = NULL;
}
}
}
*data = mem;
return ret;
}
/* DER data is PKCS#8 encrypted. */
WOLFSSL_EVP_PKEY* wolfSSL_d2i_PKCS8PrivateKey_bio(WOLFSSL_BIO* bio,
WOLFSSL_EVP_PKEY** pkey,
wc_pem_password_cb* cb,
void* ctx)
{
int ret;
byte* der;
int len;
byte* p;
word32 algId;
WOLFSSL_EVP_PKEY* key;
if ((len = bio_get_data(bio, &der)) < 0)
return NULL;
if (cb != NULL) {
char password[NAME_SZ];
int passwordSz = cb(password, sizeof(password), PEM_PASS_READ, ctx);
if (passwordSz < 0) {
XFREE(der, bio->heap, DYNAMIC_TYPE_OPENSSL);
return NULL;
}
#ifdef WOLFSSL_CHECK_MEM_ZERO
wc_MemZero_Add("wolfSSL_d2i_PKCS8PrivateKey_bio password", password,
passwordSz);
#endif
ret = ToTraditionalEnc(der, (word32)len, password, passwordSz, &algId);
if (ret < 0) {
XFREE(der, bio->heap, DYNAMIC_TYPE_OPENSSL);
return NULL;
}
ForceZero(password, (word32)passwordSz);
#ifdef WOLFSSL_CHECK_MEM_ZERO
wc_MemZero_Check(password, passwordSz);
#endif
}
p = der;
key = wolfSSL_d2i_PrivateKey_EVP(pkey, &p, len);
XFREE(der, bio->heap, DYNAMIC_TYPE_OPENSSL);
return key;
}
#endif /* !NO_BIO && !NO_PWDBASED && HAVE_PKCS8 */
/* Detect which type of key it is before decoding. */
WOLFSSL_EVP_PKEY* wolfSSL_d2i_AutoPrivateKey(WOLFSSL_EVP_PKEY** pkey,
const unsigned char** pp,
long length)
{
int ret;
WOLFSSL_EVP_PKEY* key = NULL;
const byte* der = *pp;
word32 idx = 0;
int len = 0;
int cnt = 0;
word32 algId;
word32 keyLen = (word32)length;
/* Take off PKCS#8 wrapper if found. */
if ((len = ToTraditionalInline_ex(der, &idx, keyLen, &algId)) >= 0) {
der += idx;
keyLen = (word32)len;
}
idx = 0;
len = 0;
/* Use the number of elements in the outer sequence to determine key type.
*/
ret = GetSequence(der, &idx, &len, keyLen);
if (ret >= 0) {
word32 end = idx + len;
while (ret >= 0 && idx < end) {
/* Skip type */
idx++;
/* Get length and skip over - keeping count */
len = 0;
ret = GetLength(der, &idx, &len, keyLen);
if (ret >= 0) {
if (idx + len > end)
ret = ASN_PARSE_E;
else {
idx += len;
cnt++;
}
}
}
}
if (ret >= 0) {
int type;
/* ECC includes version, private[, curve][, public key] */
if (cnt >= 2 && cnt <= 4)
type = EVP_PKEY_EC;
else
type = EVP_PKEY_RSA;
key = wolfSSL_d2i_PrivateKey(type, pkey, &der, keyLen);
*pp = der;
}
return key;
}
#endif /* OPENSSL_ALL */
#ifdef WOLFSSL_STATIC_EPHEMERAL
int wolfSSL_StaticEphemeralKeyLoad(WOLFSSL* ssl, int keyAlgo, void* keyPtr)
{
int ret;
word32 idx = 0;
DerBuffer* der = NULL;
if (ssl == NULL || ssl->ctx == NULL || keyPtr == NULL) {
return BAD_FUNC_ARG;
}
#ifndef SINGLE_THREADED
if (!ssl->ctx->staticKELockInit) {
return BUFFER_E; /* no keys set */
}
ret = wc_LockMutex(&ssl->ctx->staticKELock);
if (ret != 0) {
return ret;
}
#endif
ret = BUFFER_E; /* set default error */
switch (keyAlgo) {
#ifndef NO_DH
case WC_PK_TYPE_DH:
if (ssl != NULL)
der = ssl->staticKE.dhKey;
if (der == NULL)
der = ssl->ctx->staticKE.dhKey;
if (der != NULL) {
DhKey* key = (DhKey*)keyPtr;
WOLFSSL_MSG("Using static DH key");
ret = wc_DhKeyDecode(der->buffer, &idx, key, der->length);
}
break;
#endif
#ifdef HAVE_ECC
case WC_PK_TYPE_ECDH:
if (ssl != NULL)
der = ssl->staticKE.ecKey;
if (der == NULL)
der = ssl->ctx->staticKE.ecKey;
if (der != NULL) {
ecc_key* key = (ecc_key*)keyPtr;
WOLFSSL_MSG("Using static ECDH key");
ret = wc_EccPrivateKeyDecode(der->buffer, &idx, key,
der->length);
}
break;
#endif
#ifdef HAVE_CURVE25519
case WC_PK_TYPE_CURVE25519:
if (ssl != NULL)
der = ssl->staticKE.x25519Key;
if (der == NULL)
der = ssl->ctx->staticKE.x25519Key;
if (der != NULL) {
curve25519_key* key = (curve25519_key*)keyPtr;
WOLFSSL_MSG("Using static X25519 key");
ret = wc_Curve25519PrivateKeyDecode(der->buffer, &idx, key,
der->length);
}
break;
#endif
#ifdef HAVE_CURVE448
case WC_PK_TYPE_CURVE448:
if (ssl != NULL)
der = ssl->staticKE.x448Key;
if (der == NULL)
der = ssl->ctx->staticKE.x448Key;
if (der != NULL) {
curve448_key* key = (curve448_key*)keyPtr;
WOLFSSL_MSG("Using static X448 key");
ret = wc_Curve448PrivateKeyDecode(der->buffer, &idx, key,
der->length);
}
break;
#endif
default:
/* not supported */
ret = NOT_COMPILED_IN;
break;
}
#ifndef SINGLE_THREADED
wc_UnLockMutex(&ssl->ctx->staticKELock);
#endif
return ret;
}
static int SetStaticEphemeralKey(WOLFSSL_CTX* ctx,
StaticKeyExchangeInfo_t* staticKE, int keyAlgo, const char* key,
unsigned int keySz, int format, void* heap)
{
int ret = 0;
DerBuffer* der = NULL;
byte* keyBuf = NULL;
#ifndef NO_FILESYSTEM
const char* keyFile = NULL;
#endif
/* allow empty key to free buffer */
if (staticKE == NULL || (key == NULL && keySz > 0)) {
return BAD_FUNC_ARG;
}
WOLFSSL_ENTER("SetStaticEphemeralKey");
/* if just free'ing key then skip loading */
if (key != NULL) {
#ifndef NO_FILESYSTEM
/* load file from filesystem */
if (key != NULL && keySz == 0) {
size_t keyBufSz = 0;
keyFile = (const char*)key;
ret = wc_FileLoad(keyFile, &keyBuf, &keyBufSz, heap);
if (ret != 0) {
return ret;
}
keySz = (unsigned int)keyBufSz;
}
else
#endif
{
/* use as key buffer directly */
keyBuf = (byte*)key;
}
if (format == WOLFSSL_FILETYPE_PEM) {
#ifdef WOLFSSL_PEM_TO_DER
int keyFormat = 0;
ret = PemToDer(keyBuf, keySz, PRIVATEKEY_TYPE, &der,
heap, NULL, &keyFormat);
/* auto detect key type */
if (ret == 0 && keyAlgo == WC_PK_TYPE_NONE) {
if (keyFormat == ECDSAk)
keyAlgo = WC_PK_TYPE_ECDH;
else if (keyFormat == X25519k)
keyAlgo = WC_PK_TYPE_CURVE25519;
else
keyAlgo = WC_PK_TYPE_DH;
}
#else
ret = NOT_COMPILED_IN;
#endif
}
else {
/* Detect PK type (if required) */
#ifdef HAVE_ECC
if (keyAlgo == WC_PK_TYPE_NONE) {
word32 idx = 0;
ecc_key eccKey;
ret = wc_ecc_init_ex(&eccKey, heap, INVALID_DEVID);
if (ret == 0) {
ret = wc_EccPrivateKeyDecode(keyBuf, &idx, &eccKey, keySz);
if (ret == 0)
keyAlgo = WC_PK_TYPE_ECDH;
wc_ecc_free(&eccKey);
}
}
#endif
#if !defined(NO_DH) && defined(WOLFSSL_DH_EXTRA)
if (keyAlgo == WC_PK_TYPE_NONE) {
word32 idx = 0;
DhKey dhKey;
ret = wc_InitDhKey_ex(&dhKey, heap, INVALID_DEVID);
if (ret == 0) {
ret = wc_DhKeyDecode(keyBuf, &idx, &dhKey, keySz);
if (ret == 0)
keyAlgo = WC_PK_TYPE_DH;
wc_FreeDhKey(&dhKey);
}
}
#endif
#ifdef HAVE_CURVE25519
if (keyAlgo == WC_PK_TYPE_NONE) {
word32 idx = 0;
curve25519_key x25519Key;
ret = wc_curve25519_init_ex(&x25519Key, heap, INVALID_DEVID);
if (ret == 0) {
ret = wc_Curve25519PrivateKeyDecode(keyBuf, &idx,
&x25519Key, keySz);
if (ret == 0)
keyAlgo = WC_PK_TYPE_CURVE25519;
wc_curve25519_free(&x25519Key);
}
}
#endif
#ifdef HAVE_CURVE448
if (keyAlgo == WC_PK_TYPE_NONE) {
word32 idx = 0;
curve448_key x448Key;
ret = wc_curve448_init(&x448Key);
if (ret == 0) {
ret = wc_Curve448PrivateKeyDecode(keyBuf, &idx, &x448Key,
keySz);
if (ret == 0)
keyAlgo = WC_PK_TYPE_CURVE448;
wc_curve448_free(&x448Key);
}
}
#endif
if (keyAlgo != WC_PK_TYPE_NONE) {
ret = AllocDer(&der, keySz, PRIVATEKEY_TYPE, heap);
if (ret == 0) {
XMEMCPY(der->buffer, keyBuf, keySz);
}
}
}
}
#ifndef NO_FILESYSTEM
/* done with keyFile buffer */
if (keyFile && keyBuf) {
XFREE(keyBuf, heap, DYNAMIC_TYPE_TMP_BUFFER);
}
#endif
#ifndef SINGLE_THREADED
if (ret == 0 && !ctx->staticKELockInit) {
ret = wc_InitMutex(&ctx->staticKELock);
if (ret == 0) {
ctx->staticKELockInit = 1;
}
}
#endif
if (ret == 0
#ifndef SINGLE_THREADED
&& (ret = wc_LockMutex(&ctx->staticKELock)) == 0
#endif
) {
switch (keyAlgo) {
#ifndef NO_DH
case WC_PK_TYPE_DH:
FreeDer(&staticKE->dhKey);
staticKE->dhKey = der; der = NULL;
break;
#endif
#ifdef HAVE_ECC
case WC_PK_TYPE_ECDH:
FreeDer(&staticKE->ecKey);
staticKE->ecKey = der; der = NULL;
break;
#endif
#ifdef HAVE_CURVE25519
case WC_PK_TYPE_CURVE25519:
FreeDer(&staticKE->x25519Key);
staticKE->x25519Key = der; der = NULL;
break;
#endif
#ifdef HAVE_CURVE448
case WC_PK_TYPE_CURVE448:
FreeDer(&staticKE->x448Key);
staticKE->x448Key = der; der = NULL;
break;
#endif
default:
/* not supported */
ret = NOT_COMPILED_IN;
break;
}
#ifndef SINGLE_THREADED
wc_UnLockMutex(&ctx->staticKELock);
#endif
}
if (ret != 0) {
FreeDer(&der);
}
(void)ctx; /* not used for single threaded */
WOLFSSL_LEAVE("SetStaticEphemeralKey", ret);
return ret;
}
int wolfSSL_CTX_set_ephemeral_key(WOLFSSL_CTX* ctx, int keyAlgo,
const char* key, unsigned int keySz, int format)
{
if (ctx == NULL) {
return BAD_FUNC_ARG;
}
return SetStaticEphemeralKey(ctx, &ctx->staticKE, keyAlgo,
key, keySz, format, ctx->heap);
}
int wolfSSL_set_ephemeral_key(WOLFSSL* ssl, int keyAlgo,
const char* key, unsigned int keySz, int format)
{
if (ssl == NULL || ssl->ctx == NULL) {
return BAD_FUNC_ARG;
}
return SetStaticEphemeralKey(ssl->ctx, &ssl->staticKE, keyAlgo,
key, keySz, format, ssl->heap);
}
static int GetStaticEphemeralKey(WOLFSSL_CTX* ctx, WOLFSSL* ssl,
int keyAlgo, const unsigned char** key, unsigned int* keySz)
{
int ret = 0;
DerBuffer* der = NULL;
if (key) *key = NULL;
if (keySz) *keySz = 0;
#ifndef SINGLE_THREADED
if (ctx->staticKELockInit &&
(ret = wc_LockMutex(&ctx->staticKELock)) != 0) {
return ret;
}
#endif
switch (keyAlgo) {
#ifndef NO_DH
case WC_PK_TYPE_DH:
if (ssl != NULL)
der = ssl->staticKE.dhKey;
if (der == NULL)
der = ctx->staticKE.dhKey;
break;
#endif
#ifdef HAVE_ECC
case WC_PK_TYPE_ECDH:
if (ssl != NULL)
der = ssl->staticKE.ecKey;
if (der == NULL)
der = ctx->staticKE.ecKey;
break;
#endif
#ifdef HAVE_CURVE25519
case WC_PK_TYPE_CURVE25519:
if (ssl != NULL)
der = ssl->staticKE.x25519Key;
if (der == NULL)
der = ctx->staticKE.x25519Key;
break;
#endif
#ifdef HAVE_CURVE448
case WC_PK_TYPE_CURVE448:
if (ssl != NULL)
der = ssl->staticKE.x448Key;
if (der == NULL)
der = ctx->staticKE.x448Key;
break;
#endif
default:
/* not supported */
ret = NOT_COMPILED_IN;
break;
}
if (der) {
if (key)
*key = der->buffer;
if (keySz)
*keySz = der->length;
}
#ifndef SINGLE_THREADED
wc_UnLockMutex(&ctx->staticKELock);
#endif
return ret;
}
/* returns pointer to currently loaded static ephemeral as ASN.1 */
/* this can be converted to PEM using wc_DerToPem */
int wolfSSL_CTX_get_ephemeral_key(WOLFSSL_CTX* ctx, int keyAlgo,
const unsigned char** key, unsigned int* keySz)
{
if (ctx == NULL) {
return BAD_FUNC_ARG;
}
return GetStaticEphemeralKey(ctx, NULL, keyAlgo, key, keySz);
}
int wolfSSL_get_ephemeral_key(WOLFSSL* ssl, int keyAlgo,
const unsigned char** key, unsigned int* keySz)
{
if (ssl == NULL || ssl->ctx == NULL) {
return BAD_FUNC_ARG;
}
return GetStaticEphemeralKey(ssl->ctx, ssl, keyAlgo, key, keySz);
}
#endif /* WOLFSSL_STATIC_EPHEMERAL */
#if defined(OPENSSL_EXTRA)
/* wolfSSL_THREADID_current is provided as a compat API with
* CRYPTO_THREADID_current to register current thread id into given id object.
* However, CRYPTO_THREADID_current API has been deprecated and no longer
* exists in the OpenSSL 1.0.0 or later.This API only works as a stub
* like as existing wolfSSL_THREADID_set_numeric.
*/
void wolfSSL_THREADID_current(WOLFSSL_CRYPTO_THREADID* id)
{
(void)id;
return;
}
/* wolfSSL_THREADID_hash is provided as a compatible API with
* CRYPTO_THREADID_hash which returns a hash value calculated from the
* specified thread id. However, CRYPTO_THREADID_hash API has been
* deprecated and no longer exists in the OpenSSL 1.0.0 or later.
* This API only works as a stub to returns 0. This behavior is
* equivalent to the latest OpenSSL CRYPTO_THREADID_hash.
*/
unsigned long wolfSSL_THREADID_hash(const WOLFSSL_CRYPTO_THREADID* id)
{
(void)id;
return 0UL;
}
/* wolfSSL_set_ecdh_auto is provided as compatible API with
* SSL_set_ecdh_auto to enable auto ecdh curve selection functionality.
* Since this functionality is enabled by default in wolfSSL,
* this API exists as a stub.
*/
int wolfSSL_set_ecdh_auto(WOLFSSL* ssl, int onoff)
{
(void)ssl;
(void)onoff;
return WOLFSSL_SUCCESS;
}
/* wolfSSL_CTX_set_ecdh_auto is provided as compatible API with
* SSL_CTX_set_ecdh_auto to enable auto ecdh curve selection functionality.
* Since this functionality is enabled by default in wolfSSL,
* this API exists as a stub.
*/
int wolfSSL_CTX_set_ecdh_auto(WOLFSSL_CTX* ctx, int onoff)
{
(void)ctx;
(void)onoff;
return WOLFSSL_SUCCESS;
}
/**
* set security level (wolfSSL doesn't support security level)
* @param ctx a pointer to WOLFSSL_EVP_PKEY_CTX structure
* @param level security level
*/
void wolfSSL_CTX_set_security_level(WOLFSSL_CTX* ctx, int level)
{
WOLFSSL_ENTER("wolfSSL_CTX_set_security_level");
(void)ctx;
(void)level;
}
/**
* get security level (wolfSSL doesn't support security level)
* @param ctx a pointer to WOLFSSL_EVP_PKEY_CTX structure
* @return always 0(level 0)
*/
int wolfSSL_CTX_get_security_level(const WOLFSSL_CTX* ctx)
{
WOLFSSL_ENTER("wolfSSL_CTX_get_security_level");
(void)ctx;
return 0;
}
#if defined(OPENSSL_EXTRA) && defined(HAVE_SECRET_CALLBACK)
/*
* This API accepts a user callback which puts key-log records into
* a KEY LOGFILE. The callback is stored into a CTX and propagated to
* each SSL object on its creation timing.
*/
void wolfSSL_CTX_set_keylog_callback(WOLFSSL_CTX* ctx,
wolfSSL_CTX_keylog_cb_func cb)
{
WOLFSSL_ENTER("wolfSSL_CTX_set_keylog_callback");
/* stores the callback into WOLFSSL_CTX */
if (ctx != NULL) {
ctx->keyLogCb = cb;
}
}
wolfSSL_CTX_keylog_cb_func wolfSSL_CTX_get_keylog_callback(
const WOLFSSL_CTX* ctx)
{
WOLFSSL_ENTER("wolfSSL_CTX_get_keylog_callback");
if (ctx != NULL)
return ctx->keyLogCb;
else
return NULL;
}
#endif /* OPENSSL_EXTRA && HAVE_SECRET_CALLBACK */
#endif /* OPENSSL_EXTRA */
#ifndef NO_CERTS
#define WOLFSSL_X509_INCLUDED
#include "src/x509.c"
#endif
/*******************************************************************************
* START OF standard C library wrapping APIs
******************************************************************************/
#if defined(OPENSSL_ALL) || (defined(OPENSSL_EXTRA) && \
(defined(HAVE_STUNNEL) || defined(WOLFSSL_NGINX) || \
defined(HAVE_LIGHTY) || defined(WOLFSSL_HAPROXY) || \
defined(WOLFSSL_OPENSSH)))
#ifndef NO_WOLFSSL_STUB
int wolfSSL_CRYPTO_set_mem_ex_functions(void *(*m) (size_t, const char *, int),
void *(*r) (void *, size_t, const char *,
int), void (*f) (void *))
{
(void) m;
(void) r;
(void) f;
WOLFSSL_ENTER("wolfSSL_CRYPTO_set_mem_ex_functions");
WOLFSSL_STUB("CRYPTO_set_mem_ex_functions");
return WOLFSSL_FAILURE;
}
#endif
#endif
#if defined(OPENSSL_EXTRA)
/**
* free allocated memory resource
* @param str a pointer to resource to be freed
* @param file dummy argument
* @param line dummy argument
*/
void wolfSSL_CRYPTO_free(void *str, const char *file, int line)
{
(void)file;
(void)line;
XFREE(str, 0, DYNAMIC_TYPE_TMP_BUFFER);
}
/**
* allocate memory with size of num
* @param num size of memory allocation to be malloced
* @param file dummy argument
* @param line dummy argument
* @return a pointer to allocated memory on succssesful, otherwise NULL
*/
void *wolfSSL_CRYPTO_malloc(size_t num, const char *file, int line)
{
(void)file;
(void)line;
return XMALLOC(num, 0, DYNAMIC_TYPE_TMP_BUFFER);
}
#endif
/*******************************************************************************
* END OF standard C library wrapping APIs
******************************************************************************/
/*******************************************************************************
* START OF EX_DATA APIs
******************************************************************************/
#if defined(OPENSSL_ALL) || (defined(OPENSSL_EXTRA) && \
(defined(HAVE_STUNNEL) || defined(WOLFSSL_NGINX) || \
defined(HAVE_LIGHTY) || defined(WOLFSSL_HAPROXY) || \
defined(WOLFSSL_OPENSSH)))
void wolfSSL_CRYPTO_cleanup_all_ex_data(void){
WOLFSSL_ENTER("CRYPTO_cleanup_all_ex_data");
}
#endif
#ifdef HAVE_EX_DATA
void* wolfSSL_CRYPTO_get_ex_data(const WOLFSSL_CRYPTO_EX_DATA* ex_data, int idx)
{
WOLFSSL_ENTER("wolfSSL_CTX_get_ex_data");
#ifdef MAX_EX_DATA
if(ex_data && idx < MAX_EX_DATA && idx >= 0) {
return ex_data->ex_data[idx];
}
#else
(void)ex_data;
(void)idx;
#endif
return NULL;
}
int wolfSSL_CRYPTO_set_ex_data(WOLFSSL_CRYPTO_EX_DATA* ex_data, int idx,
void *data)
{
WOLFSSL_ENTER("wolfSSL_CRYPTO_set_ex_data");
#ifdef MAX_EX_DATA
if (ex_data && idx < MAX_EX_DATA && idx >= 0) {
#ifdef HAVE_EX_DATA_CLEANUP_HOOKS
if (ex_data->ex_data_cleanup_routines[idx]) {
if (ex_data->ex_data[idx])
ex_data->ex_data_cleanup_routines[idx](ex_data->ex_data[idx]);
ex_data->ex_data_cleanup_routines[idx] = NULL;
}
#endif
ex_data->ex_data[idx] = data;
return WOLFSSL_SUCCESS;
}
#else
(void)ex_data;
(void)idx;
(void)data;
#endif
return WOLFSSL_FAILURE;
}
#ifdef HAVE_EX_DATA_CLEANUP_HOOKS
int wolfSSL_CRYPTO_set_ex_data_with_cleanup(
WOLFSSL_CRYPTO_EX_DATA* ex_data,
int idx,
void *data,
wolfSSL_ex_data_cleanup_routine_t cleanup_routine)
{
WOLFSSL_ENTER("wolfSSL_CRYPTO_set_ex_data_with_cleanup");
if (ex_data && idx < MAX_EX_DATA && idx >= 0) {
if (ex_data->ex_data_cleanup_routines[idx] && ex_data->ex_data[idx])
ex_data->ex_data_cleanup_routines[idx](ex_data->ex_data[idx]);
ex_data->ex_data[idx] = data;
ex_data->ex_data_cleanup_routines[idx] = cleanup_routine;
return WOLFSSL_SUCCESS;
}
return WOLFSSL_FAILURE;
}
#endif /* HAVE_EX_DATA_CLEANUP_HOOKS */
/**
* Issues unique index for the class specified by class_index.
* Other parameter except class_index are ignored.
* Currently, following class_index are accepted:
* - WOLF_CRYPTO_EX_INDEX_SSL
* - WOLF_CRYPTO_EX_INDEX_SSL_CTX
* - WOLF_CRYPTO_EX_INDEX_X509
* @param class_index index one of CRYPTO_EX_INDEX_xxx
* @param argp parameters to be saved
* @param argl parameters to be saved
* @param new_func a pointer to WOLFSSL_CRYPTO_EX_new
* @param dup_func a pointer to WOLFSSL_CRYPTO_EX_dup
* @param free_func a pointer to WOLFSSL_CRYPTO_EX_free
* @return index value grater or equal to zero on success, -1 on failure.
*/
int wolfSSL_CRYPTO_get_ex_new_index(int class_index, long argl, void *argp,
WOLFSSL_CRYPTO_EX_new* new_func,
WOLFSSL_CRYPTO_EX_dup* dup_func,
WOLFSSL_CRYPTO_EX_free* free_func)
{
WOLFSSL_ENTER("wolfSSL_CRYPTO_get_ex_new_index");
return wolfssl_get_ex_new_index(class_index, argl, argp, new_func,
dup_func, free_func);
}
#endif /* HAVE_EX_DATA */
/*******************************************************************************
* END OF EX_DATA APIs
******************************************************************************/
/*******************************************************************************
* START OF BUF_MEM API
******************************************************************************/
#if defined(OPENSSL_EXTRA)
/* Begin functions for openssl/buffer.h */
WOLFSSL_BUF_MEM* wolfSSL_BUF_MEM_new(void)
{
WOLFSSL_BUF_MEM* buf;
buf = (WOLFSSL_BUF_MEM*)XMALLOC(sizeof(WOLFSSL_BUF_MEM), NULL,
DYNAMIC_TYPE_OPENSSL);
if (buf) {
XMEMSET(buf, 0, sizeof(WOLFSSL_BUF_MEM));
}
return buf;
}
/* non-compat API returns length of buffer on success */
int wolfSSL_BUF_MEM_grow_ex(WOLFSSL_BUF_MEM* buf, size_t len,
char zeroFill)
{
int len_int = (int)len;
int mx;
char* tmp;
/* verify provided arguments */
if (buf == NULL || len_int < 0) {
return 0; /* BAD_FUNC_ARG; */
}
/* check to see if fits in existing length */
if (buf->length > len) {
buf->length = len;
return len_int;
}
/* check to see if fits in max buffer */
if (buf->max >= len) {
if (buf->data != NULL && zeroFill) {
XMEMSET(&buf->data[buf->length], 0, len - buf->length);
}
buf->length = len;
return len_int;
}
/* expand size, to handle growth */
mx = (len_int + 3) / 3 * 4;
/* use realloc */
tmp = (char*)XREALLOC(buf->data, mx, NULL, DYNAMIC_TYPE_OPENSSL);
if (tmp == NULL) {
return 0; /* ERR_R_MALLOC_FAILURE; */
}
buf->data = tmp;
buf->max = (size_t)mx;
if (zeroFill)
XMEMSET(&buf->data[buf->length], 0, len - buf->length);
buf->length = len;
return len_int;
}
/* returns length of buffer on success */
int wolfSSL_BUF_MEM_grow(WOLFSSL_BUF_MEM* buf, size_t len)
{
return wolfSSL_BUF_MEM_grow_ex(buf, len, 1);
}
/* non-compat API returns length of buffer on success */
int wolfSSL_BUF_MEM_resize(WOLFSSL_BUF_MEM* buf, size_t len)
{
char* tmp;
int mx;
/* verify provided arguments */
if (buf == NULL || len == 0 || (int)len <= 0) {
return 0; /* BAD_FUNC_ARG; */
}
if (len == buf->length)
return (int)len;
if (len > buf->length)
return wolfSSL_BUF_MEM_grow_ex(buf, len, 0);
/* expand size, to handle growth */
mx = ((int)len + 3) / 3 * 4;
/* We want to shrink the internal buffer */
tmp = (char*)XREALLOC(buf->data, mx, NULL, DYNAMIC_TYPE_OPENSSL);
if (tmp == NULL)
return 0;
buf->data = tmp;
buf->length = len;
buf->max = (size_t)mx;
return (int)len;
}
void wolfSSL_BUF_MEM_free(WOLFSSL_BUF_MEM* buf)
{
if (buf) {
if (buf->data) {
XFREE(buf->data, NULL, DYNAMIC_TYPE_OPENSSL);
buf->data = NULL;
}
buf->max = 0;
buf->length = 0;
XFREE(buf, NULL, DYNAMIC_TYPE_OPENSSL);
}
}
/* End Functions for openssl/buffer.h */
#endif /* OPENSSL_EXTRA */
/*******************************************************************************
* END OF BUF_MEM API
******************************************************************************/
#define WOLFSSL_CONF_INCLUDED
#include <src/conf.c>
/*******************************************************************************
* START OF RAND API
******************************************************************************/
#if defined(OPENSSL_EXTRA) && !defined(WOLFSSL_NO_OPENSSL_RAND_CB)
static int wolfSSL_RAND_InitMutex(void)
{
#ifndef WOLFSSL_MUTEX_INITIALIZER
if (gRandMethodsInit == 0) {
if (wc_InitMutex(&gRandMethodMutex) != 0) {
WOLFSSL_MSG("Bad Init Mutex rand methods");
return BAD_MUTEX_E;
}
gRandMethodsInit = 1;
}
#endif
return 0;
}
#endif
#ifdef OPENSSL_EXTRA
/* Checks if the global RNG has been created. If not then one is created.
*
* Returns WOLFSSL_SUCCESS when no error is encountered.
*/
int wolfSSL_RAND_Init(void)
{
int ret = WOLFSSL_FAILURE;
#ifdef HAVE_GLOBAL_RNG
if (wc_LockMutex(&globalRNGMutex) == 0) {
if (initGlobalRNG == 0) {
ret = wc_InitRng(&globalRNG);
if (ret == 0) {
initGlobalRNG = 1;
ret = WOLFSSL_SUCCESS;
}
}
else {
/* GlobalRNG is already initialized */
ret = WOLFSSL_SUCCESS;
}
wc_UnLockMutex(&globalRNGMutex);
}
#endif
return ret;
}
/* WOLFSSL_SUCCESS on ok */
int wolfSSL_RAND_seed(const void* seed, int len)
{
#ifndef WOLFSSL_NO_OPENSSL_RAND_CB
if (wolfSSL_RAND_InitMutex() == 0 && wc_LockMutex(&gRandMethodMutex) == 0) {
if (gRandMethods && gRandMethods->seed) {
int ret = gRandMethods->seed(seed, len);
wc_UnLockMutex(&gRandMethodMutex);
return ret;
}
wc_UnLockMutex(&gRandMethodMutex);
}
#else
(void)seed;
(void)len;
#endif
/* Make sure global shared RNG (globalRNG) is initialized */
return wolfSSL_RAND_Init();
}
/* Returns the path for reading seed data from.
* Uses the env variable $RANDFILE first if set, if not then used $HOME/.rnd
*
* Note uses stdlib by default unless XGETENV macro is overwritten
*
* fname buffer to hold path
* len length of fname buffer
*
* Returns a pointer to fname on success and NULL on failure
*/
const char* wolfSSL_RAND_file_name(char* fname, unsigned long len)
{
#if !defined(NO_FILESYSTEM) && defined(XGETENV)
char* rt;
WOLFSSL_ENTER("wolfSSL_RAND_file_name");
if (fname == NULL) {
return NULL;
}
XMEMSET(fname, 0, len);
if ((rt = XGETENV("RANDFILE")) != NULL) {
if (len > XSTRLEN(rt)) {
XMEMCPY(fname, rt, XSTRLEN(rt));
}
else {
WOLFSSL_MSG("RANDFILE too large for buffer");
rt = NULL;
}
}
/* $RANDFILE was not set or is too large, check $HOME */
if (rt == NULL) {
const char ap[] = "/.rnd";
WOLFSSL_MSG("Environment variable RANDFILE not set");
if ((rt = XGETENV("HOME")) == NULL) {
#ifdef XALTHOMEVARNAME
if ((rt = XGETENV(XALTHOMEVARNAME)) == NULL) {
WOLFSSL_MSG("Environment variable HOME and " XALTHOMEVARNAME
" not set");
return NULL;
}
#else
WOLFSSL_MSG("Environment variable HOME not set");
return NULL;
#endif
}
if (len > XSTRLEN(rt) + XSTRLEN(ap)) {
fname[0] = '\0';
XSTRNCAT(fname, rt, len);
XSTRNCAT(fname, ap, len - XSTRLEN(rt));
return fname;
}
else {
WOLFSSL_MSG("Path too large for buffer");
return NULL;
}
}
return fname;
#else
WOLFSSL_ENTER("wolfSSL_RAND_file_name");
WOLFSSL_MSG("RAND_file_name requires filesystem and getenv support, "
"not compiled in");
(void)fname;
(void)len;
return NULL;
#endif
}
/* Writes 1024 bytes from the RNG to the given file name.
*
* fname name of file to write to
*
* Returns the number of bytes written
*/
int wolfSSL_RAND_write_file(const char* fname)
{
int bytes = 0;
WOLFSSL_ENTER("wolfSSL_RAND_write_file");
if (fname == NULL) {
return WOLFSSL_FAILURE;
}
#ifndef NO_FILESYSTEM
{
#ifndef WOLFSSL_SMALL_STACK
unsigned char buf[1024];
#else
unsigned char* buf = (unsigned char *)XMALLOC(1024, NULL,
DYNAMIC_TYPE_TMP_BUFFER);
if (buf == NULL) {
WOLFSSL_MSG("malloc failed");
return WOLFSSL_FAILURE;
}
#endif
bytes = 1024; /* default size of buf */
if (initGlobalRNG == 0 && wolfSSL_RAND_Init() != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("No RNG to use");
#ifdef WOLFSSL_SMALL_STACK
XFREE(buf, NULL, DYNAMIC_TYPE_TMP_BUFFER);
#endif
return 0;
}
if (wc_RNG_GenerateBlock(&globalRNG, buf, (word32)bytes) != 0) {
WOLFSSL_MSG("Error generating random buffer");
bytes = 0;
}
else {
XFILE f;
#ifdef WOLFSSL_CHECK_MEM_ZERO
wc_MemZero_Add("wolfSSL_RAND_write_file buf", buf, bytes);
#endif
f = XFOPEN(fname, "wb");
if (f == XBADFILE) {
WOLFSSL_MSG("Error opening the file");
bytes = 0;
}
else {
size_t bytes_written = XFWRITE(buf, 1, (size_t)bytes, f);
bytes = (int)bytes_written;
XFCLOSE(f);
}
}
ForceZero(buf, (word32)bytes);
#ifdef WOLFSSL_SMALL_STACK
XFREE(buf, NULL, DYNAMIC_TYPE_TMP_BUFFER);
#elif defined(WOLFSSL_CHECK_MEM_ZERO)
wc_MemZero_Check(buf, sizeof(buf));
#endif
}
#endif
return bytes;
}
#ifndef FREERTOS_TCP
/* These constant values are protocol values made by egd */
#if defined(USE_WOLFSSL_IO) && !defined(USE_WINDOWS_API) && \
!defined(HAVE_FIPS) && defined(HAVE_HASHDRBG) && !defined(NETOS) && \
defined(HAVE_SYS_UN_H)
#define WOLFSSL_EGD_NBLOCK 0x01
#include <sys/un.h>
#endif
/* This collects entropy from the path nm and seeds the global PRNG with it.
*
* nm is the file path to the egd server
*
* Returns the number of bytes read.
*/
int wolfSSL_RAND_egd(const char* nm)
{
#ifdef WOLFSSL_EGD_NBLOCK
struct sockaddr_un rem;
int fd;
int ret = WOLFSSL_SUCCESS;
word32 bytes = 0;
word32 idx = 0;
#ifndef WOLFSSL_SMALL_STACK
unsigned char buf[256];
#else
unsigned char* buf;
buf = (unsigned char*)XMALLOC(256, NULL, DYNAMIC_TYPE_TMP_BUFFER);
if (buf == NULL) {
WOLFSSL_MSG("Not enough memory");
return WOLFSSL_FATAL_ERROR;
}
#endif
XMEMSET(&rem, 0, sizeof(struct sockaddr_un));
if (nm == NULL) {
#ifdef WOLFSSL_SMALL_STACK
XFREE(buf, NULL, DYNAMIC_TYPE_TMP_BUFFER);
#endif
return WOLFSSL_FATAL_ERROR;
}
fd = socket(AF_UNIX, SOCK_STREAM, 0);
if (fd < 0) {
WOLFSSL_MSG("Error creating socket");
#ifdef WOLFSSL_SMALL_STACK
XFREE(buf, NULL, DYNAMIC_TYPE_TMP_BUFFER);
#endif
return WOLFSSL_FATAL_ERROR;
}
rem.sun_family = AF_UNIX;
XSTRNCPY(rem.sun_path, nm, sizeof(rem.sun_path) - 1);
rem.sun_path[sizeof(rem.sun_path)-1] = '\0';
/* connect to egd server */
if (connect(fd, (struct sockaddr*)&rem, sizeof(struct sockaddr_un)) == -1) {
WOLFSSL_MSG("error connecting to egd server");
ret = WOLFSSL_FATAL_ERROR;
}
#ifdef WOLFSSL_CHECK_MEM_ZERO
if (ret == WOLFSSL_SUCCESS) {
wc_MemZero_Add("wolfSSL_RAND_egd buf", buf, 256);
}
#endif
while (ret == WOLFSSL_SUCCESS && bytes < 255 && idx + 2 < 256) {
buf[idx] = WOLFSSL_EGD_NBLOCK;
buf[idx + 1] = 255 - bytes; /* request 255 bytes from server */
ret = (int)write(fd, buf + idx, 2);
if (ret != 2) {
if (errno == EAGAIN) {
ret = WOLFSSL_SUCCESS;
continue;
}
WOLFSSL_MSG("error requesting entropy from egd server");
ret = WOLFSSL_FATAL_ERROR;
break;
}
/* attempting to read */
buf[idx] = 0;
ret = (int)read(fd, buf + idx, 256 - bytes);
if (ret == 0) {
WOLFSSL_MSG("error reading entropy from egd server");
ret = WOLFSSL_FATAL_ERROR;
break;
}
if (ret > 0 && buf[idx] > 0) {
bytes += buf[idx]; /* egd stores amount sent in first byte */
if (bytes + idx > 255 || buf[idx] > ret) {
WOLFSSL_MSG("Buffer error");
ret = WOLFSSL_FATAL_ERROR;
break;
}
XMEMMOVE(buf + idx, buf + idx + 1, buf[idx]);
idx = bytes;
ret = WOLFSSL_SUCCESS;
if (bytes >= 255) {
break;
}
}
else {
if (errno == EAGAIN || errno == EINTR) {
WOLFSSL_MSG("EGD would read");
ret = WOLFSSL_SUCCESS; /* try again */
}
else if (buf[idx] == 0) {
/* if egd returned 0 then there is no more entropy to be had.
Do not try more reads. */
ret = WOLFSSL_SUCCESS;
break;
}
else {
WOLFSSL_MSG("Error with read");
ret = WOLFSSL_FATAL_ERROR;
}
}
}
if (bytes > 0 && ret == WOLFSSL_SUCCESS) {
/* call to check global RNG is created */
if (wolfSSL_RAND_Init() != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("Error with initializing global RNG structure");
ret = WOLFSSL_FATAL_ERROR;
}
else if (wc_RNG_DRBG_Reseed(&globalRNG, (const byte*) buf, bytes)
!= 0) {
WOLFSSL_MSG("Error with reseeding DRBG structure");
ret = WOLFSSL_FATAL_ERROR;
}
#ifdef SHOW_SECRETS
else { /* print out entropy found only when no error occurred */
word32 i;
printf("EGD Entropy = ");
for (i = 0; i < bytes; i++) {
printf("%02X", buf[i]);
}
printf("\n");
}
#endif
}
ForceZero(buf, bytes);
#ifdef WOLFSSL_SMALL_STACK
XFREE(buf, NULL, DYNAMIC_TYPE_TMP_BUFFER);
#elif defined(WOLFSSL_CHECK_MEM_ZERO)
wc_MemZero_Check(buf, 256);
#endif
close(fd);
if (ret == WOLFSSL_SUCCESS) {
return (int)bytes;
}
else {
return ret;
}
#else
WOLFSSL_MSG("Type of socket needed is not available");
WOLFSSL_MSG("\tor using mode where DRBG API is not available");
(void)nm;
return WOLFSSL_FATAL_ERROR;
#endif /* WOLFSSL_EGD_NBLOCK */
}
#endif /* !FREERTOS_TCP */
void wolfSSL_RAND_Cleanup(void)
{
#ifndef WOLFSSL_NO_OPENSSL_RAND_CB
if (wolfSSL_RAND_InitMutex() == 0 && wc_LockMutex(&gRandMethodMutex) == 0) {
if (gRandMethods && gRandMethods->cleanup)
gRandMethods->cleanup();
wc_UnLockMutex(&gRandMethodMutex);
}
#ifndef WOLFSSL_MUTEX_INITIALIZER
if (wc_FreeMutex(&gRandMethodMutex) == 0)
gRandMethodsInit = 0;
#endif
#endif
#ifdef HAVE_GLOBAL_RNG
if (wc_LockMutex(&globalRNGMutex) == 0) {
if (initGlobalRNG) {
wc_FreeRng(&globalRNG);
initGlobalRNG = 0;
}
wc_UnLockMutex(&globalRNGMutex);
}
#endif
}
/* returns WOLFSSL_SUCCESS if the bytes generated are valid otherwise
* WOLFSSL_FAILURE */
int wolfSSL_RAND_pseudo_bytes(unsigned char* buf, int num)
{
int ret;
int hash;
byte secret[DRBG_SEED_LEN]; /* secret length arbitrarily chosen */
#ifndef WOLFSSL_NO_OPENSSL_RAND_CB
if (wolfSSL_RAND_InitMutex() == 0 && wc_LockMutex(&gRandMethodMutex) == 0) {
if (gRandMethods && gRandMethods->pseudorand) {
ret = gRandMethods->pseudorand(buf, num);
wc_UnLockMutex(&gRandMethodMutex);
return ret;
}
wc_UnLockMutex(&gRandMethodMutex);
}
#endif
#ifdef WOLFSSL_HAVE_PRF
#ifndef NO_SHA256
hash = WC_SHA256;
#elif defined(WOLFSSL_SHA384)
hash = WC_SHA384;
#elif !defined(NO_SHA)
hash = WC_SHA;
#elif !defined(NO_MD5)
hash = WC_MD5;
#endif
/* get secret value from source of entropy */
ret = wolfSSL_RAND_bytes(secret, DRBG_SEED_LEN);
/* uses input buffer to seed for pseudo random number generation, each
* thread will potentially have different results this way */
if (ret == WOLFSSL_SUCCESS) {
PRIVATE_KEY_UNLOCK();
ret = wc_PRF(buf, num, secret, DRBG_SEED_LEN, (const byte*)buf, num,
hash, NULL, INVALID_DEVID);
PRIVATE_KEY_LOCK();
ret = (ret == 0) ? WOLFSSL_SUCCESS: WOLFSSL_FAILURE;
}
#else
/* fall back to just doing wolfSSL_RAND_bytes if PRF not avialbale */
ret = wolfSSL_RAND_bytes(buf, num);
(void)hash;
(void)secret;
#endif
return ret;
}
/* returns WOLFSSL_SUCCESS if the bytes generated are valid otherwise
* WOLFSSL_FAILURE */
int wolfSSL_RAND_bytes(unsigned char* buf, int num)
{
int ret = 0;
WC_RNG* rng = NULL;
#ifdef WOLFSSL_SMALL_STACK
WC_RNG* tmpRNG = NULL;
#else
WC_RNG tmpRNG[1];
#endif
int initTmpRng = 0;
#ifdef HAVE_GLOBAL_RNG
int used_global = 0;
#endif
WOLFSSL_ENTER("wolfSSL_RAND_bytes");
/* sanity check */
if (buf == NULL || num < 0)
/* return code compliant with OpenSSL */
return 0;
/* if a RAND callback has been set try and use it */
#ifndef WOLFSSL_NO_OPENSSL_RAND_CB
if (wolfSSL_RAND_InitMutex() == 0 && wc_LockMutex(&gRandMethodMutex) == 0) {
if (gRandMethods && gRandMethods->bytes) {
ret = gRandMethods->bytes(buf, num);
wc_UnLockMutex(&gRandMethodMutex);
return ret;
}
wc_UnLockMutex(&gRandMethodMutex);
}
#endif
#ifdef HAVE_GLOBAL_RNG
if (initGlobalRNG) {
if (wc_LockMutex(&globalRNGMutex) != 0) {
WOLFSSL_MSG("Bad Lock Mutex rng");
return ret;
}
/* the above access to initGlobalRNG is racey -- recheck it now that we
* have the lock.
*/
if (initGlobalRNG) {
rng = &globalRNG;
used_global = 1;
}
else {
wc_UnLockMutex(&globalRNGMutex);
}
}
if (used_global == 0)
#endif
{
#ifdef WOLFSSL_SMALL_STACK
tmpRNG = (WC_RNG*)XMALLOC(sizeof(WC_RNG), NULL, DYNAMIC_TYPE_RNG);
if (tmpRNG == NULL)
return ret;
#endif
if (wc_InitRng(tmpRNG) == 0) {
rng = tmpRNG;
initTmpRng = 1;
}
}
if (rng) {
/* handles size greater than RNG_MAX_BLOCK_LEN */
int blockCount = num / RNG_MAX_BLOCK_LEN;
while (blockCount--) {
ret = wc_RNG_GenerateBlock(rng, buf, RNG_MAX_BLOCK_LEN);
if (ret != 0) {
WOLFSSL_MSG("Bad wc_RNG_GenerateBlock");
break;
}
num -= RNG_MAX_BLOCK_LEN;
buf += RNG_MAX_BLOCK_LEN;
}
if (ret == 0 && num)
ret = wc_RNG_GenerateBlock(rng, buf, (word32)num);
if (ret != 0)
WOLFSSL_MSG("Bad wc_RNG_GenerateBlock");
else
ret = WOLFSSL_SUCCESS;
}
#ifdef HAVE_GLOBAL_RNG
if (used_global == 1)
wc_UnLockMutex(&globalRNGMutex);
#endif
if (initTmpRng)
wc_FreeRng(tmpRNG);
#ifdef WOLFSSL_SMALL_STACK
if (tmpRNG)
XFREE(tmpRNG, NULL, DYNAMIC_TYPE_RNG);
#endif
return ret;
}
int wolfSSL_RAND_poll(void)
{
byte entropy[16];
int ret = 0;
word32 entropy_sz = 16;
WOLFSSL_ENTER("wolfSSL_RAND_poll");
if (initGlobalRNG == 0){
WOLFSSL_MSG("Global RNG no Init");
return WOLFSSL_FAILURE;
}
ret = wc_GenerateSeed(&globalRNG.seed, entropy, entropy_sz);
if (ret != 0){
WOLFSSL_MSG("Bad wc_RNG_GenerateBlock");
ret = WOLFSSL_FAILURE;
}else
ret = WOLFSSL_SUCCESS;
return ret;
}
/* If a valid struct is provided with function pointers, will override
RAND_seed, bytes, cleanup, add, pseudo_bytes and status. If a NULL
pointer is passed in, it will cancel any previous function overrides.
Returns WOLFSSL_SUCCESS on success, WOLFSSL_FAILURE on failure. */
int wolfSSL_RAND_set_rand_method(const WOLFSSL_RAND_METHOD *methods)
{
#ifndef WOLFSSL_NO_OPENSSL_RAND_CB
if (wolfSSL_RAND_InitMutex() == 0 &&
wc_LockMutex(&gRandMethodMutex) == 0) {
gRandMethods = methods;
wc_UnLockMutex(&gRandMethodMutex);
return WOLFSSL_SUCCESS;
}
#else
(void)methods;
#endif
return WOLFSSL_FAILURE;
}
/* Returns WOLFSSL_SUCCESS if the RNG has been seeded with enough data */
int wolfSSL_RAND_status(void)
{
int ret = WOLFSSL_SUCCESS;
#ifndef WOLFSSL_NO_OPENSSL_RAND_CB
if (wolfSSL_RAND_InitMutex() == 0 &&
wc_LockMutex(&gRandMethodMutex) == 0) {
if (gRandMethods && gRandMethods->status)
ret = gRandMethods->status();
wc_UnLockMutex(&gRandMethodMutex);
}
else {
ret = WOLFSSL_FAILURE;
}
#else
/* wolfCrypt provides enough seed internally, so return success */
#endif
return ret;
}
void wolfSSL_RAND_add(const void* add, int len, double entropy)
{
#ifndef WOLFSSL_NO_OPENSSL_RAND_CB
if (wolfSSL_RAND_InitMutex() == 0 &&
wc_LockMutex(&gRandMethodMutex) == 0) {
if (gRandMethods && gRandMethods->add) {
/* callback has return code, but RAND_add does not */
(void)gRandMethods->add(add, len, entropy);
}
wc_UnLockMutex(&gRandMethodMutex);
}
#else
/* wolfSSL seeds/adds internally, use explicit RNG if you want
to take control */
(void)add;
(void)len;
(void)entropy;
#endif
}
#ifndef NO_WOLFSSL_STUB
void wolfSSL_RAND_screen(void)
{
WOLFSSL_STUB("RAND_screen");
}
#endif
int wolfSSL_RAND_load_file(const char* fname, long len)
{
(void)fname;
/* wolfCrypt provides enough entropy internally or will report error */
if (len == -1)
return 1024;
else
return (int)len;
}
#endif /* OPENSSL_EXTRA */
/*******************************************************************************
* END OF RAND API
******************************************************************************/
/*******************************************************************************
* START OF EVP_CIPHER API
******************************************************************************/
#ifdef OPENSSL_EXTRA
/* store for external read of iv, WOLFSSL_SUCCESS on success */
int wolfSSL_StoreExternalIV(WOLFSSL_EVP_CIPHER_CTX* ctx)
{
WOLFSSL_ENTER("wolfSSL_StoreExternalIV");
if (ctx == NULL) {
WOLFSSL_MSG("Bad function argument");
return WOLFSSL_FATAL_ERROR;
}
switch (ctx->cipherType) {
#ifndef NO_AES
#if defined(HAVE_AES_CBC) || defined(WOLFSSL_AES_DIRECT)
case AES_128_CBC_TYPE :
case AES_192_CBC_TYPE :
case AES_256_CBC_TYPE :
WOLFSSL_MSG("AES CBC");
XMEMCPY(ctx->iv, &ctx->cipher.aes.reg, ctx->ivSz);
break;
#endif
#ifdef HAVE_AESGCM
case AES_128_GCM_TYPE :
case AES_192_GCM_TYPE :
case AES_256_GCM_TYPE :
WOLFSSL_MSG("AES GCM");
XMEMCPY(ctx->iv, &ctx->cipher.aes.reg, ctx->ivSz);
break;
#endif /* HAVE_AESGCM */
#ifdef HAVE_AESCCM
case AES_128_CCM_TYPE :
case AES_192_CCM_TYPE :
case AES_256_CCM_TYPE :
WOLFSSL_MSG("AES CCM");
XMEMCPY(ctx->iv, &ctx->cipher.aes.reg, ctx->ivSz);
break;
#endif /* HAVE_AESCCM */
#ifdef HAVE_AES_ECB
case AES_128_ECB_TYPE :
case AES_192_ECB_TYPE :
case AES_256_ECB_TYPE :
WOLFSSL_MSG("AES ECB");
break;
#endif
#ifdef WOLFSSL_AES_COUNTER
case AES_128_CTR_TYPE :
case AES_192_CTR_TYPE :
case AES_256_CTR_TYPE :
WOLFSSL_MSG("AES CTR");
XMEMCPY(ctx->iv, &ctx->cipher.aes.reg, AES_BLOCK_SIZE);
break;
#endif /* WOLFSSL_AES_COUNTER */
#ifdef WOLFSSL_AES_CFB
#if !defined(HAVE_SELFTEST) && !defined(HAVE_FIPS)
case AES_128_CFB1_TYPE:
case AES_192_CFB1_TYPE:
case AES_256_CFB1_TYPE:
WOLFSSL_MSG("AES CFB1");
break;
case AES_128_CFB8_TYPE:
case AES_192_CFB8_TYPE:
case AES_256_CFB8_TYPE:
WOLFSSL_MSG("AES CFB8");
break;
#endif /* !HAVE_SELFTEST && !HAVE_FIPS */
case AES_128_CFB128_TYPE:
case AES_192_CFB128_TYPE:
case AES_256_CFB128_TYPE:
WOLFSSL_MSG("AES CFB128");
break;
#endif /* WOLFSSL_AES_CFB */
#if defined(WOLFSSL_AES_OFB)
case AES_128_OFB_TYPE:
case AES_192_OFB_TYPE:
case AES_256_OFB_TYPE:
WOLFSSL_MSG("AES OFB");
break;
#endif /* WOLFSSL_AES_OFB */
#ifdef WOLFSSL_AES_XTS
case AES_128_XTS_TYPE:
case AES_256_XTS_TYPE:
WOLFSSL_MSG("AES XTS");
break;
#endif /* WOLFSSL_AES_XTS */
#endif /* NO_AES */
#ifdef HAVE_ARIA
case ARIA_128_GCM_TYPE :
case ARIA_192_GCM_TYPE :
case ARIA_256_GCM_TYPE :
WOLFSSL_MSG("ARIA GCM");
XMEMCPY(ctx->iv, &ctx->cipher.aria.nonce, ARIA_BLOCK_SIZE);
break;
#endif /* HAVE_ARIA */
#ifndef NO_DES3
case DES_CBC_TYPE :
WOLFSSL_MSG("DES CBC");
XMEMCPY(ctx->iv, &ctx->cipher.des.reg, DES_BLOCK_SIZE);
break;
case DES_EDE3_CBC_TYPE :
WOLFSSL_MSG("DES EDE3 CBC");
XMEMCPY(ctx->iv, &ctx->cipher.des3.reg, DES_BLOCK_SIZE);
break;
#endif
#ifdef WOLFSSL_DES_ECB
case DES_ECB_TYPE :
WOLFSSL_MSG("DES ECB");
break;
case DES_EDE3_ECB_TYPE :
WOLFSSL_MSG("DES3 ECB");
break;
#endif
case ARC4_TYPE :
WOLFSSL_MSG("ARC4");
break;
#if defined(HAVE_CHACHA) && defined(HAVE_POLY1305)
case CHACHA20_POLY1305_TYPE:
break;
#endif
#ifdef HAVE_CHACHA
case CHACHA20_TYPE:
break;
#endif
#ifdef WOLFSSL_SM4_ECB
case SM4_ECB_TYPE:
break;
#endif
#ifdef WOLFSSL_SM4_CBC
case SM4_CBC_TYPE:
WOLFSSL_MSG("SM4 CBC");
XMEMCPY(&ctx->cipher.sm4.iv, ctx->iv, SM4_BLOCK_SIZE);
break;
#endif
#ifdef WOLFSSL_SM4_CTR
case SM4_CTR_TYPE:
WOLFSSL_MSG("SM4 CTR");
XMEMCPY(&ctx->cipher.sm4.iv, ctx->iv, SM4_BLOCK_SIZE);
break;
#endif
#ifdef WOLFSSL_SM4_GCM
case SM4_GCM_TYPE:
WOLFSSL_MSG("SM4 GCM");
XMEMCPY(&ctx->cipher.sm4.iv, ctx->iv, SM4_BLOCK_SIZE);
break;
#endif
#ifdef WOLFSSL_SM4_CCM
case SM4_CCM_TYPE:
WOLFSSL_MSG("SM4 CCM");
XMEMCPY(&ctx->cipher.sm4.iv, ctx->iv, SM4_BLOCK_SIZE);
break;
#endif
case NULL_CIPHER_TYPE :
WOLFSSL_MSG("NULL");
break;
default: {
WOLFSSL_MSG("bad type");
return WOLFSSL_FATAL_ERROR;
}
}
return WOLFSSL_SUCCESS;
}
/* set internal IV from external, WOLFSSL_SUCCESS on success */
int wolfSSL_SetInternalIV(WOLFSSL_EVP_CIPHER_CTX* ctx)
{
WOLFSSL_ENTER("wolfSSL_SetInternalIV");
if (ctx == NULL) {
WOLFSSL_MSG("Bad function argument");
return WOLFSSL_FATAL_ERROR;
}
switch (ctx->cipherType) {
#ifndef NO_AES
#if defined(HAVE_AES_CBC) || defined(WOLFSSL_AES_DIRECT)
case AES_128_CBC_TYPE :
case AES_192_CBC_TYPE :
case AES_256_CBC_TYPE :
WOLFSSL_MSG("AES CBC");
XMEMCPY(&ctx->cipher.aes.reg, ctx->iv, AES_BLOCK_SIZE);
break;
#endif
#ifdef HAVE_AESGCM
case AES_128_GCM_TYPE :
case AES_192_GCM_TYPE :
case AES_256_GCM_TYPE :
WOLFSSL_MSG("AES GCM");
XMEMCPY(&ctx->cipher.aes.reg, ctx->iv, AES_BLOCK_SIZE);
break;
#endif
#ifdef HAVE_AES_ECB
case AES_128_ECB_TYPE :
case AES_192_ECB_TYPE :
case AES_256_ECB_TYPE :
WOLFSSL_MSG("AES ECB");
break;
#endif
#ifdef WOLFSSL_AES_COUNTER
case AES_128_CTR_TYPE :
case AES_192_CTR_TYPE :
case AES_256_CTR_TYPE :
WOLFSSL_MSG("AES CTR");
XMEMCPY(&ctx->cipher.aes.reg, ctx->iv, AES_BLOCK_SIZE);
break;
#endif
#endif /* NO_AES */
#ifdef HAVE_ARIA
case ARIA_128_GCM_TYPE :
case ARIA_192_GCM_TYPE :
case ARIA_256_GCM_TYPE :
WOLFSSL_MSG("ARIA GCM");
XMEMCPY(&ctx->cipher.aria.nonce, ctx->iv, ARIA_BLOCK_SIZE);
break;
#endif /* HAVE_ARIA */
#ifndef NO_DES3
case DES_CBC_TYPE :
WOLFSSL_MSG("DES CBC");
XMEMCPY(&ctx->cipher.des.reg, ctx->iv, DES_BLOCK_SIZE);
break;
case DES_EDE3_CBC_TYPE :
WOLFSSL_MSG("DES EDE3 CBC");
XMEMCPY(&ctx->cipher.des3.reg, ctx->iv, DES_BLOCK_SIZE);
break;
#endif
#ifdef WOLFSSL_DES_ECB
case DES_ECB_TYPE :
WOLFSSL_MSG("DES ECB");
break;
case DES_EDE3_ECB_TYPE :
WOLFSSL_MSG("DES3 ECB");
break;
#endif
case ARC4_TYPE :
WOLFSSL_MSG("ARC4");
break;
#if defined(HAVE_CHACHA) && defined(HAVE_POLY1305)
case CHACHA20_POLY1305_TYPE:
break;
#endif
#ifdef HAVE_CHACHA
case CHACHA20_TYPE:
break;
#endif
#ifdef WOLFSSL_SM4_ECB
case SM4_ECB_TYPE:
break;
#endif
#ifdef WOLFSSL_SM4_CBC
case SM4_CBC_TYPE:
WOLFSSL_MSG("SM4 CBC");
XMEMCPY(ctx->iv, &ctx->cipher.sm4.iv, ctx->ivSz);
break;
#endif
#ifdef WOLFSSL_SM4_CTR
case SM4_CTR_TYPE:
WOLFSSL_MSG("SM4 CTR");
XMEMCPY(ctx->iv, &ctx->cipher.sm4.iv, ctx->ivSz);
break;
#endif
#ifdef WOLFSSL_SM4_GCM
case SM4_GCM_TYPE:
WOLFSSL_MSG("SM4 GCM");
XMEMCPY(ctx->iv, &ctx->cipher.sm4.iv, ctx->ivSz);
break;
#endif
#ifdef WOLFSSL_SM4_CCM
case SM4_CCM_TYPE:
WOLFSSL_MSG("SM4 CCM");
XMEMCPY(ctx->iv, &ctx->cipher.sm4.iv, ctx->ivSz);
break;
#endif
case NULL_CIPHER_TYPE :
WOLFSSL_MSG("NULL");
break;
default: {
WOLFSSL_MSG("bad type");
return WOLFSSL_FATAL_ERROR;
}
}
return WOLFSSL_SUCCESS;
}
#ifndef NO_DES3
void wolfSSL_3des_iv(WOLFSSL_EVP_CIPHER_CTX* ctx, int doset,
unsigned char* iv, int len)
{
(void)len;
WOLFSSL_MSG("wolfSSL_3des_iv");
if (ctx == NULL || iv == NULL) {
WOLFSSL_MSG("Bad function argument");
return;
}
if (doset)
wc_Des3_SetIV(&ctx->cipher.des3, iv); /* OpenSSL compat, no ret */
else
XMEMCPY(iv, &ctx->cipher.des3.reg, DES_BLOCK_SIZE);
}
#endif /* NO_DES3 */
#ifndef NO_AES
void wolfSSL_aes_ctr_iv(WOLFSSL_EVP_CIPHER_CTX* ctx, int doset,
unsigned char* iv, int len)
{
(void)len;
WOLFSSL_MSG("wolfSSL_aes_ctr_iv");
if (ctx == NULL || iv == NULL) {
WOLFSSL_MSG("Bad function argument");
return;
}
if (doset)
(void)wc_AesSetIV(&ctx->cipher.aes, iv); /* OpenSSL compat, no ret */
else
XMEMCPY(iv, &ctx->cipher.aes.reg, AES_BLOCK_SIZE);
}
#endif /* NO_AES */
#endif /* OPENSSL_EXTRA */
/*******************************************************************************
* END OF EVP_CIPHER API
******************************************************************************/
#ifndef NO_CERTS
#define WOLFSSL_X509_STORE_INCLUDED
#include <src/x509_str.c>
#define WOLFSSL_SSL_P7P12_INCLUDED
#include <src/ssl_p7p12.c>
#endif /* !NO_CERTS */
/*******************************************************************************
* BEGIN OPENSSL FIPS DRBG APIs
******************************************************************************/
#if defined(OPENSSL_EXTRA) && !defined(WC_NO_RNG) && defined(HAVE_HASHDRBG)
int wolfSSL_FIPS_drbg_init(WOLFSSL_DRBG_CTX *ctx, int type, unsigned int flags)
{
int ret = WOLFSSL_FAILURE;
if (ctx != NULL) {
XMEMSET(ctx, 0, sizeof(WOLFSSL_DRBG_CTX));
ctx->type = type;
ctx->xflags = (int)flags;
ctx->status = DRBG_STATUS_UNINITIALISED;
ret = WOLFSSL_SUCCESS;
}
return ret;
}
WOLFSSL_DRBG_CTX* wolfSSL_FIPS_drbg_new(int type, unsigned int flags)
{
int ret = WOLFSSL_FAILURE;
WOLFSSL_DRBG_CTX* ctx = (WOLFSSL_DRBG_CTX*)XMALLOC(sizeof(WOLFSSL_DRBG_CTX),
NULL, DYNAMIC_TYPE_OPENSSL);
ret = wolfSSL_FIPS_drbg_init(ctx, type, flags);
if (ret == WOLFSSL_SUCCESS && type != 0) {
ret = wolfSSL_FIPS_drbg_instantiate(ctx, NULL, 0);
}
if (ret != WOLFSSL_SUCCESS) {
WOLFSSL_ERROR(ret);
wolfSSL_FIPS_drbg_free(ctx);
ctx = NULL;
}
return ctx;
}
int wolfSSL_FIPS_drbg_instantiate(WOLFSSL_DRBG_CTX* ctx,
const unsigned char* pers, size_t perslen)
{
int ret = WOLFSSL_FAILURE;
if (ctx != NULL && ctx->rng == NULL) {
#if !defined(HAVE_SELFTEST) && (!defined(HAVE_FIPS) || \
(defined(HAVE_FIPS) && FIPS_VERSION_GE(5,0)))
ctx->rng = wc_rng_new((byte*)pers, (word32)perslen, NULL);
#else
ctx->rng = (WC_RNG*)XMALLOC(sizeof(WC_RNG), NULL, DYNAMIC_TYPE_RNG);
if (ctx->rng != NULL) {
#if defined(HAVE_FIPS) && FIPS_VERSION_GE(2,0)
ret = wc_InitRngNonce(ctx->rng, (byte*)pers, (word32)perslen);
#else
ret = wc_InitRng(ctx->rng);
(void)pers;
(void)perslen;
#endif
if (ret != 0) {
WOLFSSL_ERROR(ret);
XFREE(ctx->rng, NULL, DYNAMIC_TYPE_RNG);
ctx->rng = NULL;
}
}
#endif
}
if (ctx != NULL && ctx->rng != NULL) {
ctx->status = DRBG_STATUS_READY;
ret = WOLFSSL_SUCCESS;
}
return ret;
}
int wolfSSL_FIPS_drbg_set_callbacks(WOLFSSL_DRBG_CTX* ctx,
drbg_entropy_get entropy_get, drbg_entropy_clean entropy_clean,
size_t entropy_blocklen,
drbg_nonce_get none_get, drbg_nonce_clean nonce_clean)
{
int ret = WOLFSSL_FAILURE;
if (ctx != NULL) {
ctx->entropy_get = entropy_get;
ctx->entropy_clean = entropy_clean;
ctx->entropy_blocklen = entropy_blocklen;
ctx->none_get = none_get;
ctx->nonce_clean = nonce_clean;
ret = WOLFSSL_SUCCESS;
}
return ret;
}
void wolfSSL_FIPS_rand_add(const void* buf, int num, double entropy)
{
/* not implemented */
(void)buf;
(void)num;
(void)entropy;
}
int wolfSSL_FIPS_drbg_reseed(WOLFSSL_DRBG_CTX* ctx, const unsigned char* adin,
size_t adinlen)
{
int ret = WOLFSSL_FAILURE;
if (ctx != NULL && ctx->rng != NULL) {
#if !defined(HAVE_SELFTEST) && (!defined(HAVE_FIPS) || \
(defined(HAVE_FIPS) && FIPS_VERSION_GE(2,0)))
if (wc_RNG_DRBG_Reseed(ctx->rng, adin, (word32)adinlen) == 0) {
ret = WOLFSSL_SUCCESS;
}
#else
ret = WOLFSSL_SUCCESS;
(void)adin;
(void)adinlen;
#endif
}
return ret;
}
int wolfSSL_FIPS_drbg_generate(WOLFSSL_DRBG_CTX* ctx, unsigned char* out,
size_t outlen, int prediction_resistance, const unsigned char* adin,
size_t adinlen)
{
int ret = WOLFSSL_FAILURE;
if (ctx != NULL && ctx->rng != NULL) {
ret = wc_RNG_GenerateBlock(ctx->rng, out, (word32)outlen);
if (ret == 0) {
ret = WOLFSSL_SUCCESS;
}
}
(void)prediction_resistance;
(void)adin;
(void)adinlen;
return ret;
}
int wolfSSL_FIPS_drbg_uninstantiate(WOLFSSL_DRBG_CTX *ctx)
{
if (ctx != NULL && ctx->rng != NULL) {
#if !defined(HAVE_SELFTEST) && (!defined(HAVE_FIPS) || \
(defined(HAVE_FIPS) && FIPS_VERSION_GE(5,0)))
wc_rng_free(ctx->rng);
#else
wc_FreeRng(ctx->rng);
XFREE(ctx->rng, NULL, DYNAMIC_TYPE_RNG);
#endif
ctx->rng = NULL;
ctx->status = DRBG_STATUS_UNINITIALISED;
}
return WOLFSSL_SUCCESS;
}
void wolfSSL_FIPS_drbg_free(WOLFSSL_DRBG_CTX *ctx)
{
if (ctx != NULL) {
/* As safety check if free'ing the default drbg, then mark global NULL.
* Technically the user should not call free on the default drbg. */
if (ctx == gDrbgDefCtx) {
gDrbgDefCtx = NULL;
}
wolfSSL_FIPS_drbg_uninstantiate(ctx);
XFREE(ctx, NULL, DYNAMIC_TYPE_OPENSSL);
}
}
WOLFSSL_DRBG_CTX* wolfSSL_FIPS_get_default_drbg(void)
{
if (gDrbgDefCtx == NULL) {
gDrbgDefCtx = wolfSSL_FIPS_drbg_new(0, 0);
}
return gDrbgDefCtx;
}
void wolfSSL_FIPS_get_timevec(unsigned char* buf, unsigned long* pctr)
{
/* not implemented */
(void)buf;
(void)pctr;
}
void* wolfSSL_FIPS_drbg_get_app_data(WOLFSSL_DRBG_CTX *ctx)
{
if (ctx != NULL) {
return ctx->app_data;
}
return NULL;
}
void wolfSSL_FIPS_drbg_set_app_data(WOLFSSL_DRBG_CTX *ctx, void *app_data)
{
if (ctx != NULL) {
ctx->app_data = app_data;
}
}
#endif
/*******************************************************************************
* END OF OPENSSL FIPS DRBG APIs
******************************************************************************/
#endif /* !WOLFCRYPT_ONLY */